首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bombesin, acetylcholine, prostaglandins and somatostatin are all thought to be involved in the regulation of gastrin release and gastric secretion. We have studied the effects of low doses of atropine, 16-16(Me)2-prostaglandin E2 (PGE2) and somatostatin-14 on bombesin-stimulated gastrin release and gastric acid and pepsin secretion in conscious fistula dogs. For reference, synthetic gastrin G-17 was studied with and without somatostatin. Bombesin, in a dose-related manner, increased serum gastrin, which in turn stimulated gastric acid and pepsin secretion in a serum gastrin, concentration-dependent manner. Somatostatin inhibited gastrin release by bombesin as well as the secretory stimulation by G-17; the combination of sequential effects resulted in a marked inhibition of bombesin-stimulated gastric acid and pepsin secretion. PGE2 also strongly inhibited gastrin release and acid and pepsin secretion. Atropine had no significant effect on gastrin release, but greatly inhibited gastric secretion. Thus somatostatin and PGE2 inhibited at two sites, gastrin release and gastrin effects, while atropine affected only the latter.  相似文献   

2.
The purpose of these studies was to measure circulating gastrin and somatostatin concentrations during sham feeding in humans and to evaluate the effect of two doses of intravenous atropine on circulating concentrations of these peptides. Gastric acid and bicarbonate secretion and pulse rate were also measured. Sham feeding increased plasma gastrin concentrations by approximately 15 pg/ml but had no effect on plasma somatostatin-like immunoreactivity (SLI). A small dose of atropine (5 micrograms/kg) augmented plasma gastrin concentrations during sham feeding significantly (P less than 0.01), but did not affect plasma SLI. Atropine also significantly inhibited gastric acid secretion and gastric bicarbonate secretion (by 62% and 52%, respectively), but pulse rate was not affected. A larger dose of atropine (15 micrograms/kg intravenously) suppressed plasma gastrin concentrations significantly compared to the smaller 5 micrograms/kg atropine dose (P less than 0.02), so that plasma gastrin concentrations when 15 micrograms/kg atropine was given were not significantly different from those during the control study. 15 micrograms/kg atropine reduced gastric acid and bicarbonate secretion by 81% and 66%, respectively, and also increased pulse rate by 15 min-1. These studies indicate that small doses of atropine enhance vagally mediated gastrin release in humans, probably by blocking a cholinergic inhibitory pathway for gastrin release. Although the nature of this cholinergic inhibitory mechanism is unclear, we found no evidence to incriminate somatostatin. Our finding that the larger dose of atropine reduced serum gastrin concentrations compared with the smaller dose suggests that certain vagal-cholinergic pathways may facilitate gastrin release.  相似文献   

3.
The effects of PGE2 and PGD2 on gastric somatostatin and gastrin releases were investigated using the isolated perfused rat stomach. In the presence of 5.5 mM glucose, the infusion of PGE2 elicited a significant augmentation in somatostatin release, but suppressed gastrin secretion from the perfusate. On the other hand, PGD2 did not affect somatostatin release, although the gastrin secretion decreased significantly, the same as after PGE2 infusion. These results suggest that PGE2 and PGD2 may be important in the regulation of gastric endocrine function, but that PGD2 does not affect gastric somatostatin secretion.  相似文献   

4.
H Koop  R Arnold 《Regulatory peptides》1984,9(1-2):101-108
The influence of exogenous serotonin on the secretion of gastric somatostatin and gastrin was investigated under in vitro conditions using an isolated, vascularly perfused rat stomach preparation. Serotonin stimulated gastrin release, maximal effects were observed at 10(-6) M which increased gastrin levels by 78%; on the contrary, somatostatin secretion was inhibited (maximal inhibition of 56% at 10(-6) M). Changes in hormone secretion in response to serotonin were reversed by combined blockade of 5-HT1 and 5-HT2 receptors by methysergide and blockade of 5-HT2 receptors by ketanserin (10(-5) and 10(-6) M, respectively), and of cholinoreceptors by atropine (10(-5) M). It is concluded that in rats in vitro serotonin inhibits release of gastric somatostatin and stimulates gastrin secretion via specific serotonin receptors but muscarinic cholinergic receptors are also involved.  相似文献   

5.
The effect on gastrin and somatostatin release in sheep of stimulatory and inhibitory peptides and pharmacological agents was investigated using an in vitro preparation of ovine antral mucosa. Carbachol stimulated gastrin release in a dose-dependent manner but had no effect on somatostatin release. As atropine blocked the effect of carbachol, cholinergic agonists appear to stimulate gastrin secretion directly through muscarinic receptors on the G-cell and not by inhibition of somatostatin secretion. Both vasoactive-intestinal peptide (VIP) and gastric-inhibitory peptide (GIP) increased somatostatin release but did not inhibit basal gastrin secretion, although VIP was effective in reducing the gastrin response to Gastrin-releasing peptide (GRP). Porcine and human GRP were stimulatory to gastrin secretion in high doses but bombesin was without effect. The relative insensitivity to GRP (not of ovine origin) previously reported from intact sheep may be caused either by a high basal release of somatostatin or by the ovine GRP receptor or peptide differing from those of other mammalian species.  相似文献   

6.
Thyrotropin-releasing factor (TRF), somatostatin, and bombesin-like peptide are present in the brain and may be involved in central nervous system (CNS) control of visceral functions. All three peptides exert potent actions to modify animal thermoregulation. TRF and somatostatin or somatostatin analogs act within the brain to influence parasympathetic and sympathetic outflow resulting in changes of adrenal epinephrine secretion, gastric acid secretion, heart rate, and blood pressure. Bombesin acts within the brain to increase adrenal epinephrine secretion and to inhibit gastric acid secretion without influencing other sympathetic or parasympathetic activities. These peptides and others may be important physiological regulators of CNS information processing related to a variety of visceral systems.  相似文献   

7.
《Regulatory peptides》1987,17(5):269-276
The 27-amino acid peptide gastrin releasing peptide (GRP-(1–27)) was infused at 4 dose levels (0.01, 0.1, 1.0, and 10 nM) into the arterial line of the isolated perfused porcine pancreas. Infusions were performed at 3 different perfusate glucose levels (3.5, 5.0, and 8.0 mM) and at two levels of amino acids (5 and 15 mM). GRP-(1–27) stimulated insulin and pancreatic polypeptide secretion and inhibited somatostatin secretion in a dose-dependent manner. Glucagon secretion was unaffected by infusion of GRP under all circumstances. The effect of GRP-(1–27) on insulin secretion was enhanced with increasing perfusate glucose levels, whereas the effects upon somatostatin and pancreatic polypeptide secretion were independent of perfusate glucose levels. The responses to GRP were unaffected by elevation of the concentration of amino acids in the perfusate. The effects of GRP were unaffected by atropine at 10−6 M. The localization of GRP within the porcine pancreas, its release during electrical stimulation of the vagus nerve, and its potent effects upon pancreatic endocrine secretion make it conceiveable that the peptide participates in parasympathetic regulation of pancreatic endocrine secretion.  相似文献   

8.
The influence of rat calcitonin gene-related peptide (rCGRP) on the secretion of gastric somatostatin and gastrin was studied in vitro using the isolated, vascularly perfused rat stomach preparation. rCGRP stimulated somatostatin secretion dose-dependently reaching 3-fold stimulation at 1 microM. The kinetics of somatostatin response were characterized by a sharp increase in the initial phase of rCGRP perfusion followed by sustained elevated levels. Gastrin secretion was moderately suppressed at 1 nM to 100 nM CGRP. Somatostatin responses to half-maximal stimulation with 100 nM CGRP were not affected by concomitant perfusion of atropine, propranolol, and tetrodotoxin. It is concluded that increases in somatostatin release in response to CGRP are probably due to a direct effect on the gastric somatostatin-producing D-cell and may be important for the potent acid-inhibitory activity of CGRP.  相似文献   

9.
We studied the effect of the intravenous infusion of 16,16-dimethylprostaglandin E2 methyl ester (di-M-PGE2) and somatostatin on bombesin-stimulated gastric acid secretion, plasma gastrin and plasma pancreatic polypeptide in four chronic gastric fistula dogs. Bombesin-stimulated gastric acid secretion was significantly inhibited by somatostatin and virtually abolished by di-M-PGE2. Both agents caused significant, but indistinguishable inhibition of gastrin release (P less than 0.05). Bombesin-stimulated pancreatic polypeptide release was also significantly inhibited by both somatostatin and di-M-PGE2; the inhibitory effect of somatostatin was significantly greater than that of di-M-PGE2 (P less than 0.05). This study provides further evidence in support of the complex interrelationships between agents responsible for the modulation of gastrointestinal physiology.  相似文献   

10.
Somatostatin and gastrin release into the gastric lumen in rats   总被引:1,自引:0,他引:1  
Somatostatin and gastrin release into the gastric lumen was investigated in anaesthetized, vagally intact rats. The stomach was perfused at a flow rate of 0.5 mL.min-1. During perfusion with 0.1 M HCl or buffers of varying pH the somatostatin ans gastrin concentrations in the perfusate were less than 10 pg.mL -1 and approximately 30 pg.mL-1, respectively. Peptone caused a gastrin concentrations in the perfusate were less than 10 pg.mL-1 and approximately 30 pg.mL-1, respectively. Peptone caused a slight pH-independent increase in somatostatin release; gastrin release was unchanged despite an increase in serum gastrin from a basal of 15 +/- 4 to 155 +/- 34 pg.mL-1 during peptone stimulation. intravenous infusion of carbachol (1 microgram.kg-1.min-1) strongly stimulated luminal somatostatin and gastrin release (from 5 +/- 1 to 192 +/- 52 pg.mL-1 and from 27 +/- 5 to 198 +/- 41 pg.mL-1, respectively) during perfusion with 0.1 M HCl. Phosphate buffer perfusion at pH 7.5 abolished the cholinergic-mediated somatostatin release but the gastrin response was unaffected. It is suggested that changes of luminal hormone concentrations in the rat stomach do not reflect the secretory activity of the endocrine cells in the gastric mucosa.  相似文献   

11.
The influence of gamma-aminobutyric acid (GABA) on gastric somatostatin and gastrin release was studied using an isolated perfused rat stomach preparation. GABA dose-dependently inhibited somatostatin release (maximal inhibition of 44% at 10(-5)M GABA), whereas gastrin secretion was not affected. The GABA agonist muscimol led to a decrease in somatostatin release of similar magnitude. The GABA-induced changes were partially reversed by 10(-5)M atropine. Gastrin secretion was not influenced by either protocol. It is concluded that GABA as a putative neurotransmitter in the enteric nervous system is inhibitory to rat gastric somatostatin release in vitro via cholinergic pathways.  相似文献   

12.
Electrical stimulation of the nerve bundles around the hepatic artery and the portal vein activates both the sympathetic and parasympathetic liver nerves; the sympathetic effects clearly predominate. Parasympathetic effects were therefore studied in the rat liver perfused in situ by perivascular nerve stimulation in the presence of both an alpha- and a beta-blocker. In the presence of the alpha-blocker phentolamine and the beta-blocker propranolol all sympathetic nerve effects were prevented; the remaining parasympathetic stimulation had no influence on the basal glucose and lactate metabolism nor on the hemodynamics. Insulin alone, with both alpha- and beta-blockade, provoked a small, parasympathetic nerve stimulation in the presence of insulin a more pronounced enhancement of glucose utilization. In the presence of an alpha- and beta-blocker perivascular nerve stimulation antagonized the glucagon stimulated glucose release, but did not affect lactate exchange. The nerve effect was abolished by the parasympathetic antagonist atropine. Acetylcholine or insulin, with both an alpha- and beta-blocker present, mimicked the effects of nerve stimulation antagonizing the glucagon-stimulated glucose release. Nerve stimulation in the presence of insulin was more effective than either stimulus alone. The present results show that in rat liver stimulation of the parasympathetic hepatic nerves has direct effects on glucose metabolism synergistic with insulin and antagonistic to glucagon.  相似文献   

13.
The isolated stomach of rats was vascularly perfused to measure the secretion of gastrin, somatostatin (SLI) and bombesin-like immunoreactivity (BLI). The gastric lumen was perfused with saline pH 7 or pH 2, and electrical vagal stimulation was performed with 1 ms, 10 V and 2, 5 or 10 Hz, respectively. Atropine was added in concentrations of 10−9 or 10−7 M to evaluate the role of cholinergic mechanisms. In control experiments, vagal stimulation during luminal pH 2 elicited a significant increase of BLI secretion only at 10 Hz but not at 2 and 5 Hz. Somatostatin release was inhibited independent of the stimulation frequency employed. Gastrin secretion at 2 Hz was twice the secretion rates observed at 5 and 10 Hz, respectively. At luminal pH 7 BLI rose significantly at 5 and 10 Hz. SLI secrtion was decreased by all frequencies. Gastrin secretion at 2 and 5 Hz was twice as high as during stimulation with 10 Hz. Atropine at doses of 10−9, 10−8, 10−7 and 10−6 M had no effect on basal secretion of BLI, SLI and gastrin. At luminal pH 2, atropine increased dose-dependently the BLI response at 2 and 5 but not at 10 Hz. The decrease of SLI during 2 and 5 Hz but not 10 Hz was abolished by atropine 10−9 M. SLI was reversed to stimulation during atropine 10−7 M at all frequencies. The rise of gastrin at 2 Hz was reduced by 50%. At luminal pH 7, atropine had comparable effects with a few differences: the BLI response at 10 Hz was augmented and the gastrin response to 2 and 5 Hz was reduced. In conclusion the present data demonstrate a frequency and pH-dependent stimulation of BLI and gastrin release. The stimulation of BLI is predominantly due to atropine-insensitive mechanisms while muscarinic cholinergic mechanisms exert an inhibitory effect on BLI release during lower stimulation frequencies (2 and 5 Hz) independent of the intragastric pH and also during higher frequencies at neutral pH. Both, atropine sensitive and insensitive mechanisms are activated frequency dependent. The atropine-sensitive cholinergic mechanisms but not the noncholinergic mechanisms involved in regulation of G-cell function are pH and frequency dependent. Somatostatin is regulated largely independent of stimulation frequency and pH by at least two pathways involving cholinergic mechanisms of different sensitivity to atropine. These data suggest a highly differentiated regulation of BLI, gastrin and SLI secretion and the interaction between these systems awaits further elucidation.  相似文献   

14.
Ghrelin release in man depends on the macronutrient composition of the test meal. The mechanisms contributing to the differential regulation are largely unknown. To elucidate their potential role, glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP), insulin, gastrin and somatostatin were examined on isolated rat stomach ghrelin secretion, which offers the advantage of avoiding systemic interactions. Basal ghrelin secretion was in a range that did not permit to consistently evaluate inhibiting effects. Therefore, the effect of gastrointestinal hormones and insulin was analyzed during vagal prestimulation. GLP-1(7-36)amide 10(-8) and 10(-7) M decreased ghrelin secretion significantly. In contrast, GIP 10(-8) and 10(-7) M augmented not only prestimulated, but also basal ghrelin secretion (p<0.05). Insulin reduced ghrelin at 10(-10), 10(-8) and 10(-6) M (p<0.05). Both gastrin 10(-8) M and somatostatin 10(-6) M also significantly inhibited ghrelin secretion. These data demonstrate that GLP-1(7-36)amide, insulin, gastrin and somatostatin are potential candidates to contribute to the postprandially observed inhibition of ghrelin secretion with insulin being the most effective inhibitor in this isolated stomach model. GIP, on the other hand, could attenuate the postprandial decrease. Because protein-rich meals do not effectively stimulate GIP release, other as yet unknown intestinal factors must be responsible for protein-induced stimulation of ghrelin release.  相似文献   

15.
The effects of intravenous infusions of morphine, met-enkephalin and leu-enkephalin on gastric acid secretion, gastrin release and gastric emptying were investigated in four dogs with gastric cannulas stimulated by a liquid peptone meal. The actions of a potent opiate antagonist, naloxone, used alone or combined with opiates were also studied. Morphine, met-and leu-enkephalin decreased the fractional gastric emptying rate. Acid secretion was decreased by enkephalins and increased by high doses of morphine. Enkephalins and to a lesser degree morphine inhibited gastrin release during the first hour following the administration of the meal. Only leu-enkephalin decreases significantly the integrated gastrin response. Naloxone at the doses used antagonized partly or totally the effects of opiates on gastric emptying but not those on gastric secretion or gastrin release. Naloxone infused alone had no significant effect on the gastric functions tested. These studies indicate that in dogs stimulated by a liquid test meal, enkephalins inhibit gastric emptying, acid secretion and gastrin release. Morphine inhibits gastric emptying and gastrin release and enhances acid secretion.  相似文献   

16.
In the present study the release of bombesin-like immunoreactivity (BLI), somatostatin and gastrin was determined form the isolated perfused rat stomach. Gastric inhibitory polypeptide (GIP, 2 X 10(-9) M) had no effect on BLI while stimulating somatostatin and gastrin release. In these experiments the luminal pH of the stomach was kept at pH 7. Reduction of the luminal pH to 2 resulted in an inhibition of BLI secretion by GIP while gastrin release was abolished and somatostatin remained unaffected compared to luminal pH 7. Acetylcholine (10(-6) and 2 X 10(-6) M) elicited a dose-dependent stimulation of BLI secretion while gastrin was stimulated and somatostatin secretion suppressed independent of the administered dose. The present data demonstrate that release of bombesin-like immunoreactivity can be modulated by intestinal hormones and neurotransmitters and is integrated into the complex system of gastrointestinal neuroendocrine regulation.  相似文献   

17.
Somatostatin may inhibit gastric exocrine functions independent of blockade of gastrin secretion. In order to further investigate this suppressive effect, somatostatin derivatives were injected to cats bearing a cannulated gastric fistula under pentagastrin stimulation. Results showed that somatostatin-14 was more potent than somatostatin-28 in this particular model. Analogues with substituted residues exhibited a variable spectrum of actions on hormone release and gastric function. A cyclic pentapeptide was deprived of gastric or GH inhibitory properties whereas the related peptide with a benzyl-protecting group on Thr was only devoid of gastric effect. The octapeptide SMS 201-995 was described as a potent inhibitor of gastric secretion in comparison with natural somatostatin in rats and also in humans, but was unable to induce maximal suppression of acid output in the cat model. Differences in gastric effect of different derivatives could be explained on the basis of binding to a selective subset of receptors, since at least two binding sites have been identified in the stomach mucosa. Serial studies with short cyclic somatostatin should help to establish a clear relationship between peptide structure and inhibition of gastric secretion.  相似文献   

18.
Recently we have shown the release of bombesin-like immunoreactivity (BLI) from the isolated perfused rat stomach. In these experiments we have shown that BLI secretion is stimulated by acetylcholine. Gastric inhibitory peptide (GIP) exerts an inhibitory effect which is dependent on the intraluminal pH. The present study was designed to examine further the exact cholinergic mechanisms and to study the interaction between cholinergic and histaminergic mechanisms as well as the effect of the intraluminal pH. Acetylcholine elicited a dose-dependent increase in BLI and gastrin secretion (10(-6) M and 2 X 10(-6)M), whereas somatostatin release was suppressed at luminal pH 7. Blockade of muscarinic cholinergic receptors by atropine (10(-5)M) and nicotinic cholinergic receptors by hexamethonium (10(-5) M) abolished the effect of acetylcholine on all three peptides. Reduction of the intraluminal pH to 2 also abolished acetylcholine-induced stimulation of BLI and gastrin secretion and the inhibition of somatostatin secretion. Changes of intraluminal pH per se had no effect on the secretion of either peptide. Somatostatin (10(-7) M) reduced both BLI and gastrin secretion during stimulation with acetylcholine. The addition of the H2-receptor antagonist cimetidine (10(-5) M) abolished the effect of both doses of acetylcholine on BLI and somatostatin secretion and also the effect of the lower dose of acetylcholine (10(-6) M) on gastrin secretion during luminal pH 7. At luminal pH 2 cimetidine did not alter BLI and somatostatin secretion in response to acetylcholine, however, gastrin release was augmented in the presence of cimetidine. These data demonstrate that the effect of acetylcholine on BLI, gastrin, and somatostatin secretion is mediated by muscarinic and nicotinic cholinergic receptors and also by histamine H2-receptors. Somatostatin inhibits cholinergically induced BLI secretion. The cholinergic effects on BLI, somatostatin and gastrin secretion are abolished during an acidic intragastric pH. In this isolated perfused rat stomach model the inhibitory effect of intraluminal acid on gastrin secretion is, at least in part, mediated by H2-receptors. This suggests that the secretion of bombesin, a potential peptidergic neurotransmitter is modulated by neural, endocrine and local tissue factors and also by alterations of intragastric pH.  相似文献   

19.
Neural, hormonal, and paracrine regulation of gastrin and acid secretion.   总被引:5,自引:0,他引:5  
Physiological stimuli from inside and outside the stomach coverage on gastric effector neurons that are the primary regulators of acid secretion. The effector neurons comprise cholinergic neurons and two types of non-cholinergic neurons: bombesin/GRP and VIP neurons. The neurons act directly on target cells or indirectly by regulating release of the hormone, gastrin, the stimulatory paracrine amine, histamine, and the inhibitory paracrine peptide, somatostatin. In the antrum, cholinergic and bombesin/GRP neurons activated by intraluminal proteins stimulate gastrin secretion directly and, in the case of cholinergic neurons, indirectly by eliminating the inhibitory influence of somatostatin (disinhibition). In turn, gastrin acts on adjacent somatostatin cells to restore the secretion of somatostatin. The dual paracrine circuit activated by antral neurons determines the magnitude of gastrin secretion. Low-level distention of the antrum activates, preferentially, VIP neurons that stimulate somatostatin secretion and thus inhibit gastrin secretion. Higher levels of distention activate predominantly cholinergic neurons that suppress antral somatostatin secretion and thus stimulate gastrin secretion. In the fundus, cholinergic neurons activated by distention or proteins stimulate acid secretion directly and indirectly by eliminating the inhibitory influence of somatostatin. The same stimuli activate bombesin/GRP and VIP neurons that stimulate somatostatin secretion and thus attenuate acid secretion. In addition, gastrin and fundic somatostatin influence acid secretion directly and indirectly by regulating histamine release. Acid in the lumen stimulates somatostatin secretion, which attenuates acid secretion in the fundus and gastrin secretion in the antrum.  相似文献   

20.
The turnover of the epithelium of the gastrointestinal tract is regulated by a balance between cell multiplication and cell loss. We examined the effects of starvation on apoptosis in endocrine and other epithelial cells of rat antropyloric mucosa. Apoptosis was determined by the TUNEL reaction combined with immunocytochemical staining for gastrin and somatostatin. Apoptotic cell morphology was determined by bisbenzimide staining for DNA. Both gastrin and somatostatin cells showed a significantly lower apoptotic index than the general epithelium. This agrees with the longer turnover kinetics of gastric endocrine cells. On starvation, the apoptotic index of the general epithelium and of the gastrin but not of the somatostatin, cells increased significantly. This was prevented by the nitric oxide synthase (NOS) inhibitor L-NAME but not by its inactive stereoisomer D-NAME. Immunoreactive neuronal NOS was present in somatostatin cells, in nonendocrine cells predominating in the surface and pit epithelium, and in rare nerve fibers. Endothelial cell NOS was present in vessels, whereas the inducible isoform was barely detectable. Thus, endogenous NOS isoforms participate in regulating antropyloric epithelial apoptosis during starvation. The close paracrine relation between somatostatin cells and gastrin cells suggests that the former regulates apoptosis of the latter through release of NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号