首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
On the lumenal side of photosystem I (PSI), each of the two large core subunits, PsaA and PsaB, expose a conserved tryptophan residue to the surface. PsaB-Trp(627) is part of the hydrophobic recognition site that is essential for tight binding of the two electron donors plastocyanin and cytochrome c(6) to the donor side of PSI (Sommer, F., Drepper, F., and Hippler, M. (2002) J. Biol. Chem. 277, 6573-6581). To examine the function of PsaA-Trp(651) in binding and electron transfer of both donors to PSI, we generated the mutants PsaA-W651F and PsaA-W651S by site-directed mutagenesis and biolistic transformation of Chlamydomonas reinhardtii. The protein-protein interaction and the electron transfer between the donors and PSI isolated from the mutants were analyzed by flash absorption spectroscopy. The mutation PsaA-W651F completely abolished the formation of a first order electron transfer complex between plastocyanin (pc) and the altered PSI and increased the dissociation constant for binding of cytochrome (cyt) c(6) by more than a factor of 10 as compared with wild type. Mutation of PsaA-Trp(651) to Ser had an even larger impact on the dissociation constant. The K(D) value increased another 2-fold when the values obtained for the interaction and electron transfer between cyt c(6) and PSI from PsaA-W651S and PsaA-W651F are compared. In contrast, binding and electron transfer of pc to PSI from PsaA-W651S improved as compared with PSI from PsaA-W651F and admitted the formation of an inter-molecular electron transfer complex, resulting in a K(D) value of about 554 microm that is still five times higher than observed for wild type. These results demonstrate that PsaA-Trp(651) is, such as PsaB-Trp(627), crucial for high affinity binding of pc and cyt c(6) to PSI. Our results also indicate that the highly conserved structural recognition motif that is formed by PsaA-Trp(651) and PsaB-Trp(627) confers a differential selectivity in binding of both donors to PSI.  相似文献   

2.
Electron input from plastocyanin into photosystem I (PSI) is slowed down in the Chlamydomonas reinhardtii mutants affected at the donor side (PsaF or PsaB, lumenal loop j) of PSI. In contrast, electron exit from PSI to ferredoxin is diminished in the PSI acceptor side PsaC mutants K35E and FB1. Although, the electron transfer reactions are diminished to a similar extent in both type of mutants, the PsaC mutants K35E and FB1 are more light‐sensitive than the PsaF‐deficient strain 3bF or the PsaB mutants E613N and W627F. To assess the differential photosensitivity of donor and acceptor side mutants fluorescence transients, gross oxygen evolution and uptake, PSII photo‐inhibition and rate of recovery were measured as well as NADP+ photoreduction. The NADP+ photoreduction measurements indicated that the donor side is limiting the reduction rate. In contrast, measurements of gross oxygen evolution and uptake showed that the reducing side limits linear electron transfer. However, under high light, donor and acceptor side mutations lead to PSII photo‐inhibition and to a diminished rate of PSII recovery, cause lipid peroxidation and result in a decrease in the levels of PSI and PSII. The wild type is not affected under the same conditions. These responses are most pronounced in the PsaC‐K35E and PsaB‐W627F mutants, and they correlate with the light sensitivity of these strains. The correlation between limitation of electron transfer through PSI and the formation of reactive oxygen species as a cause for the light‐sensitivity is discussed.  相似文献   

3.
The reduction of the photo-oxidized special chlorophyll pair P700 of photosystem I (PSI) in the photosynthetic electron transport chain of eukaryotic organisms is facilitated by the soluble copper-containing protein plastocyanin (pc). In the absence of copper, pc is functionally replaced by the heme-containing protein cytochrome c6 (cyt c6) in the green alga Chlamydomonas reinhardtii. Binding and electron transfer between both donors and PSI follows a two-step mechanism that depends on electrostatic and hydrophobic recognition between the partners. Although the electrostatic and hydrophobic recognition sites on pc and PSI are well known, the precise electrostatic recognition site on cyt c6 is unknown. To specify the interaction sites on a molecular level, we cross-linked cyt c6 and PSI using a zero-length cross-linker and obtained a cross-linked complex competent in fast and efficient electron transfer. As shown previously, cyt c6 cross-links specifically with the PsaF subunit of PSI. Mass spectrometric analysis of tryptic peptides from the cross-linked product revealed specific interaction sites between residues Lys27 of PsaF and Glu69 of cyt c6 and between Lys23 of PsaF and Glu69/Glu70 of cyt c6. Using these new data, we present a molecular model of the intermolecular electron transfer complex between eukaryotic cyt c6 and PSI.  相似文献   

4.
Photosystem I (PSI) interacts with plastocyanin or cytochrome c6 on the luminal side. To identify sites of interaction between plastocyanin/cytochrome c6 and the PSI core, site-directed mutations were generated in the luminal J loop of the PsaB protein from Synechocystis sp. PCC 6803. The eight mutant strains differed in their photoautotrophic growth. Western blotting with subunit-specific antibodies indicated that the mutations affected the PSI level in the thylakoid membranes. PSI proteins could not be detected in the S600R/G601C/N602I, N609K/S610C/T611I, and M614I/G615C/W616A mutant membranes. The other mutant strains contained different levels of PSI proteins. Among the mutant strains that contained PSI proteins, the H595C/L596I, Q627H/L628C/I629S, and N638C/N639S mutants showed similar levels of PSI-mediated electron transfer activity when either cytochrome c6 or an artificial electron donor was used. In contrast, cytochrome c6 could not function as an electron donor to the W622C/A623R mutant, even though the PSI activity mediated by an artificial electron donor was detected in this mutant. Thus, the W622C/A623R mutation affected the interaction of the PSI complex with cytochrome c6. Biotin-maleimide modification of the mutant PSI complexes indicated that His-595, Trp-622, Leu-628, Tyr-632, and Asn-638 in wild-type PsaB may be exposed on the surface of the PSI complex. The results presented here demonstrate the role of an extramembrane loop of a PSI core protein in the interaction with soluble electron donor proteins.  相似文献   

5.
We have used pulsed electron paramagnetic resonance (EPR) measurements of the electron spin polarised (ESP) signals arising from the geminate radical pair P700(z.rad;+)/A(1)(z.rad;-) to detect electron transfer on both the PsaA and PsaB branches of redox cofactors in the photosystem I (PSI) reaction centre of Chlamydomonas reinhardtii. We have also used electron nuclear double resonance (ENDOR) spectroscopy to monitor the electronic structure of the bound phyllosemiquinones on both the PsaA and PsaB polypeptides. Both these spectroscopic assays have been used to analyse the effects of site-directed mutations to the axial ligands of the primary chlorophyll electron acceptor(s) A(0) and the conserved tryptophan in the PsaB phylloquinone (A(1)) binding pocket. Substitution of histidine for the axial ligand methionine on the PsaA branch (PsaA-M684H) blocks electron transfer to the PsaA-branch phylloquinone, and blocks photoaccumulation of the PsaA-branch phyllosemiquinone. However, this does not prevent photoautotrophic growth, indicating that electron transfer via the PsaB branch must take place and is alone sufficient to support growth. The corresponding substitution on the PsaB branch (PsaB-M664H) blocks kinetic electron transfer to the PsaB phylloquinone at 100 K, but does not block the photoaccumulation of the phyllosemiquinone. This transformant is unable to grow photoautotrophically although PsaA-branch electron transfer to and from the phyllosemiquinone is functional, indicating that the B branch of electron transfer may be essential for photoautotrophic growth. Mutation of the conserved tryptophan PsaB-W673 to leucine affects the electronic structure of the PsaB phyllosemiquinone, and also prevents photoautotrophic growth.  相似文献   

6.
The recent crystal structure of photosystem I (PSI) from Thermosynechococcus elongatus shows two nearly symmetric branches of electron transfer cofactors including the primary electron donor, P(700), and a sequence of electron acceptors, A, A(0) and A(1), bound to the PsaA and PsaB heterodimer. The central magnesium atoms of each of the putative primary electron acceptor chlorophylls, A(0), are unusually coordinated by the sulfur atom of methionine 688 of PsaA and 668 of PsaB, respectively. We [Ramesh et al. (2004a) Biochemistry 43:1369-1375] have shown that the replacement of either methionine with histidine in the PSI of the unicellular green alga Chlamydomonas reinhardtii resulted in accumulation of A(0)(-) (in 300-ps time scale), suggesting that both the PsaA and PsaB branches are active. This is in contrast to cyanobacterial PSI where studies with methionine-to-leucine mutants show that electron transfer occurs predominantly along the PsaA branch. In this contribution we report that the change of methionine to either leucine or serine leads to a similar accumulation of A(0)(-) on both the PsaA and the PsaB branch of PSI from C. reinhardtii, as we reported earlier for histidine mutants. More importantly, we further demonstrate that for all the mutants under study, accumulation of A(0)(-) is transient, and that reoxidation of A(0)(-) occurs within 1-2 ns, two orders of magnitude slower than in wild type PSI, most likely via slow electron transfer to A(1). This illustrates an indispensable role of methionine as an axial ligand to the primary acceptor A(0) in optimizing the rate of charge stabilization in PSI. A simple energetic model for this reaction is proposed. Our findings support the model of equivalent electron transfer along both cofactor branches in Photosystem I.  相似文献   

7.
Kinetic analysis using pulsed electron paramagnetic resonance (EPR) of photosynthetic electron transfer in the photosystem I reaction centres of Synechocystis 6803, in wild-type Chlamydomonas reinhardtii, and in site directed mutants of the phylloquinone binding sites in C. reinhardtii, indicates that electron transfer from the reaction centre primary electron donor, P700, to the iron-sulphur centres, Fe-S(X/A/B), can occur through either the PsaA or PsaB side phylloquinone. At low temperature reaction centres are frozen in states which allow electron transfer on one side of the reaction centre only. A fraction always donates electrons to the PsaA side quinone, the remainder to the PsaB side.  相似文献   

8.
Two histidines provide the axial ligands of the two chlorophyll a (Chl a) molecules which form the primary electron donor (P700) of photosystem I (PSI). Histidine 676 in the protein subunit PsaA, His(A676), and histidine 656 in subunit PsaB, His(B656), were replaced in the green algae Chlamydomnas reinhardtii by site-directed mutagenesis with nonpolar, uncharged polar, acidic, and basic amino acid residues. Only the substitutions with uncharged polar residues led to a significant accumulation of PSI in the thylakoid membranes. These PSI complexes were isolated and the physical properties of the primary donor characterized. The midpoint potential of P700(+)(*)/P700 was increased in all mutants (up to 140 mV) and showed a dependence on size and polarizability of the residues when His(B656) was substituted. In the light-minus-dark absorbance spectra, all mutations in PsaB exhibited an additional bleaching band at 665 nm at room temperature comparable with the published spectrum for the replacement of His(B656) with asparagine [Webber, A. N., Su Hui, Bingham, S. E., K?ss, H., Krabben, L., Kuhn, M., Jordan, R., Schlodder, E., and Lubitz, W. (1996) Biochemistry 35, 12857-12863]. Substitutions of His(A676) showed an additional shoulder around 680 nm. In the low-temperature absorbance difference spectra of P700(+)(*)/P700, a blue shift of the main bleaching band by 2 nm and some changes in the spectral features around 660 nm were observed for mutations of His(B656) in PsaB. The analogous substitution in PsaA showed only a shift of the main bleaching band. Similar effects of the mutations were found in the (3)P700/P700 absorbance difference spectra at low temperatures (T = 2 K). The zero-field splitting parameters of (3)P700 were not significantly changed in the mutated PSI complexes. The electron spin density distribution of P700(+)(*), determined by ENDOR spectroscopy, was only changed when His(B656) was replaced. In all measurements, two general observations were made. (i) The replacement of His(B656) had a much stronger impact on the physical properties of P700 than the mutation of His(A676). (ii) The exchange of His(B656) with glutamine induces the smallest changes in the spectra or the midpoint potential, whereas the other replacements exhibited a stronger but very similar influence on the spectroscopic features of P700. The data provide convincing evidence that the unpaired electron in the cation radical and the triplet state of P700 are mainly localized on the Chl a of the dimer which is axially coordinated by His(B656).  相似文献   

9.
We investigated the role of electrostatic charges at positions D72 and K8 in the function and structural stability of cytochrome c6 from Nostoc sp. PCC 7119 (cyt c6). A series of mutant forms was generated to span the possible combinations of charge neutralization (by mutation to alanine) and charge inversion (by mutation to lysine and aspartate, respectively) in these positions. All forms of cyt c6 were functionally characterized by laser flash absorption spectroscopy, and their stability was probed by urea-induced folding equilibrium relaxation experiments and differential scanning calorimetry. Neutralization or inversion of the positive charge at position K8 reduced the efficiency of electron transfer to photosystem I. This effect could not be reversed by compensating for the change in global charge that had been introduced by the mutation, indicating a specific role for K8 in the formation of the electron transfer complex between cyt c6 and photosystem I. Replacement of D72 by asparagine or lysine increased the efficiency of electron transfer to photosystem I, but destabilized the protein. D72 apparently participates in electrostatic interactions that stabilize the structure of cyt c6. The destabilizing effect was reduced when aspartate was replaced by the small amino acid alanine. Complementing the mutation D72A with a charge neutralization or inversion at position K8 led to mutant forms of cyt c6 that were more stable than the wild-type under all tested conditions.  相似文献   

10.
V.M. Ramesh  Su Lin  Andrew N. Webber 《BBA》2007,1767(2):151-160
The recent crystal structure of photosystem I (PSI) from Thermosynechococcus elongatus shows two nearly symmetric branches of electron transfer cofactors including the primary electron donor, P700, and a sequence of electron acceptors, A, A0 and A1, bound to the PsaA and PsaB heterodimer. The central magnesium atoms of each of the putative primary electron acceptor chlorophylls, A0, are unusually coordinated by the sulfur atom of methionine 688 of PsaA and 668 of PsaB, respectively. We [Ramesh et al. (2004a) Biochemistry 43:1369-1375] have shown that the replacement of either methionine with histidine in the PSI of the unicellular green alga Chlamydomonas reinhardtii resulted in accumulation of A0 (in 300-ps time scale), suggesting that both the PsaA and PsaB branches are active. This is in contrast to cyanobacterial PSI where studies with methionine-to-leucine mutants show that electron transfer occurs predominantly along the PsaA branch. In this contribution we report that the change of methionine to either leucine or serine leads to a similar accumulation of A0 on both the PsaA and the PsaB branch of PSI from C. reinhardtii, as we reported earlier for histidine mutants. More importantly, we further demonstrate that for all the mutants under study, accumulation of A0 is transient, and that reoxidation of A0 occurs within 1-2 ns, two orders of magnitude slower than in wild type PSI, most likely via slow electron transfer to A1. This illustrates an indispensable role of methionine as an axial ligand to the primary acceptor A0 in optimizing the rate of charge stabilization in PSI. A simple energetic model for this reaction is proposed. Our findings support the model of equivalent electron transfer along both cofactor branches in Photosystem I.  相似文献   

11.
The electron spin polarized (ESP) electron paramagnetic resonance (EPR) signal observed in spinach photosystem I (PSI) particles was examined in preparations depleted of vitamin K1 by solvent extraction and following biological reconstitution by the quinone. The ESP EPR signal was not detected in the solvent-extracted PSI sample but was restored upon reconstitution with either protonated or deuterated vitamin K1 under conditions that also restored electron transfer to the terminal PSI acceptors. Reconstitution using deuterated vitamin K1 resulted in a line narrowing of the ESP EPR signal, supporting the conclusion that the ESP EPR signals in the reconstituted samples arise from a radical pair consisting of the oxidized PSI primary donor, P700+, and reduced vitamin K1.  相似文献   

12.
Zak E  Pakrasi HB 《Plant physiology》2000,123(1):215-222
Specific inhibition of photosystem I (PSI) was observed under low-temperature conditions in the cyanobacterium Synechocystis sp. strain PCC 6803. Growth at 20 degrees C caused inhibition of PSI activity and increased degradation of the PSI reaction center proteins PsaA and PsaB, while no significant changes were found in the level and activity of photosystem II (PSII). BtpA, a recently identified extrinsic thylakoid membrane protein, was found to be a necessary regulatory factor for stabilization of the PsaA and PsaB proteins under such low-temperature conditions. At normal growth temperature (30 degrees C), the BtpA protein was present in the cell, and its genetic deletion caused an increase in the degradation of the PSI reaction center proteins. However, growth of Synechocystis cells at 20 degrees C or shifting of cultures grown at 30 degrees C to 20 degrees C led to a rapid accumulation of the BtpA protein, presumably to stabilize the PSI complex, by lowering the rates of degradation of the PsaA and PsaB proteins. A btpA deletion mutant strain could not grow photoautotrophically at low temperature, and exhibited rapid degradation of the PSI complex after transfer of the cells from normal to low temperature.  相似文献   

13.
Strains of Chlamydomonas reinhardtii lacking the PsaF gene or containing the mutation K23Q within the N-terminal part of PsaF are sensitive to high light (>400 microE m(-2) s(-1)) under aerobic conditions. In vitro experiments indicate that the sensitivity to high light of the isolated photosystem I (PSI) complex from wild type and from PsaF mutants is similar. In vivo measurements of photochemical quenching and oxygen evolution show that impairment of the donor side of PSI in the PsaF mutants leads to a diminished linear electron transfer and/or a decrease of photosystem II (PSII) activity in high light. Thermoluminescence measurements indicate that the PSII reaction center is directly affected under photo-oxidative stress when the rate of electron transfer becomes limiting in the PsaF-deficient strain and in the PsaF mutant K23Q. We have isolated a high light-resistant PsaF-deficient suppressor strain that has a high chlorophyll a/b ratio and is affected in the assembly of light-harvesting complex. These results indicate that under high light a functionally intact donor side of PSI is essential for protection of C. reinhardtii against photo-oxidative damage when the photosystems are properly connected to their light-harvesting antennae.  相似文献   

14.
Three surface hydrophobic residues located at the Anabaena flavodoxin (Fld) putative complex interface with its redox partners were replaced by site-directed mutagenesis. The effects of these replacements on Fld interaction with both its physiological electron donor, photosystem I (PSI), and its electron acceptor, ferredoxin-NADP+ reductase (FNR), were analyzed. Trp57, Ile59, and Ile92 contributed to the optimal orientation and tightening of the FNR:Fld and PSI:Fld complexes. However, these side chains did not appear to be involved in crucial specific interactions, but rather contributed to the obtainment of the optimal orientation and distance of the redox centers required for efficient electron transfer. This supports the idea that the interaction of Fld with its partners is less specific than that of ferredoxin and that more than one orientation is efficient for electron transfer in these transient complexes. Additionally, for some of the analyzed processes, WT Fld seems not to be the most optimized molecular species. Therefore, subtle changes at the isoalloxazine environment not only influence the Fld binding abilities, but also modulate the electron exchange processes by producing different orientations and distances between the redox centers. Finally, the weaker apoflavodoxin interaction with FNR suggests that the solvent-accessible region of FMN plays a role either in complex formation with FNR or in providing the adequate conformation of the FNR binding region in Fld.  相似文献   

15.
The interaction of Chlamydomonas cytochrome f (cyt f) with either Chlamydomonas plastocyanin (PC) or Chlamydomonas cytochrome c(6) (cyt c(6)) was studied using Brownian dynamics simulations. The two electron acceptors (PC and cyt c(6)) were found to be essentially interchangeable despite a lack of sequence homology and different secondary structures (beta-sheet for PC and alpha-helix for cyt c(6)). Simulations using PC and cyt c(6) interacting with cyt f showed approximately equal numbers of successful complexes and calculated rates of electron transfer. Cyt f-PC and cyt f-cyt c(6) showed the same types of interactions. Hydrophobic residues surrounding the Y1 ligand to the heme on cyt f interacted with hydrophobic residues on PC (surrounding the H87 ligand to the Cu) or cyt c(6) (surrounding the heme). Both types of complexes were stabilized by electrostatic interactions between K65, K188, and K189 on cyt f and conserved anionic residues on PC (E43, D44, D53, and E85) or cyt c(6) (E2, E70, and E71). Mutations on cyt f had identical effects on its interaction with either PC or cyt c(6). K65A, K188A, and K189A showed the largest effects whereas residues such as K217A, R88A, and K110A, which are located far from the positive patch on cyt f, showed very little inhibition. The effect of mutations observed in Brownian dynamics simulations paralleled those observed in experiments.  相似文献   

16.
In photosynthetic membranes of cyanobacteria, algae, and higher plants, photosystem I (PSI) mediates light-driven transmembrane electron transfer from plastocyanin or cytochrome c6 to the ferredoxin-NADP complex. The oxidoreductase function of PSI is sensitized by a reversible photooxidation of primary electron donor P700, which launches a multistep electron transfer via a series of redox cofactors of the reaction center (RC). The excitation energy for the functioning of the primary electron donor in the RC is delivered via the chlorophyll core antenna in the complex with peripheral light-harvesting antennas. Supermolecular complexes of the PSI acquire remarkably different structural forms of the peripheral light-harvesting antenna complexes, including distinct pigment types and organizational principles. The PSI core antenna, being the main functional unit of the supercomplexes, provides an increased functional connectivity in the chlorophyll antenna network due to dense pigment packing resulting in a fast spread of the excitation among the neighbors. Functional connectivity within the network as well as the spectral overlap of antenna pigments allows equilibration of the excitation energy in the depth of the whole membrane within picoseconds and loss-free delivery of the excitation to primary donor P700 within 20-40 ps. Low-light-adapted cyanobacteria under iron-deficiency conditions extend this capacity via assembly of efficiently energy coupled rings of CP43-like complexes around the PSI trimers. In green algae and higher plants, less efficient energy coupling in the eukaryotic PSI-LHCI supercomplexes is probably a result of the structural adaptation of the Chl a/b binding LHCI peripheral antenna that not only extends the absorption cross section of the PSI core but participates in regulation of excitation flows between the two photosystems as well as in photoprotection.  相似文献   

17.
In the photosynthetic bacterium Rhodobacter sphaeroides, a water soluble cytochrome c2 (cyt c2) is the electron donor to the reaction center (RC), the membrane-bound pigment-protein complex that is the site of the primary light-induced electron transfer. To determine the interactions important for docking and electron transfer within the transiently bound complex of the two proteins, RC and cyt c2 were co-crystallized in two monoclinic crystal forms. Cyt c2 reduces the photo-oxidized RC donor (D+), a bacteriochlorophyll dimer, in the co-crystals in approximately 0.9 micros, which is the same time as measured in solution. This provides strong evidence that the structure of the complex in the region of electron transfer is the same in the crystal and in solution. X-ray diffraction data were collected from co-crystals to a maximum resolution of 2.40 A and refined to an R-factor of 22% (R(free)=26%). The structure shows the cyt c2 to be positioned at the center of the periplasmic surface of the RC, with the heme edge located above the bacteriochlorophyll dimer. The distance between the closest atoms of the two cofactors is 8.4 A. The side-chain of Tyr L162 makes van der Waals contacts with both cofactors along the shortest intermolecular electron transfer pathway. The binding interface can be divided into two domains: (i) A short-range interaction domain that includes Tyr L162, and groups exhibiting non-polar interactions, hydrogen bonding, and a cation-pi interaction. This domain contributes to the strength and specificity of cyt c2 binding. (ii) A long-range, electrostatic interaction domain that contains solvated complementary charges on the RC and cyt c2. This domain, in addition to contributing to the binding, may help steer the unbound proteins toward the right conformation.  相似文献   

18.
A conserved tryptophan residue located between the A(1B) and F(X) redox centres on the PsaB side of the Photosystem I reaction centre has been mutated to a glycine in Chlamydomonas reinhardtii, thereby matching the conserved residue found in the equivalent position on the PsaA side. This mutant (PsaB:W669G) was studied using EPR spectroscopy with a view to understanding the molecular basis of the reported kinetic differences in forward electron transfer from the A(1A) and the A(1B) phyllo(semi)quinones. The kinetics of A(1)(-) reoxidation due to forward electron transfer or charge recombination were measured by electron spin echo spectroscopy at 265 K and 100 K, respectively. At 265 K, the reoxidation kinetics are considerably lengthened in the mutant in comparison to the wild-type. Under conditions in which F(X) is initially oxidised the kinetics of charge recombination at 100 K are found to be biphasic in the mutant while they are substantially monophasic in the wild-type. Pre-reduction of F(X) leads to biphasic kinetics in the wild-type, but does not alter the already biphasic kinetic properties of the PsaB:W669G mutant. Reduction of the [4Fe-4S] clusters F(A) and F(B) by illumination at 15 K is suppressed in the mutant. The results provide further support for the bi-directional model of electron transfer in Photosystem I of C. reinhardtii, and indicate that the replacement of the tryptophan residue with glycine mainly affects the redox properties of the PsaB bound phylloquinone A(1B).  相似文献   

19.
Q Xu  P R Chitnis 《Plant physiology》1995,108(3):1067-1075
PsaA and PsaB are homologous integral membrane-proteins that form the heterodimeric core of photosystem i (PSI). We used subunit-deficient PSI complexes from the mutant strains of the cyanobacterium Synechocystis sp. PCC 6803 to examine interactions between PsaB and other PSI subunits. Incubation of the wild-type PSI with thermolysin yielded 22-kD C-terminal fragments of PsaB that were resistant to further proteolysis. Modification of the wild-type PSI with N-hydroxysuccinimidobiotin and subsequent cleavage by thermolysin showed that the lysyl residues in the 22-kD C-terminal domain were inaccessible to modification by N-hydroxysuccinimidobiotin. The absence of PsaE, PsaF, PsaI, PsaJ, or PsaL facilitated accumulation of 22-kD C-terminal fragments of PsaB but did not alter their resistance to further proteolysis. When the PsaD-less PSI was treated with thermolysin, the 22-kD C-terminal fragments of PsaB were rapidly cleaved, with concomitant accumulation of a 16-kD fragment and then a 3.4-kD one. We mapped the N termini of these fragments by N-terminal amino acid sequencing and the C termini from their positive reaction with an antibody against the C-terminal peptide of PsaB. The cleavage sites were proposed to be in the extramembrane loops on the cytoplasmic side. Western blot analyses showed resistance of PsaC and PsaI to proteolysis prior to cleavage of the 22-kD fragments. Therefore, we propose that PsaD shields two extramembrane loops of PsaB and protects the C-terminal domain of PsaB from in vitro proteolysis.  相似文献   

20.
Rochaix J  Fischer N  Hippler M 《Biochimie》2000,82(6-7):635-645
The photosystem I (PSI) complex is a multisubunit protein-pigment complex embedded in the thylakoid membrane which acts as a light-driven plastocyanin/cytochrome c(6)-ferredoxin oxido-reductase. The use of chloroplast transformation and site-directed mutagenesis coupled with the biochemical and biophysical analysis of mutants of the green alga Chlamydomonas reinhardtii with specific amino acid changes in several subunits of PSI has provided new insights into the structure-function relationship of this important photosynthetic complex. In particular, this molecular-genetic analysis has identified key residues of the reaction center polypeptides of PSI which are the ligands of some of the redox cofactors and it has also provided important insights into the orientation of the terminal electron acceptors of this complex. Finally this analysis has also shown that mutations affecting the donor side of PSI are limiting for overall electron transfer under high light and that electron trapping within the terminal electron acceptors of PSI is highly deleterious to the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号