共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent phylogenetic analysis of the superfamily of lesion-replicating DNA polymerases suggest that they can be broadly divided into four sub-groups comprised of UmuC-like, DinB-like, Rev1-like and Rad30-like proteins. The UmuC-like sub-family is best characterized at the genetic level and sequence analysis of eleven umu orthologs, residing on bacterial chromosomes or on self-transmissible R-plasmids allows further subdivision into five sub-groups (UmuDC, MucAB, ImpAB, RumAB and RulAB) based on amino acid sequence conservation. Some of these orthologs are apparently inactive in situ, but may promote increased mutagenesis and survival when subcloned and expressed from high-copy number plasmids. We were, therefore, interested in devising an assay that would identify umuC-like genes in situ in the absence of a functional assay. To this end, degenerate primers directed towards conserved amino acid regions within the UmuC-like sub-family of DNA polymerases were designed and used to identify mucAB-like operons on the IncT plasmids, R394 and Rts-1.Interestingly, DNA sequence analysis of an 7 kb region of R394 identified two LexA-regulated genes immediately downstream of mucAB(R394) that are similar to the chromosomally-encoded Escherichia coli tus gene and the IncI plasmid-encoded impC gene, respectively. Analysis of the R394 and Rts-1 mucB genes revealed that both contain insertions which result in the expression of a truncated inactive MucB protein. While R394 was unable to restore mutagenesis functions to a ΔumuDC E. coli strain, Rts-1 surprisingly promoted significant levels of MMS-induced SOS mutagenesis, raising the possibility that Rts-1 encodes another, yet unidentified, umu-like homolog. 相似文献
2.
Control of replication of FII plasmids: comparison of the basic replicons and of the copB systems of plasmids R100 and R1 总被引:7,自引:0,他引:7
The copy numbers of the FII plasmids R1 and R100 were determined in four different ways and found to be identical. Deletion of one of the copy number control genes, copB, together with its promoter gives rise to plasmid copy mutants with an increased copy number. The increase was found to be 8- and 3.5-fold for plasmids R1 and R100, respectively. These deletion derivatives were found to be extremely sensitive to the presence of CopB activity from their own parent plasmid but not to that of the other plasmid. Hence, the CopB protein and its target are plasmid-specific and not FII-group-specific. These results are consistent with the high degree of nonhomology between plasmids R1 and R100 in a 250-bp region covering the distal part of the copB gene and the repA promoter region, which contains the target for the CopB protein. 相似文献
3.
A novel cadmium-inducible gene, cdr-1, was previously identified and characterized in the nematode Caenorhabditis elegans and found to mediate resistance to cadmium toxicity. Subsequently, six homologs of cdr-1 were identified in C. elegans. Here, we describe two homologs: cdr-4, which is metal inducible, and cdr-6, which is noninducible. Both cdr-4 and cdr-6 mRNAs contain open reading frames of 831 nt and encode predicted 32-kDa integral membrane proteins, which are similar to CDR-1. cdr-4 expression is induced by arsenic, cadmium, mercury, and zinc exposure as well as by hypotonic stress. In contrast, cdr-6 is constitutively expressed at a high level in C. elegans, and expression is not affected by these stressors. Both cdr-4 and cdr-6 are transcribed in postembryonic pharyngeal and intestinal cells in C. elegans. In addition, cdr-4 is transcribed in developing embryos. Like CDR-1, CDR-4 is targeted to intestinal cell lysosomes in vivo. Inhibition of CDR-4 and/or CDR-6 expression does not render C. elegans more susceptible to cadmium toxicity; however, there is a significant decrease in their lifespan in the absence of metal. Although nematodes in which CDR-4 and/or CDR-6 expression is knocked down accumulate fluid in the pseudocoelomic space, exposure to hypertonic conditions did not significantly affect growth or reproduction in these nematodes. These results suggest that CDR expression is required for optimal viability but does not function in osmoregulation. 相似文献
4.
Sergej V. Aksenov 《Journal of biological physics》1999,25(2-3):263-277
The SOS response in Escherichia coli is induced after DNA-damaging treatments including ultraviolet light. Regulation of the SOS response is accomplished through specific interaction of the two SOS regulator proteins, LexA and RecA. In ultraviolet light-treated cells, nucleotide excision repair is the major system that removes the induced lesions from the DNA. Here, induction of the SOS response in Escherichia coli with normal and impaired excision repair function is studied by simulation of intracellular levels of regulatory LexA and RecA proteins, and SulA protein. SulA protein is responsible for SOS-inducible cell division inhibition. Results of the simulations show that nucleotide excision repair influences time-courses of LexA, RecA and SulA induction by modulating the dynamics of RecA protein distribution between its normal and SOS-activated forms. 相似文献
5.
Isolation and location on the R27 map of two replicons and an incompatibility determinant specific for IncHI1 plasmids. 总被引:4,自引:2,他引:4
下载免费PDF全文

Two replicons were isolated independently from different IncHI1 plasmids. One was isolated from R27, and a second was isolated from pIP522. We demonstrate, by DNA-DNA hybridization experiments, that these maintenance regions are different and that they are specific to, and carried by, all IncHI1 plasmids tested. In view of this specificity we decided to designate the replicon isolated from R27 as RepHI1A and the replicon isolated from pIP522 as RepHI1B. These two autoreplicative regions are not related to a third replicon present in all IncHI1 plasmids that bears homology with RepFIA and that expresses the characteristic incompatibility of IncHI1 subgroup plasmids toward F factor (D. Saul, D. Lane, and P. L. Bergquist, Mol. Microbiol. 2:219-225, 1988; D. E. Taylor, R. W. Hedges, and P. L. Bergquist, J. Gen. Microbiol. 131:1523-1530, 1985). These results demonstrate that all IncHI1 plasmids tested contain at least three replicons. An incompatibility (Inc) region that hybridizes specifically to all the IncHI1 plasmids was previously isolated (M. Couturier, F. Bex, P. L. Bergquist, and W. K. Maas, Microbiol. Rev. 52:375-395, 1988). Although this Inc locus is not located in an autoreplicative region of IncHI1 plasmids, we observed that this locus stabilizes a low-copy-number replicon. This Inc locus is probably a component of an active partition locus involved in the maintenance of IncHI1 plasmids. The nucleotide sequence of the Inc region contains direct repeats of 31 bp. In addition, this incompatibility determinant hybridizes specifically with IncHI1 plasmids but expresses incompatibility toward plasmids of both IncHI subgroups (IncHI1 and IncHI2). In this communication, we present the mapping of these maintenance elements on the R27 genome. 相似文献
6.
The P-group plasmids RP1, RP4, RK2, R68 and R68.45 were analyzed by the following restriction endonucleases:BamHI,BglII,EcoRI,HindIII,PstI,PvuII,SalI, andSmaI. No differences between RP1, RP4, and RK2 were found, and the plasmid R68.45 was found to contain a direct duplication of an existing DNA sequence in R68. Our map of RK2 differs from the published map of RK2 in the corresponding region of the R68 map that is duplicated in R68.45. 相似文献
7.
8.
Summary Most of the inducible mutagenesis observed in Escherichia coli after treatment with many DNA damaging agents is dependent upon the products of the umuD,C operon. RecA-mediated proteolytic processing of UmuD yields a carboxyl-terminal fragment (UmuD) that is active for mutagenesis. Processing of UmuD is therefore a critical step in the fixation of mutations. In this paper we have analyzed the requirements for UmuD processing in vivo. Standard immuno-detection assays, coupled with a sensitive chemiluminescence detection assay, have been utilized to probe levels of chromosomally encoded Umu proteins from whole-cell E. coli extracts. We found that the derepression of additional SOS gene products, other than RecA, was not required for UmuD processing. Moreover, efficient cleavage of UmuD was observed only in the presence of elevated levels of activated RecA, suggesting that efficient processing would occur only under conditions of severe DNA damage. Detection of chromosomally encoded Umu proteins has allowed us, for the first time, to measure directly the cellular steady-state levels of these proteins under various SOS inducing conditions. UmuD was present at 180 copies per uninduced cell and was measured at 2400 copies per cell in strains that lacked a functional repressor. Induced levels of UmuC were approximately 12-fold lower than UmuD with 200 molecules per cell. These levels of cellular UmuC protein suggest that it functions through specific protein-DNA or protein-protein interactions, possibly as a lesion recognition protein or by interacting with DNA polymerase III. 相似文献
9.
Iwen F. Grigsby 《Developmental biology》2009,329(1):64-79
Eukaryotic genomes contain either one or two genes encoding homologs of the highly conserved histone chaperone Asf1, however, little is known of their in vivo roles in animal development. UNC-85 is one of the two Caenorhabditis elegans Asf1 homologs and functions in post-embryonic replication in neuroblasts. Although UNC-85 is broadly expressed in replicating cells, the specificity of the mutant phenotype suggested possible redundancy with the second C. elegans Asf1 homolog, ASFL-1. The asfl-1 mRNA is expressed in the meiotic region of the germline, and mutants in either Asf1 genes have reduced brood sizes and low penetrance defects in gametogenesis. The asfl-1, unc-85 double mutants are sterile, displaying defects in oogenesis and spermatogenesis, and analysis of DNA synthesis revealed that DNA replication in the germline is blocked. Analysis of somatic phenotypes previously observed in unc-85 mutants revealed that they are neither observed in asfl-1 mutants, nor enhanced in the double mutants, with the exception of enhanced male tail abnormalities in the double mutants. These results suggest that the two Asf1 homologs have partially overlapping functions in the germline, while UNC-85 is primarily responsible for several Asf1 functions in somatic cells, and is more generally involved in replication throughout development. 相似文献
10.
Summary
Agrobacterium rhizogenes induces root formation at the wound site of inoculation in plants and inserts a fragment of its plasmid (Ri) into the plant nuclear DNA. Parts of the transferred region (T-region) of the Ri plasmid of A. rhizogenes strain A4 or 8196 are cloned in Escherichia coli. Insertions of the E. coli lacZ coding region into the hybrid plasmids were made in vivo using transduction by miniMu. Twenty insertions localized in the TL-DNA of pRiA4 (or pRi1855) and 2 inserts in the T-DNA of pRi8196 were obtained in E. coli. One of the TL-DNA insertions is saved up because it is linked to an internal T-DNA deletion; the others because they confer a lactose plus phenotype on E. coli; this indicates that the T-DNA harbours sequences that are expressed in E. coli. Fifteen of these T-DNA insertions were transfered to Agrobacterium where they substitute the corresponding wild-type T-DNA of the Ri plasmid by homologous recombination. These strains corresponding to insertion-directed mutagenesis were used to inoculate Daucus carota slices and stems and leaves of Kalanchoe daigremontiana. The two insertions strains obtained in the T-DNA of pRi8196 are avirulent on K. daigremontiana; but their phenotypes differ on D. carota slices, suggesting that insertions affect distinct loci on the T-DNA involved in hairy root formation. Only one insertion out of the twenty obtained in the TL-DNA of pRiA4 (or 1855) induces a loss of virulence on leaves of K. daigremontiana. However the TL-DNA deletion harbouring strain induces a loss of virulence on D. carota and K. daigremontiana (stems and leaves), confirming the importance of the TL-DNA for hairy root induction. re]19850711 rv]19851230 ac]19860114 相似文献
11.
Damage and mutagenesis of E. coli and bacteriophage λ induced by oxathiolane and aziridinyl steroids
λ-Escherichia coli complexes exhibited remarkable sensitivity to the treatment with test steroidal derivatives in the presence of Cu(II). The decline in plaque-forming units after steroid treatment was more pronounced in complexes with some of the irradiation repair-defective mutants of E. coli K-12, i.e., recA, lexA and polA, as compared to uvrA and wild-type strains. The red gene of λ phage and recA gene of E. coli seem to have a complementary effect on the steroid-induced lesions. An enhanced level of mutagenesis was observed when steroid-treated E. coli cells were transformed with steroid-treated pBR322 plasmid DNA. A remarkable degree of c mutation was also observed when steroid I-treated phage particles were allowed to adsorb on steroid-treated wild-type bacteria. Moreover, the oxathione steroid treatment of λcI857-E. coli lysogen resulted in prophage induction in nutrient broth even at 32°C. Thus on the basis of these results, the role of SOS repair system in steroid-induced mutagenesis and repair of DNA lesions in E. coli and bacteriophage λ has been suggested. 相似文献
12.
13.
Multicopy suppressors of prc mutant Escherichia coli include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA. 总被引:1,自引:4,他引:1
下载免费PDF全文

We have isolated three multicopy suppressors of the conditional lethal phenotype of a prc (tsp) null strain of Escherichia coli. One of these suppressors included two novel putative protease genes in tandem that map to 3400 kb or 72.5 centisomes on the chromosome. We propose the names hhoA and hhoB, for htrA homolog, to denote that these genes encode proteins that are 58 and 35% identical, respectively, to the HtrA (DegP) serine protease and 36% identical to each other. The HhoA and HhoB proteins are predicted to be 455 and 355 amino acids, respectively, in length. The mature HhoA protein is periplasmic in location, and amino-terminal sequencing shows that it arises following cleavage of a 27-amino-acid signal peptide. Searches of the protein and DNA databases reveal a rapidly growing family of homologous genes in a variety of other bacteria, including several which are required for virulence in their host. Deletion of the hhoAB genes shows that they are not required for viability at high temperatures like the homologous htrA but grow more slowly than wild-type strains. A second multicopy prc suppressor is the dksA (dnaK suppressor) gene, which is also a multicopy suppressor of defects in the heat shock genes dnaK, dnaJ, and grpE. The dksA gene was independently isolated as a multicopy suppressor of a mukB mutation, which is required for chromosomal partitioning. A third dosage-dependent prc suppressor includes a truncated rare lipoprotein A (rlpA) gene. 相似文献
14.
15.
《Free radical research》2013,47(3):371-379
AbstractCurcumin (diferuloylmethane), a pharmacologically active substance derived from turmeric, exhibits anti-inflammatory, anticarcinogenic, and antioxidant properties. We examined the modulation of oxidative-stress resistance and associated regulatory mechanisms by curcumin in a Caenorhabditis elegans model. Our results showed that curcumin-treated wild-type C. elegans exhibited increased survival during juglone-induced oxidative stress compared with the control treatment. In addition, curcumin reduced the levels of intracellular reactive oxygen species in C. elegans. Moreover, curcumin induced the expression of the gst-4 and hsp-16.2 stress response genes. Lastly, our findings from the mechanistic study in this investigation suggest that the antioxidative effect of curcumin is mediated via regulation of age-1, akt-1, pdk-1, osr-1, unc-43, sek-1, skn-1, sir-2.1, and mev-1. Our study elucidates the diverse modes of action and signaling pathways that underlie the antioxidant activity exhibited by curcumin in vivo. 相似文献
16.
Industrially, the use of high temperatures (40–60°C) in the l-malate production process could result in rapid inactivation of the mesophilic fumarases, warranting constant replenishment
of the biocatalyst. Thus, a thermostable fumarase C that is active and stable at high temperatures would be ideal. Biochemical
studies using recombinant fumarase C from thermophilic Streptomyces thermovulgaris (stFUMC) indicated that it was optimally active at 50°C and highly stable even after 24 h of incubation at 40°C. The same
gene from mesophilic Streptomyces coelicolor (scfumC) was also cloned and expressed as soluble proteins for comparison in thermal properties of both enzymes. In contrast to stFUMC,
scFUMC exhibited a lower temperature optima of 30°C and was rapidly denatured at 50°C. The specific activity of stFUMC was
also higher than that of scFUMC by 20-fold. After primary sequence comparison, three hydrophilic amino acid residues, R163,
E170 and S347, were forged into the thermolabile scFUMC either singly or in combination for the investigation of their contributions
in the thermal properties of the mutant enzymes. Of the mutants studied, the A347S scFUMC mutant resulted in the highest increase
in optimum temperature of 10°C and a fourfold enhancement in specific activity. G163R/G170E and G163R/G170E/A347S scFUMC mutants
are more thermostable than wild-type scFUMC. These findings support stFUMC as a highly efficient, thermostable fumarase C
with industrial potential and suggest that R163, E170 and S347 are involved in the enhancement of thermal properties in fumarase
C. 相似文献
17.
Control of replication of bacterial plasmids: genetics, molecular biology, and physiology of the plasmid R1 system 总被引:46,自引:0,他引:46
Plasmids are autonomously replicating DNA molecules that are present in defined copy numbers in bacteria. This number may for some plasmids be very low (2-5 per average cell). In order to be stably inherited, replication and partitioning of the plasmid have to be strictly controlled. Plasmids carry genetic information for both processes. In the present paper we summarize what is known about the replication control system of one low-copy-number plasmid, R1, belonging to the FII incompatibility group. We do so because the FII group seems to be one of the best understood examples with respect to genetics, molecular biology, and physiology of the replication control system. The paper is not a classical review, but rather an essay in which we discuss the aspects of replication control that we regard as being important. 相似文献
18.
19.
20.
Identification of eleven single-strand initiation sequences (ssi) for priming of DNA replication in the F, R6K, R100 and ColE2 plasmids. 总被引:15,自引:0,他引:15
N Nomura H Masai M Inuzuka C Miyazaki E Ohtsubo T Itoh S Sasamoto M Matsui R Ishizaki K Arai 《Gene》1991,108(1):15-22
Based on the ability to complement the poor growth of an M13 phage derivative lacking the complementary strand origin, eleven single-strand initiation sequences (ssi) for DNA replication are identified in the F, R6K, R100 and ColE2 plasmids. Six of them were from F, two from near the gamma and alpha origins (ori) of R6K, two from the vicinity of the basic replicon of R100 and one from near the ori of ColE2. They can be classified into two groups based on the morphology of the plaques and the length of nucleotide (nt) sequences required for ssi activity; one group that gives rise to larger and clearer plaques and can be reduced to nearly 100 nt (seven out of eleven), and another that generates smaller and less clear plaques and requires more than 200 nt for full activity (four out of eleven). Sequence homology is detected among some members from both groups. The possible biological roles of the ssi are discussed. 相似文献