首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We studied the influence of the Suppressor of Underreplication (SuUR) gene expression on the intercalary heterochromatin (IH) regions of Drosophila melanogaster polytene chromosomes. We observed a strong positive correlation between increased SuUR expression, underreplication extent, amount of DNA truncation, and formation of ectopic contacts in IH regions. SuUR overexpression from heat shock-driven transgene results in the formation of partial chromosomal aberrations whose breakpoints map exclusively to the regions of intercalary and pericentric heterochromatin. It is important to note that all these effects are seen only if SuUR overexpression is induced during early stages of chromosome polytenization. Therefore, we developed the idea that ectopic pairing results from the joining of free DNA ends, which are formed as a consequence of underreplication.  相似文献   

2.
3.
Incorporation of 3H-uridine into three chromosome regions 21D, 100AB, 7EF showing no puffs was studied by means of EM autoradiography. These regions show rather good coincidence between EM and Bridges' revised maps. The reduction of band number observed in the EM map was mainly at the expense of “doublet” bands. — Theoretical silver grain distributions were calculated on the basis of “universal curves” (Salpeter et al., 1969, J. Cell Biol. v. 41, 1–20) on condition that either bands or interbands are linear sources of radioactivity. From these curves the resolution of EM autoradiography was deduced to be sufficient with regard to the investigated region. — The results show that in addition to the puffs peaks of silver grains occur over the interbands and diffuse bands. The lowest incorporation level is observed over the dense bands. The possibility of utilizing the data obtained for the location of RNA-synthesising regions is discussed.  相似文献   

4.
Salivary gland polytene chromosomes of Drosophila melanogaster have a reproducible set of intercalary heterochromatin (IH) sites, characterized by late DNA replication, underreplicated DNA, breaks and frequent ectopic contacts. The SuUR mutation has been shown to suppress underreplication, and wild-type SuUR protein is found at late-replicating IH sites and in pericentric heterochromatin. Here we show that the SuUR gene influences all four IH features. The SuUR mutation leads to earlier completion of DNA replication. Using transgenic strains with two, four or six additional SuUR(+) doses (4-8xSuUR(+)) we show that wild-type SuUR is an enhancer of DNA underreplication, causing many late-replicating sites to become underreplicated. We map the underreplication sites and show that their number increases from 58 in normal strains (2xSuUR(+)) to 161 in 4-8xSuUR(+) strains. In one of these new sites (1AB) DNA polytenization decreases from 100% in the wild type to 51%-85% in the 4xSuUR (+) strain. In the 4xSuUR(+) strain, 60% of the weak points coincide with the localization of Polycomb group (PcG) proteins. At the IH region 89E1-4 (the Bithorax complex), a typical underreplication site, the degree of underreplication increases with four doses of SuUR(+) but the extent of the underreplicated region is the same as in wild type and corresponds to the region containing PcG binding sites. We conclude that the polytene chromosome regions known as IH are binding sites for SuUR protein and in many cases PcG silencing proteins. We propose that these stable silenced regions are late replicated and, in the presence of SuUR protein, become underreplicated.  相似文献   

5.
6.
Quantitative cytogenetical analysis has been used to study the synapsis of D. melanogaster neuroblast mitotic chromosomes from normal females, flies with heterozygous deletions, duplications or inversions in the heterochromatic regions of chromosome 2 and in triploid females. In all these genotypes chromocentric fusion of heterochromatic regions of heterologous chromosomes is observed. Eu- and heterochromatic regions of homologous chromosomes are intimately paired at the same time during the cell cycle. The structural rearrangements lead to reduced frequencies of chromocentric association as well as of homologous synapsis compared with the frequencies in the wild-type. The results obtained are discussed with respect to the general problem of the homologous interaction of chromosomes and the significance of heterochromatin for these processes.  相似文献   

7.
The DNA of three previously cloned interband regions (85D9/D10, 86B4/B6, and 61C7/C8) of Drosophila melanogaster polytene chromosomes has been tested for the presence of matrix association regions (MAR), using the in vitro matrix-binding assay of Cockerill and Garrard. MARs were found in all three interband regions under study. These results are discussed in frames of a model postulating that interband regions of polytene chromosomes correspond to the chromosomal DNA loop borders, which can be identified in interphase nuclei using biochemical approaches.  相似文献   

8.
In polytene chromosomes of D. melanogaster the heterochromatic pericentric regions are underreplicated (underrepresented). In this report, we analyze the effects of eu-heterochromatic rearrangements involving a cluster of the X-linked heterochromatic (Xh) Stellate repeats on the representation of these sequences in salivary gland polytene chromosomes. The discontinuous heterochromatic Stellate cluster contains specific restriction fragments that were mapped along the distal region of Xh. We found that transposition of a fragment of the Stellate cluster into euchromatin resulted in its replication in polytene chromosomes. Interestingly, only the Stellate repeats that remain within the pericentric Xh and are close to a new eu-heterochromatic boundary were replicated, strongly suggesting the existence of a spreading effect exerted by the adjacent euchromatin. Internal rearrangements of the distal Xh did not affect Stellate polytenization. We also demonstrated trans effects exerted by heterochromatic blocks on the replication of the rearranged heterochromatin; replication of transposed Stellate sequences was suppressed by a deletion of Xh and restored by addition of Y heterochromatin. This phenomenon is discussed in light of a possible role of heterochromatic proteins in the process of heterochromatin underrepresentation in polytene chromosomes.  相似文献   

9.
We have used a new approach involving in situ hybridisation and electron microscopy to establish ultrastructural homologies between polytene chromosome regions of Drosophila melanogaster and Drosophila subobscura. Twelve probes were chosen to cover all the chromosomal elements: the myospheroid gene, the collagen type IV gene, the collagen-like gene, the w26 homeobox gene, the β3 tubulin gene, the kinesin heavy chain gene, the tryptophan hydrolase gene, the Hsp82, Hsp22–26 and Hsp23–28, Hsp68, Hsp70 genes and the β unit of the F0–F1 ATPase gene. Most of these loci were previously undescribed in D. subobscura and imprecisely located in D. melanogaster. We have demonstrated here, by an ultrastructural analysis of each chromosomal region, that homologous genetic loci tend to show a similar ultrastructure in the two species. With a few exceptions, the structural homology extends to the chromosomal regions surrounding the loci. In some cases, however, no structurally recognisable homology can be seen either in the locus or in its flanking regions. Received: 15 December 1996; in revised form: 15 October 1997 / Accepted: 28 January 1998  相似文献   

10.
11.
12.
Whole-mounted polytene chromosomes were isolated from nuclei by microdissection in 60% acetic acid and analyzed by electron microscopy. Elementary chromosome fibers in the interchromomeric regions and individual chromomeres can be distinguished in polytene chromosomes at low levels of polyteny (26–27 chromatids). Elementary fibers in the interbands are oriented parallel to the axis of the polytene chromosome. Their number roughly corresponds to the expected level of polyteny. These fibers have an irregular beaded structure, 100–300 Å in diameter, and there is no apparent lateral association between them in the interchromomeric regions. Most bands, in contrast, form continuous structures crossing the entire width of the chromosome. Polytene chromosomes isolated in 2% or 10% acetic acid can be reversibly dispersed in a solution for chromatin spreading. The spread chromosomes consist of long uniform deoxyribonucleoprotein (DNP) fibers with a nucleosome structure. This supports the notion that continuous DNA molecules extend through the entire length of a polytene chromosome and that the nucleosome structure exists both in bands and interbands. Analysis of the band shape and of the fibrillar pattern in the interbands emphasizes that the polytene chromosome assumes a ribbonlike structure from which the more complex three-dimensional structure of the polytene chromosome at higher levels of polyteny develops.  相似文献   

13.
14.
Electron microscopical analysis of Drosophila polytene chromosomes   总被引:2,自引:0,他引:2  
Data are presented of electron microscopic (EM) analysis of consecutive developmental stages of Drosophila melanogaster complex puffs, formed as a result of simultaneous decondensation of several bands. EM mapping principles proposed by us permitted more exact determination of the banding patterns of 19 regions in which 31 puffs develop. It is shown that 20 of them develop as a result of synchronous decondensation of two bands, 7 of three and 4 of one band. Three cases of two-band puff formation when one or both bands undergo partial decondensation are described. In the 50CF, 62CE, 63F and 71CF regions puffing zones are located closely adjacent to each other but the decondensation of separate band groups occurs at different puff stages (PS). These data are interpreted as activation of independently regulated DNA sequences. The decondensation of two or three adjacent bands during formation of the majority of the puffs occurs simultaneously in the very first stages of their development. It demonstrates synchronous activation of the material of several bands presumably affected by a common inductor. Bands adjacent to puffing centres also lose their clarity as the puff develops, probably due to "passive" decondensation connected with puff growth. The morphological data obtained suggest a complex genetic organisation of many puffs.  相似文献   

15.
16.
An electron microscopic (EM) analysis was performed on regions of Drosophila melanogaster polytene chromosomes that contain inserted DNA segments of 19 and 8 kb. These segments had been inserted by P-elementmediated transformation. The 19 kb segment includes both the Drosophila hsp70 gene fused to the Escherichia coli -galactosidase gene and the rosy gene (Lis et al. 1983). This insert generates a new moderate-size band at the 9D4-9E1-2 region in polytene chromosomes. Upon heat shock, a puff originates from a portion of the new band. The 8 kb segment includes the Sgs7 and Sgs3 genes (Richards et al. 1983). This insert generates very diffuse thin bands that decondense at the stage of activation of the Sgs genes to produce wide interbands or small puffs. In all of the above cases, the insertion appears to occur at interband regions, and the genetically complex DNA segments that are inserted generate only a single detectable band.  相似文献   

17.
Replication studies on prophasic human Y chromosomes reveal 4 early replicating segments in the euchromatic portion. The distal segment of Yp replicates first. After replication of the euchromatic part is almost finished 3 to 5 segments start replication in the heterochromatic portion of Yq. These segments exhibit considerable intraindividual variation with respect to the origin of onset of replication. While the location of these bands — once they are differentiated — is fixed within one individual, the number of these bands varies interindividually.Dedicated to Professor Dr. Ulrich Wolf on the occasion of his 50the birthday  相似文献   

18.
Mapping of 16 regions of polytene chromosomes in which 18 one-band puffs develop was carried out with the use of electron microscopy (EM). In most cases a uniform decondensation of the whole band was observed. However, there were examples in which only a part of the band was activated (three puffs) or its right and left parts decondensed simultaneously (three puffs). Splitting of the band into two parts with their further decondensation was also found (one puff). This suggests structural and functional complexity of the bands. On the basis of the data obtained here and those published earlier, a classification of 52 puffs by the number of bands participating in their formation is given. Four classes numbering 22, 21, 7, 2 puffs, developing from 1, 2, 3 and 4 bands, respectively, are revealed. The data show that active chromosome regions are rather diverse in both the pattern of decondensation and expansion of the decondensed region, thus providing evidence of the informational complexity of the majority of active regions.  相似文献   

19.
20.
Nucleosome positioning signal (NPS) in heterochromatin is not uniform. We suggest the analysis of its heterogeneity by correlation with periodic function (analog of Furrier analysis). It was established the periodical repetition of the nucleosome clusters of large size in pericentric regions in a discontinuous manner. In the 3L pericentric region, it was revealed the domination of 78–85?kbp wavelength in the correlation coefficient profile and also strong presentation of 50?kbp signal. In further to centromere position, the 69?kbp value strongly dominates as well as the 50?kbp value in the closest proximity. In addition to the long wavelength signals, there are plenty of short wavelengths signals especially in the closest vicinity to centromere. In some positions throughout pericentric region of 2L chromosome, there are two sizes of repeated intermingled correlation signals (50, and 75?kbp) with dominating value of 75?kbp in proximity and 50?kbp distantly to centromere, the situation for 2R is analogous. Some genes with long introns support these quantitative characteristics of NPSs and to some extent their dominating character in each region. The characteristic repeat periods for 3L pericentric region coincide with the distances between heterochromatin epigenetic mark clusters and their distribution throughout this region for fly embryos, larvae, and some cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号