首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined the influence of diets supplemented with fish and vegetable oils on fatty acid and prostaglandin E2 (PGE2) contents in livers of non-7,12-dimethylbenz[a]anthracene (DMBA)- and DMBA-treated rats, and in DMBA-induced tumours. Decreased concentrations of saturated fatty acids and increased unsaturated fatty acid levels were observed in liver phospholipids of rats fed these oils. There was a marked difference in the concentrations of fatty acids found in the tumours and those present in liver lipids. Oleic acid was the main unsaturated fatty acid found in the tumour tissue. Both liver and tumour PGE2 contents were clearly correlated to the diet. The PGE2 concentrations were decreased in livers and tumours of rats fed fish (FO) and linseed oils (LO).  相似文献   

2.
3.
The fatty acid profile of vegetable oils (VOs), together with the poor ability of marine fish to convert polyunsaturated fatty acids (PUFA) to highly unsaturated fatty acids (HUFA), lead to important changes in the nutritional value of farmed fish fed VO, which include increased fat and 18:2n-6 and reduced n-3 HUFA. Echium oil (EO) has a good n-3/n-6 balance as well as an interesting profile with its high content of unusual fatty acids (SDA, 18:4n-3 and GLA, 18:3n-6) that are of increasing pharmacological interest. The effects of substituting 50 % of dietary fish oil (FO) by EO on gilthead seabream (Sparus aurata L.) enterocyte and hepatocyte lipid metabolism were studied. After 4 months of feeding, cell viability, total lipid contents and lipid class compositions were not affected by EO. The cells clearly reflected the fatty acid profile of the EO showing increased SDA, GLA and its elongation product 20:3n-6, and only minorly decreased n-3 HUFA compared to other VO. Metabolism of [1-14C]18:2n-6 and [1-14C]18:3n-3 was also unaffected by EO in terms of total uptake, incorporation, β-oxidation and elongation–desaturation activities.  相似文献   

4.
The potential effects of various dietary eicosapentaenoic acid (EPA; 20:5) and docosahexaenoic acid (DHA; 22:6) ratios (1:1, 2:1, and 1:2, respectively) on protein redox states from plasma, kidney, skeletal muscle, and liver were investigated in Wistar rats. Dietary fish oil groups were compared with animals fed soybean and linseed oils, vegetable oils enriched in ω6 linoleic acid (LA; 18:2) and ω3 α-linolenic acid (ALA; 18:3), respectively. Fish oil treatments were effective at reducing the level of total fatty acids in plasma and enriching the plasmatic free fatty acid fraction and erythrocyte membranes in EPA and DHA. A proteomic approach consisting of fluorescein 5-thiosemicarbazide (FTSC) labeling of protein carbonyls, FTSC intensity visualization on 1-DE or 2-DE gels, and protein identification by MS/MS was used for the protein oxidation assessment. Albumin was found to be the most carbonylated protein in plasma for all dietary groups, and its oxidation level was significantly modulated by dietary interventions. Supplementation with an equal EPA:DHA ratio (1:1) showed the lowest oxidation score for plasma albumin, followed in increasing order of carbonylation by 1:2 <2:1 ≈ linseed < soybean. Oxidation patterns of myofibrillar skeletal muscle proteins and cytosolic proteins from kidney and liver also indicated a protective effect on proteins for the fish oil treatments, the 1:1 ratio exhibiting the lowest protein oxidation scores. The effect of fish oil treatments at reducing carbonylation on specific proteins from plasma (albumin), skeletal muscle (actin), and liver (albumin, argininosuccinate synthetase, 3-α-hydroxysteroid dehydrogenase) was remarkable. This investigation highlights the efficiency of dietary fish oil at reducing in vivo oxidative damage of proteins compared to oils enriched in the 18-carbon polyunsaturated fatty acids ω3 ALA and ω6 LA, and such antioxidant activity may differ among different fish oil sources because of variations in EPA/DHA content.  相似文献   

5.
Arachidonic Acid (AA) released from membrane phospholipids by phospholipase A2 during cell activation is the major polyunsaturated fatty acid precursor in mammals for the cyclooxygenase and lipoxygenase pathways. Eicosaspentaenoic acid (EPA), a major polyunsaturated fatty acid in fish oils competes with AA for these enzymes. The resulting products from EPa are generally less potent than the corresponding AA metabolites which may explain the beneficial effects of this oil in reducing thrombotic and inflammatory responses. This study compares the incorporation of 14C-AA into leukocyte phospholipids and its release and metabolism by the cyclooxygenase and lipoxygenase pathways in rats fed a ‘Max EPA’ fish oil rich diet (EPA group) and a hydrogenated coconut/safflower oil control diet. More than 75% of radiolabel was incorporated into leukocytes with no difference seen between dietary groups. Upon stimulation with calcium ionophore, the EPA group released significantly more radiolabelled AA than the control group. The EPA diet showed a significant increase in the formation of 5-hydroxyeicosatetraenoic acid and 6-keto-prostaglandin F but no difference was seen in leukotriene B4 formation. The majority of radiolabel released was free AA, this being significantly higher in the EPA grou than in the control. The percentage of radiolabel remaining after stimulation in phosphatidylglycerol, phosphatidylethanolamine and neutral lipids was significantly less in EPA fed rats. As the release and metabolism of endogenous AA may not be the same as 14C-AA, these results do not necessarily indicate that the mass of AA available for eicosanoid biosynthesis has been altered by the EPA diet.  相似文献   

6.
Juveniles of gilthead sea bream were fed with plant protein-based diets with fish oil (FO diet) or vegetable oils (66VO diet) as dietary lipid sources. No differences in growth performance were found between both groups, and fish with an average body mass of 65–70 g were crowded (90–100 kg/m3) to assess the stress response within the 72 h after the onset of stressor. The rise in plasma cortisol and glucose levels was higher in stressed fish of group 66VO (66VO-S) than in FO group (FO-S), but the former stressed group regained more quickly the cortisol resting values of the corresponding non-stressed diet group. The cell–tissue repair response represented by derlin-1, 75 kDa glucose-regulated protein and 170 kDa glucose-regulated protein was triggered at a lower level in 66VO-S than in FO-S fish. This occurred in concert with a long-lasting up-regulation of glucocorticoid receptors, antioxidant enzymes, enzyme subunits of the mitochondrial respiratory chain, and enzymes involved in tissue fatty acid uptake and β-oxidation. This gene expression pattern allows a metabolic phenotype that is prone to “high power” mitochondria, which would support the replacement of fish oil with vegetable oils when theoretical requirements in essential fatty acids for normal growth are met by diet.  相似文献   

7.
The administration to male rats of 5 en % fish oil (FO) as supplement to a diet containing 5 en % corn oil (CO), selectively and markedly decreased arterial parameters (6-keto-PGF formation and platelet antiaggregatory activity) assessed in isolated aortic segments perfused with autologous platelet rich plasma (PRP). Platelet parameters (ADP-induced aggregation, TxB2 formation in thrombin-stimulated PRP and sensitivity to exogenous PGI2) were instead minimally affected. Eicosapentaenoic acid (EPA, 20:5 n-3) did not accumulate in plasma, platelet and aorta lipids and arachidonic acid (AA, 20:4 n-6) levels declined markedly only in the plasma compartment. When FO was given alone at the same 5 en % level, both arterial and platelet parameters were similarly affected. EPA accumulated in plasma cholesterol esters and was present in appreciable concentrations also in platelets and aortic walls. AA levels declined markedly in plasma lipids and appreciably also in platelet and aorta lipids. It is concluded that a) arterial and platelet parameters are differentially affected by FO administration depending upon the presence of n-6 polyunsaturated fatty acids in the diet, b) 6-keto-PGF production by arterial tissues does not seem to be related to changes of PG precursor fatty acid levels in the phospholipid fraction.  相似文献   

8.
The blood–brain barrier, formed by microvessel endothelial cells, is the restrictive barrier between the brain parenchyma and the circulating blood. Arachidonic acid (ARA; 5,8,11,14‐cis‐eicosatetraenoic acid) is a conditionally essential polyunsaturated fatty acid [20:4(n ? 6)] and is a major constituent of brain lipids. The current study examined the transport processes for ARA in confluent monolayers of human brain microvascular endothelial cells (HBMEC). Addition of radioactive ARA to the apical compartment of HBMEC cultured on Transwell® inserts resulted in rapid incorporation of radioactivity into the basolateral medium. Knock down of fatty acid transport proteins did not alter ARA passage into the basolateral medium as a result of the rapid generation of prostaglandin E2 (PGE2), an eicosanoid known to facilitate opening of the blood–brain barrier. Permeability following ARA or PGE2 exposure was confirmed by an increased movement of fluorescein‐labeled dextran from apical to basolateral medium. ARA‐mediated permeability was attenuated by specific cyclooxygenase‐2 inhibitors. EP3 and EP4 receptor antagonists attenuated the ARA‐mediated permeability of HBMEC. The results indicate that ARA increases permeability of HBMEC monolayers likely via increased production of PGE2 which acts upon EP3 and EP4 receptors to mediate permeability. These observations may explain the rapid influx of ARA into the brain previously observed upon plasma infusion with ARA.

  相似文献   


9.
Temperature variation affects the growth, maturation and distribution of fish species due to increasing constraints on physiological functions therefore, the aim of the present study is to evaluate effect of temperature on thermal tolerance and standard metabolic rate (SMR) of gilthead seabream (Sparus aurata). For this purpose, tolerable temperature ranges of juvenile gilthead seabream acclimated at 15, 20, 25, and 30 °C for 30 days were estimated using dynamic and static thermal methodologies. The SMRs of the fish were also determined based on oxygen consumption rate (OCR). The dynamic and static thermal tolerance zones of gilthead seabream were calculated as 737 °C2 and 500 °C2, respectively, with a resistance zone area of 155.5 °C2. The SMR of the fish at the above acclimation temperatures (AT) was determined as 138, 257, 510, and 797 mg O2 h−1 kg−1, respectively and were significantly different (P < 0.01, n = 10). The temperature quotient (Q10) in relation to the SMR of the fish was calculated as 3.45, 3.91, and 2.44 for acclimation temperature ranges of 15–20, 20–25, and 25–30 °C, respectively. The fact that the SMR increased with rising temperatures and then decreased gradually after 25 °C indicates that the temperature preference of juvenile gilthead seabream lies between 25 and 30 °C. This study shows that gilthead seabream tolerates a relatively narrow temperature range, and consequently, a low capacity for acclimatisation to survive in aquatic systems characterised by temperature variations.  相似文献   

10.
11.
The activity and mRNA level of hepatic enzymes in fatty acid oxidation and synthesis were compared in rats fed diets containing either 15% saturated fat (palm oil), safflower oil rich in linoleic acid, perilla oil rich in α-linolenic acid or fish oil rich in eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) for 15 days. The mitochondrial fatty acid oxidation rate was 50% higher in rats fed perilla and fish oils than in the other groups. Perilla and fish oils compared to palm and safflower oils approximately doubled and more than tripled, respectively, peroxisomal fatty acid oxidation rate. Compared to palm and safflower oil, both perilla and fish oils caused a 50% increase in carnitine palmitoyltransferase I activity. Dietary fats rich in n-3 fatty acids also increased the activity of other fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. The extent of the increase was greater with fish oil than with perilla oil. Interestingly, both perilla and fish oils decreased the activity of 3-hydroxyacyl-CoA dehydrogenase measured using short- and medium-chain substrates. Compared to palm and safflower oils, perilla and fish oils increased the mRNA level of many mitochondrial and peroxisomal enzymes. Increases were generally greater with fish oil than with perilla oil. Fatty acid synthase, glucose-6-phosphate dehydrogenase, and pyruvate kinase activity and mRNA level were higher in rats fed palm oil than in the other groups. Among rats fed polyunsaturated fats, activities and mRNA levels of these enzymes were lower in rats fed fish oil than in the animals fed perilla and safflower oils. The values were comparable between the latter two groups. Safflower and fish oils but not perilla oil, compared to palm oil, also decreased malic enzyme activity and mRNA level. Examination of the fatty acid composition of hepatic phospholipid indicated that dietary α-linolenic acid is effectively desaturated and elongated to form EPA and DHA. Dietary perilla oil and fish oil therefore exert similar physiological activity in modulating hepatic fatty acid oxidation, but these dietary fats considerably differ in affecting fatty acid synthesis.  相似文献   

12.
The aim of the present study was to examine if dietary inclusion of vegetable lipids (VL) and proteins (VP) influenced markers of bone health in Atlantic salmon. Triplicate groups were fed one of four different diets; 100% fish protein (FP) and fish lipids (FL) (FPFL), 80% VP and 35% VL (80VP35VL), 40% VP and 70% VL (40VP70VL), or 80% VP and 70% VL (80VP70VL) for 12 months on‐growth in sea water. Fish were analyzed for vertebral bone mineralization (mineral content, as % of bone dry weight), vertebral deformities (radiology), vertebral bone mRNA expression of factors involved in mineralization (bone gla protein, bgp) and growth regulation (igf‐I and growth hormone receptor), as well as plasma vitamin D metabolites. The fish grew from 0.35 to 4 kg during the experimental period. At the end of the experiment, significantly lower prevalence of fish with one or more deformed vertebrae was observed in the 80VP70VL group (11%) compared to the other groups (33–43%). There was a significant higher relative expression of igf‐I mRNA in vertebral bone of fish fed the 80VP70VL diet compared to control fish (FPFL), while the other genes studied were unaffected. Elevated plasma 25‐hydroxyvitamin D3 recorded in the marine feed group is discussed as a predictor for later development of bone deformities. In conclusion, the present study shows that high inclusion levels of vegetable lipids and proteins may have a positive effect on bone health in Atlantic salmon postsmolts.  相似文献   

13.
Our study compared the effects of different oils on oxidative stress in rat heart mitochondria, as well as on plasma parameters used as risk factors for cardiovascular disease. The rats were fed for 16 weeks with coconut, olive, or fish oil diet (saturated, monounsaturated, or polyunsaturated fatty acids, respectively). The cardiac mitochondria from rats fed with coconut oil showed the lowest concentration of oxidized proteins and peroxidized lipids. The fish oil diet leads to the highest oxidative stress in cardiac mitochondria, an effect that could be partly prevented by the antioxidant probucol. Total and LDL cholesterols decreased in plasma of rats fed fish oil, compared to olive and coconut oils fed rats. A diet enriched in saturated fatty acids offers strong advantages for the protection against oxidative stress in heart mitochondria.  相似文献   

14.
In female sea bream Sparus aurata fed a control diet (C), ovarian levels of neutral lipids (NL) and polar lipids (PL) remained constant between November and March, while a decrease in NL content was observed in liver and muscle. In the same period, liver PL content increased, while no changes were observed in muscle. Between March and June ovarian NL and PL showed a strong decrease, while NL remained constant in liver and muscle. When fish were fed a diet lacking in n-3 highly unsaturated fatty acids, n-3 HUFA (D), the pattern observed was similar to that found in the fish fed diet C, with the exception of liver NL, which increased between March and June. In general, the changes in fatty acid content, in both groups of fish, were highly influenced by the diet given to the broodstock, although these effects were greater on ovarian NL and PL than on liver and muscle lipids. Despite the fact that gilthead seabream females continue feeding during the spawning season, they probably make use of their liver and muscle reserves during the gonadal maturation process. Furthermore, the fatty acid composition of the broodstock diet was reflected in the body composition, especially in the ovaries.  相似文献   

15.
Dietary fish oils have potential for prevention of colon cancer, and yet the mechanisms of action in normal and tumor colon tissues are not well defined. Here we evaluated the impact of the colonic fatty acid milieu on the formation of prostaglandins and other eicosanoids. Distal tumors in rats were chemically induced to model inflammatory colonic carcinogenesis. After 21 weeks of feeding with either a fish oil diet containing an eicosapentaenoic acid/ω-6 fatty acid ratio of 0.4 or a Western fat diet, the relationships between colon fatty acids and prostaglandin E2 (PGE2) concentrations were evaluated. PGE2 is a key proinflammatory mediator in the colon tightly linked with the initiation and progression of colon cancer. The fish oil vs. the Western fat diet resulted in reduced total fatty acid concentrations in serum but not in colon. In the colon, the effects of the fish oil on fatty acids differed in normal and tumor tissue. There were distinct lipodomic patterns consistent with a lipogenic phenotype in tumors. In tumor tissue, the eicosapentaenoic acid/arachidonic acid ratio, cyclooxygenase-2 expression and the mole percent of saturated fatty acids were significant predictors of inter-animal variability in colon PGE2 after accounting for diet. In normal tissues from either control rats or carcinogen-treated rats, only diet was a significant predictor of colon PGE2. These results show that the fatty acid milieu can modulate the efficacy of dietary fish oils for colon cancer prevention, and this could extend to other preventive agents that function by reducing inflammatory stress.  相似文献   

16.
17.
We examined the influence of diets supplemented with fish and vegetable oils on fatty acid and prostaglandin E2 (PGE2) contents in livers of non-7,12-dimethylbenz[a]anthracene (DMBA)- and DMBA-treated rats, and in DMBA-induced tumours. Decreased concentrations of saturated fatty acids and increased unsaturated fatty acid levels were observed in liver phospholipids of rats fed these oils. There was a marked difference in the concentrations of fatty acids found in the tumours and those present in liver lipids. Oleic acid was the main unsaturated fatty acid found in the tumour tissue. Both liver and tumour PGE2 contents were clearly correlated to the diet. The PGE2 concentrations were decreased in livers and tumours of rats fed fish (FO) and linseed oils (LO).  相似文献   

18.
Juvenile tench (initial weight of about 57 g) were fed feed supplemented with fish oil (group FO), linseed oil (group LO), peanut oil (group PO), or rapeseed oil (group RO) containing 47% protein and 12% fat for 55 days. The inclusion of the tested oils was 50 g kg−1 (42% total crude lipids in diets). No significant differences were noted in the fish growth performance. The proximate composition of the whole fish bodies and the viscera (water, protein, fat, ash) was similar in all the dietary treatments (P > 0.05). Differences were noted only with regard to the ash content of the fillets (P < 0.05). The analysis of the fatty acids profiles of tench (whole fish) indicated there were significant differences in the total content of monoenoic and polyenoic (PUFA) acids. Significant differences were also noted with regard to n-3 PUFA and n-6 PUFA. Consequently, the ratio of n-3/n-6 acids ranged from 1.6 (group PO) to 2.08 (group LO; P < 0.05). The feed applied was not confirmed to have had an impact on the fatty acids profile of the tench fillets. There was a statistically significant intergroup difference in the content of saturated fatty acids (SFA) in tench viscera. In the fish fed vegetable oils supplemented diets, the level of SFA was lower (P < 0.05).  相似文献   

19.
High intakes of linoleic acid (LA,18:2n-6) have raised concern due to possible increase in arachidonic acid (ARA, 20:4n-6) synthesis, and inhibition of alpha linolenic acid (ALA, 18:3n-3) desaturation to eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). In healthy men, 10.5% energy compared to 3.8% energy LA with 1% energy ALA increased plasma phospholipid LA and 20:2n-6, the elongation product of LA, and decreased EPA, with no change in ARA. However, LA was inversely related to ARA at both 10.5% energy and 3.8% energy LA, (r=?0.761, r=?0.817, p<0.001, respectively). A two-fold variability in ARA among individuals was not explained by the dietary LA, ARA, ALA, or fish intake. Our results confirm LA requirements for ARA synthesis is low, <3.8% energy, and they suggest current LA intakes saturate Δ-6 desaturation and adversely affect n-3 fatty acid metabolism. Factors other than n-6 fatty acid intake are important modifiers of plasma ARA.  相似文献   

20.
The ability of n-3 PUFA to competitively inhibit the use of arachidonic acid (AA) for membrane phospholipid synthesis and prostaglandin E2 (PGE2) production has been well demonstrated in single cell models. In the present study, we investigated the metabolic competition between AA and eicosapentaenoic acid (EPA) for PGE2 synthesis in a rat hepatocyte–Kupffer cell (HPC/KC) co-culture system when the cellular oxidation capacity was enhanced by exogenous l-carnitine. We demonstrate that in the absence of l-carnitine, 1) β-oxidation rates of EPA and AA were comparable in HPCs and in KCs; 2) AA and not EPA was preferentially incorporated into glycerolipids; and 3) addition of EPA significantly decreased AA-dependent PGE2 synthesis in HPCs and cyclooxygenase-2 (COX-2) expression in co-cultured HPCs/KCs. However, enhancing the cellular oxidation capacity by the addition of l-carnitine 1) significantly increased β-oxidation of EPA in HPCs, but only marginally elevated the oxidation of AA in HPCs and the oxidation of both fatty acids in KCs; 2) decreased the esterification, but did not alter the preferential incorporation of AA into glycerolipids; and 3) alleviated the significant competitive inhibition of AA-dependent PGE2 synthesis and COX-2 expression by EPA. Taken together, the results strongly suggest that l-carnitine affects competition between AA and EPA in PG synthesis in liver cells by enhancing oxidation of EPA in HPCs. This implies that the beneficial effects of n-3 PUFA, especially EPA, are affected by the cellular oxidation capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号