首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Entry into the viable but nonculturable state by the human bacterial pathogen Vibrio vulnificus in artificial seawater microcosms was studied. In contrast to the long-term culturability exhibited by cells incubated under these starvation conditions at room temperature, cells exposed to a temperature downshift to 5 degrees C exhibited an immediate decrease in culturability. Cells incubated at low temperature exhibited a morphological change from rods to cocci but demonstrated no reductive division. Of 10 factors studied which might affect the nonculturable response in V. vulnificus, only the physiological age of the cells was found to significantly affect the rate at which cells became nonculturable. The nonculturable response appears to be related to the starvation response, as prestarvation at room temperature for 24 h was found to eliminate the nonculturable response of cells subsequently incubated at 5 degrees C. This observation suggests that the synthesis of starvation proteins may repress the viable but nonculturable program displayed during low-temperature incubation. The possible ecological significance of these findings is discussed.  相似文献   

2.
The effect of exposure to artificial sea water (ASW) on the ability of classical Vibrio cholerae O1 cells to interact with chitin-containing substrates and human intestinal cells was studied. Incubation of vibrios in ASW at 5 degrees C and 18 degrees C resulted in two kinds of cell responses: the viable but non-culturable (VBNC) state (i.e. <0.1 colony forming unit ml-1) at 5 degrees C, and starvation (i.e. maintenance of culturability of the population) at 18 degrees C. The latter remained rod shaped and, after 40 days' incubation, presented a 47-58% reduction in the number of cells attached to chitin, a 48-53% reduction in the number of bacteria adhering to copepods, and a 48-54% reduction in the number of bacteria adhering to human cultured intestinal cells, compared to control cells not suspended in ASW. Bacteria suspended in ASW at 5 degrees C became coccoid and, after 40 days, showed 34-42% fewer cells attached to chitin, 52-55% fewer adhering to copep-ods, and 45-48% fewer cells adhering to intestinal cell monolayers, compared to controls. Sarkosyl-insoluble membrane proteins that bind chitin particles were isolated and analysed by SDS-PAGE. After 40 days incubation in ASW at both 5 degrees C and 18 degrees C vibrios expressed chitin-binding ligands similar to bacteria harvested in the stationary growth phase. It is concluded that as vibrios do not lose adhesive properties after long-term exposure to ASW, it is important to include methods for VBNC bacteria when testing environmental and clinical samples for purposes of public health safety.  相似文献   

3.
Entry into the viable but nonculturable state by the human bacterial pathogen Vibrio vulnificus in artificial seawater microcosms was studied. In contrast to the long-term culturability exhibited by cells incubated under these starvation conditions at room temperature, cells exposed to a temperature downshift to 5 degrees C exhibited an immediate decrease in culturability. Cells incubated at low temperature exhibited a morphological change from rods to cocci but demonstrated no reductive division. Of 10 factors studied which might affect the nonculturable response in V. vulnificus, only the physiological age of the cells was found to significantly affect the rate at which cells became nonculturable. The nonculturable response appears to be related to the starvation response, as prestarvation at room temperature for 24 h was found to eliminate the nonculturable response of cells subsequently incubated at 5 degrees C. This observation suggests that the synthesis of starvation proteins may repress the viable but nonculturable program displayed during low-temperature incubation. The possible ecological significance of these findings is discussed.  相似文献   

4.
Salmonella enteritidis enters a viable-but-nonculturable state when exposed to starvation in aquatic environments. This study determined starvation survival of this pathogen in chemically defined solutions and tested the ability of nonselective enrichment to detect viable-but-nonculturable cells. Starvation of Salm. enteritidis at 7°C in 7.35 mmol 1-1 potassium phosphate buffer resulted in complete loss of culturability after 5 weeks with maintenance of a substrate-responsive population of over 10000 cell ml-1. Starvation at 21°C and starvation in saline solutions or lower concentrations of phosphate buffer resulted in prolonged survival of a culturable population although this population was lower than the total viable population. Enrichment using lactose broth did not allow resuscitation of viable-but-nonculturable cells even after 5 d of incubation at 35°C.  相似文献   

5.
The induction of thermotolerance was studied in a temperature sensitive mouse cell line, ts85, and results were compared with those for the wild-type FM3A cells. At the nonpermissive temperature of 39 degrees C, ts85 cells are defective in the degradation of short-lived abnormal proteins, apparently because of loss of activity of a ubiquitin-activating enzyme. The failure of the ts85 cells to develop thermotolerance to 41-43 degrees C after incubation at the nonpermissive temperature of 39 degrees C correlated with the failure of the cells to degrade short-lived abnormal proteins at 39 degrees C. However, the failure of the ts85 cells to develop thermotolerance to 43 degrees C during incubation at 33 degrees C after either arsenite treatment or heating at 45.5 degrees C for 6 or 10 min did not correlate with protein degradation rates. Although the rate of degrading abnormal protein was reduced after heating at 45.5 degrees C for 10 min, the rates were normal after arsenite treatment or heating at 45.5 degrees C for 6 min. In addition, when protein synthesis was inhibited with cycloheximide both during incubation at 33 degrees C or 39 degrees C and during heating at 41-43 degrees C, resistance to heating was observed, but protein degradation rates at 39 degrees C or 43 degrees C were not altered by the cycloheximide treatment. Therefore, there is apparently no consistent relationship between rates of degrading abnormal proteins and the ability of cells to develop thermotolerance and resistance to heating in the presence of cycloheximide.  相似文献   

6.
The effect of heat stress on the growth, physiological state, cell activity and cell morphology of the tropical Sinorhizobium arboris strain HAMBI 2190 was studied. The cells were chromosomally tagged with the firefly luciferase gene, luc. Since the bioluminescence phenotype is dependent on cellular energy reserves it was used as an indicator of the metabolic status of the cell population under various heat conditions. Variations in the numbers and lengths of growth phases between individual cultures indicated that the growth pattern at 40 degrees C was disturbed compared to growth at 37 or 28 degrees C. In addition, the cell morphology was changed radically. The number of culturable cells and the luciferase activity declined when the cultures were incubated at 40 degrees C. By contrast, under all conditions studied, the cells could be stained with 5-(and 6-)sulfofluorescein diacetate, indicating esterase activity. This demonstrated that although the culturability and cellular energy reserves decreased considerably during heat stress, a majority of the of S. arboris cell population maintained basal enzyme activity.  相似文献   

7.
Low-temperature-induced nonculturable cells of the human pathogenic bacterium Vibrio vulnificus retained significant amounts of nucleic acids for more than 5 months. Upon permeabilization of fixed cells, however, an increasing number of cold-incubated cells released the nucleic acids. This indicates substantial degradation of DNA and RNA in nonculturable cells prior to fixation. Treatment of permeabilized cells with DNase and RNase allowed differential staining of DNA and RNA with the nucleic acid dye 4',6-diamidino-2-phenylindole (DAPI). Epifluorescence microscopy revealed that the could-induced nonculturable populations of V. vulnificus are highly heterogeneous with regard to their nucleic acid content. The fraction of nonculturable cells which maintained DNA and RNA structures decreased gradually during cold incubation. After 5 months at 5 degrees C, less than 0.05% of the cells could be observed to retain DNA and RNA. In parallel with the loss of nucleic acids, an increase in the concentrations of UV-absorbing material in the culture supernatants was observed in nonculturable-cell suspensions. It is hypothesized that there are two phases of the formation of nonculturable cells of V. vulnificus: the first involves a loss of culturability with maintenance of cellular integrity and intact RNA and DNA (and thus possibly viability), and the second is typified by a gradual degradation of nucleic acids, the products of which partly remain inside the cells and partly diffuse into the extracellular space. A small number of nonculturable cells, however, retain DNA and RNA, and thus may be viable despite having reduced culturability.  相似文献   

8.
A simple, novel method for determining stress-adaptive response of Listeria monocytogenes in food systems is presented. The method involves plating samples on Listeria-selective agar (LSA) acidified to pH 5.25 with incubation at 36 degrees C for 60 h to detect acid adaptation and plating on LSA with 70 gl-1 NaCl and incubation at 7 degrees C for 7 d to detect cold-osmotic adaptation. Adapted cells produced larger colonies (> 1 mm) under these conditions than unadapted cells. Scot A (97%) and Brie-1 (100%) cells incubated in milk at pH 5 for 3 h manifested the acid-adapted colony type compared with 6% and 21% of viable cells in the unstressed control population. After a 5-d adaptation period at 4 degrees C in milk with 80 gl-1 salt, 29% of Scot A and 91% of Brie-1 viable cells exhibited the adapted colony type compared with < 1% of the unstressed control population. Stress-adapted L. monocytogenes were isolated from soft cheese held for 42 d at 10 C.  相似文献   

9.
10.
1. Studies were performed to determine if the inability of murine T cells to provide primary helper function at low temperature (27 degrees C) could be correlated with their inability to synthesize unsaturated fatty acids (UFAs). 2. In the absence of exogenous oleic acid (18:1), splenocytes responded to a T-dependent (TD) Ag (trinitrophenyl-keyhole limpet hemocyanin, TNP-KLH) at 37 degrees C but not at 27 degrees C. The addition of 150 microM 18:1 almost completely restored plaque-forming cell (PFC) responses to TNP-KLH at 27 degrees C but markedly suppressed PFC responses to the TD Ag at 37 degrees C. 3. During incubation at 27 degrees C, B cells converted 3- to 5-fold more stearic acid (18:0) to 18:1 and showed a greater accumulation of monounsaturated phospholipid molecular species than did T cells. 4. Following incubation in the presence of a rescuing dose of 18:1 (150 microM), both B and T cells accumulated large amounts of dioleoyl PC. 5. It is proposed that the absence of 18:1 synthesis in T cells is responsible for the unique low temperature susceptibility of this lymphocyte population.  相似文献   

11.
AIMS: The aim of the study was to measure the survival of 19 Campylobacter jejuni strains of different origins, including two reference strains, four poultry-derived isolates, nine human isolates and four water isolates, in sterilized drinking water. METHODS AND RESULTS: Pure cultures of 19 C. jejuni strains were inoculated in sterile drinking water and incubated at 4 degrees C for 64 days. Survival was determined by culturability on both selective (Karmali agar) and non-selective [Columbia blood agar (CBA)] media. Culturability was shown to be strain and origin-dependent. Campylobacter jejuni showed prolonged survival on a non-selective than on a selective medium. CONCLUSIONS: The origin of the strain is a determining factor for the survival of C. jejuni in drinking water at 4 degrees C. Poultry isolates showed a prolonged survival, which could be an indication that these strains could play an important role in the transmission of campylobacteriosis through water. In addition, culture conditions are an important factor for evaluating the survival of C. jejuni in drinking water at 4 degrees C. The non-selective agar (CBA) allowed growth of C. jejuni over a longer period of time than the selective agar (Karmali). Furthermore, an enrichment broth (Bolton) allowed the recovery of all 19 C. jejuni strains during the 64 days of incubation at 4 degrees C. SIGNIFICANCE AND IMPACT OF THE STUDY: This study highlighted differences in culturability depending on culture conditions and on strain origin.  相似文献   

12.
125I-human growth hormone (125I-hGH) binds specifically to receptors on cultures human lymphocytes (IM-9). When this process is studied by use of quantitative EM radioautography, under conditions of incubation at 15 degrees C for 5 min, the ligand is localized to the plasma membrane of the cell. At 30 degrees and 37 degrees C, however, 125I-hGH is progressively internalized by the cell as a function of time. The internalized ligand is found predominantly in the Golgi region of the cells, with a five-fold preferential localization to membrane-bounded structures with the morphological and cytochemical characteristics of lysosomes. Up to 59% of these lysosome-like structures are positive for the acid phosphatase reaction under the conditions of incubation at 37 degrees C for 120 min. When the cell associated radioactivity after 15- 120 min of incubation at 37 degrees C is extracted in 1 M acetic acid and filtered on a Sephadex G-100 column, 58-73% of the material elutes as intact hGH. When cells are incubated with 125I-hGH at 37 degrees C for 15-120 min, separated from the incubation medium, and washed and diluted 100-fold, the percent 125I-hGH dissociable decreases as a function of increasing time of incubation. When cells are incubated with 125I-hGH for 15 min at 37 degrees C and the radioactivity that dissociates from the cells during 15-90 min is studied, the labeled material appearing in the incubation medium is progressively degraded as a function of time of incubation. When the dissociation process is studied radioautographically, grains are found both in plasma membrane and intracelluar compartments after 30 min of association, but after 30 and 120 min of dissociation a higher proportion of grains are in the intracellular compartment. After 120 min of association, there is less dissociation from either compartment and a preferential increase of grains in the intracellular compartment. These data suggest that receptor-linked internalization of a polypeptide hormone provides a mechanism that couples degradation of the ligand with loss of the cell surface receptor.  相似文献   

13.
A C Andorn  E H Huang  A E Warren 《Life sciences》1984,34(25):2461-2466
[3H]-Spiroperidol specifically binds at sites in human prefrontal cortex. The binding of this ligand is apparently anomalous at 37 degrees C, with a substantial loss of specific binding occurring between 5 and 40 min incubation. However, at 21 degrees C, this loss of binding is not observed even at 60 min. At 21 degrees C, [3H]-spiroperidol binding in human prefrontal cortex is apparently occurring at multiple sites or multiple affinity states of single classes of sites, or at a combination of both. The overall selectivity is predominantly serotonergic, rather than dopaminergic.  相似文献   

14.
15.
At present, no reports exist on the isolation of the eel pathogen Vibrio vulnificus biotype 2 from water samples. Nevertheless, it has recently been demonstrated that this biotype can use water as a route of infection. In the present study, the survival of this pathogen in artificial seawater (ASW) microcosms at different temperatures (25 and 5 degrees C) was investigated during a 50-day period, with biotype 1 as a control, V. vulnificus biotype 2 was able to survive in the culturable state in ASW at 25 degrees C in the free-living form, at least for 50 days, entering into the nonculturable state when exposed to low temperature. In this state, this microorganism survived with reduced rates of activity, showing marked changes in size and morphology. The rate at which cells became nonculturable was dependent on their physiological age. The capsule seems not to be necessary for the survival of biotype 2 in aquatic environments as a free-living organism. Culturability remained the highest on modified salt water yeast extract agar, which is closer in salt and nutrient composition to ASW than heart infusion agar. Biotype 2 cells recovered culturability on solid media after an increase of incubation temperature from 5 to 25 degrees C. Culturable cells of this bacterium maintained infectivity for either eel or mice, while dormant cells seemed to lose their virulence. The former finding suggests that the aquatic environment is a reservoir and vehicle of transmission of this pathogen.  相似文献   

16.
The nonculturable state of Vibrio vulnificus and, for comparison, that of Escherichia coli were studied in artificial-seawater microcosms at 5 degrees C. Total cell counts were monitored by acridine orange epifluorescence, metabolic activity by direct viable counts, and culturability by plate counts on selective and nonselective media. Whereas total counts remained constant, plate counts of V. vulnificus suggested nonculturability by day 24. In contrast, direct viable counts indicated significant cell viability throughout 32 days of incubation. As an indication of the metabolic changes that occurred as cells entered the state of nonrecoverability, membrane fatty acid analyses were performed. At the point of nonculturability of V. vulnificus, the major fatty acid species (C16 and C16:1) had decreased 57% from the T0 level, concomitant with the appearance of several short-chain acids. Although the bacteria were still recoverable, a similar trend was observed with E. coli. Electron microscopy of nonculturable V. vulnificus showed that the cells were rounded and reduced in size and contained fewer ribosomes. Mouse infectivity studies conducted with these cells suggested loss of virulence.  相似文献   

17.
The nonculturable state of Vibrio vulnificus and, for comparison, that of Escherichia coli were studied in artificial-seawater microcosms at 5 degrees C. Total cell counts were monitored by acridine orange epifluorescence, metabolic activity by direct viable counts, and culturability by plate counts on selective and nonselective media. Whereas total counts remained constant, plate counts of V. vulnificus suggested nonculturability by day 24. In contrast, direct viable counts indicated significant cell viability throughout 32 days of incubation. As an indication of the metabolic changes that occurred as cells entered the state of nonrecoverability, membrane fatty acid analyses were performed. At the point of nonculturability of V. vulnificus, the major fatty acid species (C16 and C16:1) had decreased 57% from the T0 level, concomitant with the appearance of several short-chain acids. Although the bacteria were still recoverable, a similar trend was observed with E. coli. Electron microscopy of nonculturable V. vulnificus showed that the cells were rounded and reduced in size and contained fewer ribosomes. Mouse infectivity studies conducted with these cells suggested loss of virulence.  相似文献   

18.
Change in division capability as a phenotypic expression of cellular transformation was investigated by using one of the temperature-sensitive (ts) mutants of the polyoma virus-transformed cell line, the 121-6-5 cells of BALB/3T3. When contact -inhibited cells were treated with hyaluronidase at 39 degrees C, a single round of cell division was induced after which cell growth was inhibited by cell density. However, if the cells were incubated at 35 degrees C, after the enzyme treatment, density-inhibition block disappeared and the cells entered a second division. This indicates that the release of cells from density-inhibition depends on the low temperature incubation. The ability of cells to complete a second division was examined by shifting the cells from 39 degrees C to 35 degrees C during different phases of the first division cycle after the enzyme-treatment. A 6-hour incubation of S phase cells at 35 degrees C resulted in a second cycle of division, while the 24-hour incubation of G1 cells at 35 degrees C did not induce a second round of division. These results suggest that expression of the transformed phenotype in 121-6-5 cells is clearly dependent upon both the temperature and the phase of the division cycle.  相似文献   

19.
The growth of uninjured and heat-injured Aeromonas hydrophila incubated at 5 degrees C (22 days) and 30 degrees C (31 h) under air, N2, and CO2 was investigated. At 30 degrees C, the growth patterns of cells on brain heart infusion agar incubated under air and N2 were similar, although slight differences in the lengths of the lag phases and the final populations were detected. The lag phases of cells incubated under air and N2 were substantially longer at 5 degrees C than at 30 degrees C. The population of uninjured A. hydrophila incubated at 5 degrees C under air and N2 remained constant, whereas the number of injured cells declined before the exponential growth phase. Growth at 5 degrees C was enhanced when uninjured and heat-injured A. hydrophila were incubated under N2. At 30 degrees C, cells incubated under CO2 exhibited noticeably longer lag phases and lower growth rates than did cells incubated under air and N2. The viable populations of uninjured and heat-injured cells incubated at 5 degrees C under CO2 declined steadily throughout incubation.  相似文献   

20.
The growth of uninjured and heat-injured Aeromonas hydrophila incubated at 5 degrees C (22 days) and 30 degrees C (31 h) under air, N2, and CO2 was investigated. At 30 degrees C, the growth patterns of cells on brain heart infusion agar incubated under air and N2 were similar, although slight differences in the lengths of the lag phases and the final populations were detected. The lag phases of cells incubated under air and N2 were substantially longer at 5 degrees C than at 30 degrees C. The population of uninjured A. hydrophila incubated at 5 degrees C under air and N2 remained constant, whereas the number of injured cells declined before the exponential growth phase. Growth at 5 degrees C was enhanced when uninjured and heat-injured A. hydrophila were incubated under N2. At 30 degrees C, cells incubated under CO2 exhibited noticeably longer lag phases and lower growth rates than did cells incubated under air and N2. The viable populations of uninjured and heat-injured cells incubated at 5 degrees C under CO2 declined steadily throughout incubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号