首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Understanding how the complex geotectonic and climatic history of the Australo-Papuan region has promoted the ecological and evolutionary diversification of its avifauna remains a challenge. Outstanding questions relate to the nature and timing of biogeographical connections between Australia and the emerging island of New Guinea and the mechanisms by which distinctive altitudinal replacement sequences have evolved amongst congeneric species in montane New Guinea. Here, we combine analyses of phylogenetic and eco-morphological data to investigate ecological and evolutionary patterns of diversification in the largely mesic-adapted Australo-Papuan scrubwrens (Sericornis) and mouse-warblers (Crateroscelis). We find evidence of ecological convergence and present a revised taxonomic and systematic treatment of the subfamily integrating information from new (ND2) and existing molecular phylogenetic reconstructions. Biogeographical connections indicate at least three phases of faunal interchange between Australia and New Guinea commencing in the mid to late Miocene. We also find little support for the proposed time dependency of ecological sorting mechanisms linked to divergence in foraging niche amongst altitudinal replacements. Instead, physiological adaptations to hypoxia and increased thermal efficiency at higher altitudes may better account for observed patterns of diversification in montane New Guinea. Indirect support for this hypothesis is derived from molecular clock calibrations that indicate a pulse of diversification across the Miocene-Pliocene boundary coincident with a phase of rapid mountain uplift. Simple ecological and climatic models appear inadequate for explaining observed patterns and mechanisms of diversification in the New Guinean montane avifauna. Further insights will require multidisciplinary research integrating geotectonic, palaeoclimatic, genetic, ecological and physiological approaches.  相似文献   

2.
Green pythons, which are regionally variable in colour patterns, are found throughout the lowland rainforest of New Guinea and adjacent far northeastern Australia. The species is popular in commercial trade and management of this trade and its impacts on natural populations could be assisted by molecular identification tools. We used mitochondrial nucleotide sequences and a limited allozyme data to test whether significantly differentiated populations occur within the species range. Phylogenetic analysis of mtDNA sequences revealed hierarchal phylogeographic structure both within New Guinea and between New Guinea and Australia. Strongly supported reciprocally monophyletic mitochondrial lineages, northern and southern, were found either side of the central mountain range that runs nearly the length of New Guinea. Limited allozyme data suggest that population differentiation is reflected in the nuclear as well as the mitochondrial genome. A previous morphological analysis did not find any phenotypic concordance with the pattern of differentiation observed in the molecular data. The southern mitochondrial lineage includes all of the Australian haplotypes, which form a single lineage, nested among the southern New Guinean haplotypes.  相似文献   

3.
The geographic distribution of phenotypic variation among closely related populations is a valuable source of information about the evolutionary processes that generate and maintain biodiversity. Leapfrog distributions, in which phenotypically similar populations are disjunctly distributed and separated by one or more phenotypically distinct populations, represent geographic replicates for the existence of a phenotype, and are therefore especially informative. These geographic patterns have mostly been studied from phylogenetic perspectives to understand how common ancestry and divergent evolution drive their formation. Other processes, such as gene flow between populations, have not received as much attention. Here, we investigate the roles of divergence and gene flow between populations in the origin and maintenance of a leapfrog distribution in Phyllobates poison frogs. We found evidence for high levels of gene flow between neighbouring populations but not over long distances, indicating that gene flow between populations exhibiting the central phenotype may have a homogenizing effect that maintains their similarity, and that introgression between ‘leapfroging’ taxa has not played a prominent role as a driver of phenotypic diversity in Phyllobates. Although phylogenetic analyses suggest that the leapfrog distribution was formed through independent evolution of the peripheral (i.e. leapfrogging) populations, the elevated levels of gene flow between geographically close populations poise alternative scenarios, such as the history of phenotypic change becoming decoupled from genome‐averaged patterns of divergence, which we cannot rule out. These results highlight the importance of incorporating gene flow between populations into the study of geographic variation in phenotypes, both as a driver of phenotypic diversity and as a confounding factor of phylogeographic inferences.  相似文献   

4.
1. Analysis of mitochondrial and nuclear DNA (microsatellites) in 379 individuals, collected from 15 localities in northern Australia and Papua New Guinea (PNG), demonstrated that wild redclaw crayfish ( Cherax quadricarinatus ) populations consist of two highly divergent Australian lineages and two PNG lineages.
2. The disjunction between the two Australian lineages occurs over a distance of approximately 200 km in the south-western corner of the Gulf of Carpenteria. These data conflict with an earlier study that detected no significant differentiation in 23 variable allozyme loci in redclaw sampled from northern Australia, but concur broadly with the previous recognition of two morphologically distinct species ( C. quadricarinatus and C. bicarinatus ) across northern Australia, and a third species in PNG ( C. albertsii ).
3. The inferred timing and patterns of divergence evident in the molecular data presented here closely align with a similar pattern reported in a co-distributed freshwater decapod crustacean, and broadly reflect patterns in some vertebrate taxa with similar distributions across northern Australia and PNG.
4. These congruent patterns most probably reflect periodic Plio-Pleistocene land and freshwater connections between Australia and New Guinea.  相似文献   

5.
The sea lavender, Limonium wrightii , has six morphs of flower colour variation. The geographical distribution of flower colour morphs is disjunct; the distribution of the pink flower morph is divided into two subregions, and that of the yellow flower morph intervenes between them. The present study aimed to examine the origin of this apparent distribution pattern of flower colour in L. wrightii . Two main hypotheses (i.e. past dispersal events and phenotypic changes by natural selection and/or stochastic processes) have been proposed to account for the origin of leapfrog distribution patterns. To determine which hypothesis was applicable, we conducted a molecular phylogenetic analysis using sequence variation in chloroplast DNA (three regions of intergenic spacers, trnG - trnfM , trnV - trnM , and psbA-trnH ). We sequenced 58 accessions of L. wrightii frin 28 islands in the Ryukyu Archipelago and the Izu-Ogasawara Islands, located south of the Japanese mainland, and 12 accessions of four congeneric species. Within L. wrightii , we obtained four lineages of ten haplotypes. These lineages and haplotypes did not correlate with the different flower colours. These results indicate that the formation processes of populations are complex. The haplotypes of the pink flower morph did not show a sister relationship between the two disjunct subregions, indicating that the disjunct populations of the pink flower morphs are unlikely to share the pink flower colour as a result of common ancestry. We conclude that the observed leapfrog distribution pattern is caused by natural selection and/or stochastic processes.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 709–717.  相似文献   

6.
D G Bedo  J P Spradbery  R J Mahon 《Génome》1994,37(3):390-398
The existence of sibling species in the Old World screwworm fly Chrysomya bezziana would raise serious problems in eradicating this pest if it entered Australia. Cytogenetic variation in C. bezziana was investigated by analyzing pupal trichogen polytene chromosomes. Natural populations of C. bezziana spanning its range from southern Africa to Papua New Guinea were examined as well as hybrids between a New Guinea laboratory strain and natural populations. No evidence of sibling species was found. All populations exhibited the same basic banding pattern as the standard sequence established from a Papua New Guinea strain. Extensive asynapsis of chromosome homologues was found in some hybrid crosses and was therefore measured in all populations and hybrids to detect systematic variation. Asynapsis levels in most hybrids could not be statistically distinguished from those present in the parent populations except for crosses between populations at the ends of the range. This result does not permit asynapsis levels to be used in establishing the origin of introduced flies by estimating their distance from known populations. One inversion polymorphism and six band polymorphisms spread over three chromosomes were analyzed. Populations in each sampled region had characteristic combinations of band polymorphisms. This may offer a diagnostic method for determining the origin of flies accidentally introduced to Australia.  相似文献   

7.
Two dinucleotide short tandem-repeat polymorphisms (STRPs) and a polymorphic Alu element spanning a 22-kb region of the PLAT locus on chromosome 8p12-q11.2 were typed in 1,287-1,420 individuals originating from 30 geographically diverse human populations, as well as in 29 great apes. These data were analyzed as haplotypes consisting of each of the dinucleotide repeats and the flanking Alu insertion/deletion polymorphism. The global pattern of STRP/Alu haplotype variation and linkage disequilibrium (LD) is informative for the reconstruction of human evolutionary history. Sub-Saharan African populations have high levels of haplotype diversity within and between populations, relative to non-Africans, and have highly divergent patterns of LD. Non-African populations have both a subset of the haplotype diversity present in Africa and a distinct pattern of LD. The pattern of haplotype variation and LD observed at the PLAT locus suggests a recent common ancestry of non-African populations, from a small population originating in eastern Africa. These data indicate that, throughout much of modern human history, sub-Saharan Africa has maintained both a large effective population size and a high level of population substructure. Additionally, Papua New Guinean and Micronesian populations have rare haplotypes observed otherwise only in African populations, suggesting ancient gene flow from Africa into Papua New Guinea, as well as gene flow between Melanesian and Micronesian populations.  相似文献   

8.
The ecological theory of adaptive radiation predicts that the evolution of phenotypic diversity within species is generated by divergent natural selection arising from different environments and competition between species. Genetic connectivity among populations is likely also to have an important role in both the origin and maintenance of adaptive genetic diversity. Our goal was to evaluate the potential roles of genetic connectivity and natural selection in the maintenance of adaptive phenotypic differences among morphs of Arctic charr, Salvelinus alpinus, in Iceland. At a large spatial scale, we tested the predictive power of geographic structure and phenotypic variation for patterns of neutral genetic variation among populations throughout Iceland. At a smaller scale, we evaluated the genetic differentiation between two morphs in Lake Thingvallavatn relative to historically explicit, coalescent-based null models of the evolutionary history of these lineages. At the large spatial scale, populations are highly differentiated, but weakly structured, both geographically and with respect to patterns of phenotypic variation. At the intralacustrine scale, we observe modest genetic differentiation between two morphs, but this level of differentiation is nonetheless consistent with strong reproductive isolation throughout the Holocene. Rather than a result of the homogenizing effect of gene flow in a system at migration-drift equilibrium, the modest level of genetic differentiation could equally be a result of slow neutral divergence by drift in large populations. We conclude that contemporary and recent patterns of restricted gene flow have been highly conducive to the evolution and maintenance of adaptive genetic variation in Icelandic Arctic charr.  相似文献   

9.
The islands of Micronesia and Polynesia collectively comprise the last major region of the globe to be settled by humans. Both of these groups of islands were colonized within the last 4,000 years by Austronesian-speaking agriculturists. Based on biogeographic and linguistic patterns, central-eastern Micronesia and Polynesia are included by many in a single category called Remote Oceania. Similarities of biologic, linguistic, and cultural traits within Remote Oceania highlight a question central to Oceanic studies: Are similarities among islands due to a common origin of isolated communities, to ongoing interactions among islands, or both? Analyses of mitochondrial DNA (mtDNA) sequences reveal that most remote Oceanic populations are polyphyletic. These polyphyletic populations violate the assumptions of many genetic distance and population demography models and so are problematic to interpret. The majority of mtDNA sequences from Micronesian and Polynesian populations are derived from Asia, whereas others are inferred to have originated in New Guinea. These data support an Island Southeast Asian origin and a colonization route along the north coast of New Guinea. The Marianas and Yap proper (main island) appear to have been independently settled directly from Island Southeast Asia, and both have received migrants from Central-Eastern Micronesia since then. Palau clearly demonstrates a complex prehistory including a significant influx of lineages from New Guinea. Thus genetic similarities among Micronesian and Polynesian populations result, in some cases, from a common origin, and in others, from extensive gene flow.  相似文献   

10.
Complete ND2 and partial ND4 and cytochrome b mitochondrial DNA (mtDNA) sequences were analysed to evaluate the phylogeographic patterns of common garter snakes (Thamnophis sirtalis) in western North America. This species is widely distributed throughout North America, and exhibits extensive phenotypic variation in the westernmost part of its range. The overall phylogeographic pattern based on mtDNA sequences is concordant with results from studies of other species in this region, implicating historical vicariant processes during the Pleistocene and indicating bottleneck effects of recent dispersal into postglacial habitat. Indeed, the topology is statistically consistent with the hypothesis of both southern (Great Basin and California) and northern (Haida Gwaii) refugia. Specifically, we identified genetic breaks among three major clades: Northwest Coastal populations, Intermountain populations, and all California populations. The California clade contained the only other well-supported branching patterns detected; relationships among populations within the two northern clades were indistinguishable. These molecular splits contrast sharply with all prior geographical analyses of phenotypic variation in T. sirtalis in this region. Our results suggest that the extensive phenotypic variation in western T. sirtalis has been shaped more by local evolutionary forces than by shared common ancestry. Consequently, we consider all morphologically based subspecies designations of T. sirtalis in this region invalid because they do not reflect reciprocal monophyly of the mtDNA sequences.  相似文献   

11.
Alu insertion polymorphism: a new type of marker for human population studies.   总被引:10,自引:0,他引:10  
A PCR-based method was used to screen 462 individuals from Japan, Papua New Guinea, Indonesia, and Australia for an Alu family insertion polymorphism. The frequency of this Alu insertion shows significant heterogeneity among island subgroups of the Indonesian sample and between the Japanese-Indonesian populations and the Australian-New Guinean populations. The simple, rapid PCR-based screening technique and the significant frequency differences among populations demonstrate that Alu insertion polymorphisms are potentially valuable markers for studies of the evolutionary history and migration patterns of modern humans.  相似文献   

12.
As an ancient clonal root and leaf crop, taro (Colocasia esculenta, Araceae) is highly polymorphic with uncertain genetic and geographic origins. We explored chloroplast DNA diversity in cultivated and wild taros, and closely related wild taxa, and found cultivated taro to be polyphyletic, with tropical and temperate clades that appear to originate in Southeast Asia sensu lato. A third clade was found exclusively in wild populations from Southeast Asia to Australia and Papua New Guinea. Our findings do not support the hypothesis of taro domestication in Papua New Guinea, despite archaeological evidence for early use or cultivation there, and the presence of apparently natural wild populations in the region (Australia and Papua New Guinea).  相似文献   

13.
This study utilizes newly developed direct DNA typing methods for human leukocyte antigens (HLA) to provide new information about the peopling of New Guinea. The complete polymorphism of eight Melanesian populations was examined. The groups included were highlanders, northern and southern highlands fringe populations, a Sepik population, northern and southern coastal New Guinea populations, and populations from the Bismarck Archipelago and New Caledonia. The study concluded that, based on HLA and other evidence. Melanesians are likely to have evolved largely from the same ancestral stock as Aboriginal Australians but to have since differentiated. Highlanders are likely to be descendants of earlier migrations who have been isolated for a long period of time. Northern highlands fringe and Sepik populations are likely to share a closer common ancestry but to have differentiated due to long term isolation and the relative proximity to the coast of the Sepik. Southern fringe populations are likely to have a different origin, possibly from the Gulf region, although there may be some admixture with neighboring groups. Coastal populations have a wider range of polymorphisms because of the genetic trail left by later population movement along the coast from Asia that did not reach Australia or remote Oceania. Other polymorphisms found in these populations may have been introduced by the movement of Austronesian-speaking and other more recent groups of people into the Pacific, because they share many polymorphisms with contemporary southeast Asians, Polynesians, and Micronesians that are not found in highlanders or Aboriginal Australians. There is evidence suggestive of later migration to Melanesia from Polynesia and Micronesia.  相似文献   

14.
LES CHRISTIDIS  RICHARD SCHODDE 《Ibis》1991,133(3):277-285
Allelic frequencies determined by protein electrophoresis were used to assess relationships and familial groupings among the Australian-New Guinean songbirds. Hypotheses of relationships were generated from the data by UPGMA, distance-Wagner and cladistic analyses. The resulting protein-based topologies were compared with recent DNA-DNA hybridization studies which separate the major Australo-Papuan families from Eurasian-centred groups and cluster them in a single endemic radiation. Although both data sets are concordant in may areas, they differ significantly in their alignment of the Australo-Papuan Menuridae, Climacteridae, Ptilonorhynchidae, Maluridae, Eopsaltriidae and Orthonychidae. Possible explanations for these discrepancies are examined. Both data sets otherwise agree in identifying an endemic radiation of Australo-Papuan songbirds in which some 75% of regional species are clustered in two principal assemblages. One includes the honeyeaters Meliphagidae and their allies Epthianuridae, Acanthizidae, Pardalotidae and, arguably, Eopsaltriidae (Australo-Papuan robins) and Orthonychidae (logrunners). The other comprises corvoid birds (Corvoidea), including Pachycephalidae, Monarchidae, Cracticidae, Artamidae, Paradisaeidae, Corvidae, Oriolidae, Campephagidae and possibly Ptilonorhynchidae (bowerbirds) amongst others. Menuridae (lyrebirds), Climacteridae (treecreepers), and Maluridae (fairy wrens) are also members of the radiation but of less certain affinity. The remaining species are grouped in a number of families forming a third assemblage of apparent Eurasian origin, the parvorder Passerida. The concept of a Gondwanan origin for the Passeriformes is canvassed.  相似文献   

15.
The Australo‐Papuan catbird genus Ailuroedus has a complex distribution and a contested taxonomy. Here, we integrate phylogenetic analysis of DNA data and morphology to study the group's biogeography and to re‐examine its taxonomy. We couple phylogeographic and abiotic data to examine differences between the major groups defined in our phylogenetic analysis. Our results are consistent with Ailuroedus catbirds being divided into two species complexes, one distributed in humid forests in the lowlands on New Guinea and another in comparably drier and colder forests mainly in mid‐mountains on New Guinea and Australia. Vicariant events during the Pliocene are surmised to have been the major force in shaping the contemporary phylogeographical signature of this genus. Several previously suggested vicariant events, such as fragmentation of xeric forests in Australia and the uplift of the central mountain range on New Guinea, are reinforced as important Pliocene barriers for tropical forest taxa in this region. Interaction between Pleistocene climatic fluctuations and differences in habitat requirements may explain a higher and more recent population structures in the mid‐mountain catbird complex and the lack of representatives from the lowland clade in the comparably drier Australia. Phylogeographical patterns in both catbird complexes, respectively, both comply and deviate from other lowland and mid‐mountain taxa in the region. This highlights that taxon‐specific properties, such as their historical spatial and ecological distributions, capacity to disperse and tolerance to habitat changes, affect the phylogeographical histories of organisms. Within both species complexes, the genetic differentiation between several geographically isolated populations was found to exceed those commonly observed for avian sister species. As these genetically distinct taxa also were found to be morphological diagnosable, we suggest a revised classification of the genus Ailuroedus, where we recognize three species within the lowland complex and seven species within the mid‐mountain complex.  相似文献   

16.
Abstract. Samples of Gyrinus sericeolimbatus from twenty-six localities in New Guinea vary greatly in metric body characters as well as in elytral reticulation patterns. The variation is smaller within than between populations. Although the characters of adjacent populations are usually similar, certain proximate populations exhibit significant differences, probably resulting from some kind of dispersal barrier. Similarities between populations at comparable latitudes suggest that some of the morphological variation is altitude-related. In addition, evidence is found for habitat-related morphological differentiation. Changes in phenotypes in response to possible environmental factors in ontogeny and constraints imposed by various selection pressures are discussed.
A new species, G.brincki sp.n., from western New Guinea is described.  相似文献   

17.
Determining the relative contributions of genetic and environmental factors to phenotypic variation is critical for understanding the evolutionary ecology of plant species, but few studies have examined the sources of phenotypic differentiation between nearby populations of woody plants. We conducted reciprocal transplant experiments to examine sources of variation in growth rate, form, survival, and maturation in a globally rare dwarf population of pitch pine (Pinus rigida) and in surrounding populations of normal-stature pitch pines on Long Island, New York. Transplants were monitored over a 6-yr period. The influence of seedling origin on height, growth rate, survival, and form (single-stemmed vs. multi-stemmed growth habit) was much smaller than the effect of transplanting location. Both planting site and seed origin were important factors in determining time to reproduction; seedlings originating from dwarf populations and seedlings planted at the normal-stature site reproduced earliest. These results suggest that many of the differences between dwarf and normal-stature pitch pines may be due more to plastic responses to environmental factors than to genetic differentiation among populations. Therefore, preservation of the dwarf pine habitat is essential for preserving dwarf pine communities; the dwarf pines cannot be preserved ex situ.  相似文献   

18.
To investigate the origins and relationships of Australian and Melanesian populations, 611 males from 18 populations from Australia, Melanesia, and eastern/southeastern Asia were typed for eight single-nucleotide polymorphism (SNP) loci and seven short tandem-repeat loci on the Y chromosome. A unique haplotype, DYS390.1del/RPS4Y711T, was found at a frequency of 53%-69% in Australian populations, whereas the major haplotypes found in Melanesian populations (M4G/M5T/M9G and DYS390.3del/RPS4Y711T) are absent from the Australian populations. The Y-chromosome data thus indicate independent histories for Australians and Melanesians, a finding that is in agreement with evidence from mtDNA but that contradicts some analyses of autosomal loci, which show a close relationship between Australian and Melanesian (specifically, highland Papua New Guinean) populations. Since the Australian and New Guinean landmasses were connected when first colonized by humans > or =50,000 years ago but separated some 8,000 years ago, a possible way to reconcile all the genetic data is to infer that the Y-chromosome and mtDNA results reflect the past 8,000 years of independent history for Australia and New Guinea, whereas the autosomal loci reflect the long preceding period of common origin and shared history. Two Y-chromosome haplotypes (M119C/M9G and M122C/M9G) that originated in eastern/southeastern Asia are present in coastal and island Melanesia but are rare or absent in both Australia and highland Papua New Guinea. This distribution, along with demographic analyses indicating that population expansions for both haplotypes began approximately 4,000-6,000 years ago, suggests that these haplotypes were brought to Melanesia by the Austronesian expansion. Most of the populations in this study were previously typed for mtDNA SNPs; population differentiation is greater for the Y chromosome than for mtDNA and is significantly correlated with geographic distance, a finding in agreement with results of similar analyses of European populations.  相似文献   

19.
Brito PH 《Molecular ecology》2007,16(16):3423-3437
A recent study of mitochondrial phylogeography of tawny owls (Strix aluco) in western Europe suggested that this species survived the Pleistocene glaciations in three allopatric refugia located in Iberia, Italy, and the Balkans, and the latter was likely the predominant source of postglacial colonization of northern Europe. New data from seven microsatellite loci from 184 individual owls distributed among 14 populations were used to assess the genetic congruence between nuclear and mitochondrial DNA (mtDNA) markers. Microsatellites corroborated the major phylogeographical conclusions reached on the basis of the mtDNA sequences, but also showed important differences leading to novel inferences. Microsatellites corroborated the three major refugia and supported the Balkan origin of northern populations. When corrected for differences in effective population size, microsatellites and mtDNA yielded generally congruent overall estimates of population structure (N*ST=0.12 vs. RST=0.16); however, there was substantial heterogeneity in the RST among the seven nuclear loci that was not correlated with heterozygosity. Populations representing the Balkans postglacial expansion interact with populations from the other two refugia forming two clines near the Alps and the Pyrenees. In both cases, the apparent position of the contact zones differed substantially between markers due to the genetic composition of populations sampled in northern Italy and Madrid. Microsatellite data did not corroborate the lower genetic diversity of northern, recently populated regions as was found with mtDNA; this discrepancy was taken as evidence for a recent bottleneck recovery. Finally, this study suggests that congruence among genetic markers should be more likely in cases of range expansion into new areas than when populations interact across contact zones.  相似文献   

20.
The glider genus Petaurus comprises a group of arboreal and nocturnal marsupial species from New Guinea and Australia. Molecular data were generated in order to examine phylogenetic relationships among species within the genus and explore the time-scale of diversification and biogeographic history of the genus in Australia and New Guinea. All known species and subspecies of Petaurus (with the exception of P. biacensis) were sequenced for two mitochondrial genes (ND2 and ND4) and one nuclear marker (omega-globin gene). Phylogenetic analyses confirmed the monophyly of the genus relative to other petaurids and showed a sister relationship of P. australis to the rest of Petaurus. The analyses revealed that currently recognised species of Petaurus formed distinct mitochondrial DNA (mtDNA) clades. Considerable mtDNA diversity and seven distinct clades were identified within the species P. breviceps, with the distribution of each clade showing no correspondence with the distributional limits of known subspecies. Molecular dating analyses using BEAST suggested an early to mid-Miocene origin (18–24 mya) for the genus. Ancestral area reconstructions, using BayesTraits, did not resolve the location for the centre of origin of Petaurus, but provided evidence for at least one dispersal event from New Guinea to Australia that led to the evolution of extant Australian populations of P. breviceps, P. norfolcensis and P. gracilis. The timing of this dispersal event appears to pre-date the Pleistocene, adding to the growing number of studies that suggest faunal connections occurred between Australia and New Guinea in the Late Miocene to Pliocene period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号