首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The zero-stress state of a blood vessel has been extensively studied because it is the reference state for which all calculations of intramural stress and strain must be based. It has also been found to reflect nonuniformity in growth and remodeling in response to chemical or physical changes. The zero-stress state can be characterized by an opening angle, defined as the angle subtended by two radii connecting the midpoint of the inner wall. All prior studies documented the zero-stress state or opening angle with no regard to duration of the no-load state. Our hypotheses were that, given the viscoelastic properties of blood vessels, the zero-stress state may have "memory" of prior circumferential and axial loading, i.e., duration of the no-load state influences opening angle. To test these hypotheses, we considered ring pairs of porcine coronary arteries to examine the effect of duration in the no-load state after circumferential distension. Our results show a significant reduction in opening angle as duration of the no-load state increases, i.e., vessels that are reduced to the zero-stress state directly from the loaded state attain much larger opening angles at 30 min after the radial cut than rings that are in the no-load state for various durations. To examine the effect of axial loading, we found similar reductions in opening angle with duration in the no-load from the in situ state, albeit the effect was significantly smaller than that of circumferential loading. Hence, we found that the zero-stress state has memory of both circumferential and axial loading. These results are important for understanding viscoelastic properties of coronary arteries, interpretation of the enormous data on the opening angle and strain in the literature, and standardization of future measurements on the zero-stress state.  相似文献   

2.
The passive mechanical properties of blood vessel mainly stem from the interaction of collagen and elastin fibers, but vessel constriction is attributed to smooth muscle cell (SMC) contraction. Although the passive properties of coronary arteries have been well characterized, the active biaxial stress-strain relationship is not known. Here, we carry out biaxial (inflation and axial extension) mechanical tests in right coronary arteries that provide the active coronary stress-strain relationship in circumferential and axial directions. Based on the measurements, a biaxial active strain energy function is proposed to quantify the constitutive stress-strain relationship in the physiological range of loading. The strain energy is expressed as a Gauss error function in the physiological pressure range. In K(+)-induced vasoconstriction, the mean ± SE values of outer diameters at transmural pressure of 80 mmHg were 3.41 ± 0.17 and 3.28 ± 0.24 mm at axial stretch ratios of 1.3 and 1.5, respectively, which were significantly smaller than those in Ca(2+)-free-induced vasodilated state (i.e., 4.01 ± 0.16 and 3.75 ± 0.20 mm, respectively). The mean ± SE values of the inner and outer diameters in no-load state and the opening angles in zero-stress state were 1.69 ± 0.04 mm and 2.25 ± 0.08 mm and 126 ± 22°, respectively. The active stresses have a maximal value at the passive pressure of 80-100 mmHg and at the active pressure of 140-160 mmHg. Moreover, a mechanical analysis shows a significant reduction of mean stress and strain (averaged through the vessel wall). These findings have important implications for understanding SMC mechanics.  相似文献   

3.
S Q Liu  Y C Fung 《Biorheology》1992,29(5-6):443-457
Rheological properties of blood vessels are expected to change in disease process if the structure of the vessel wall changes. This is illustrated in diabetes, which can be induced in rat by a single injection of Streptozocin. One of the rheological properties of the blood vessel is the stress-strain relationship. The nonlinear stress-strain relationship of arteries is best expressed as derivations of a strain-energy function. In this paper, the stress-strain relations are measured and the coefficients in the strain energy function of arteries are determined for diabetic and control rats. The meaning of these coefficients are explained. The influence of diabetes on the elastic property of the arteries is expressed by the changes of these coefficients. A point of departure of the present paper from all other blood vessel papers published so far is that all strains used here are referred to the zero-stress state of the arteries, whereas all other papers refer strains to the no-load state. The existence of a large difference between the zero-stress state and no-load state of arteries is one of our recent findings. We have explained that the use of zero-stress state as a basis of strain measurements reveals that the in vivo circumferential stress distribution is quite uniform in the vessel wall at the homeostatic condition. It also makes the strain energy function much more accurate than those in which the residual stress is ignored. Using these new results, the stress and strain distribution in normal and diabetic arteries are presented.  相似文献   

4.
Zhao J  Lu X  Zhuang F  Gregersen H 《Biorheology》2000,37(5-6):385-400
Morphometric and passive biomechanical properties were studied in isolated segments of the thoracic and abdominal aorta, left common carotid artery, left femoral artery and the left pulmonary artery in 20 non-diabetic and 28 streptozotocin (STZ)-induced diabetic rats. The diabetic and non-diabetic rats were divided into groups living 1, 4, 8, and 12 weeks after the induction of diabetes (n = 7 for each diabetic group) or sham injection (n = 5 for each group). The mechanical test was performed as a distension experiment where the proximal end of the arterial segment was connected via a tube to the container used for applying pressures to the segment and the distal end was left free. The vessel diameter and length were obtained from digitized images of the arterial segments at pre-selected pressures and at no-load and zero-stress states. Circumferential and longitudinal stresses (force per area) and strains (deformation) were computed from the length, diameter and pressure data and from the zero-stress state data. The zero-stress state was obtained by cutting vessel rings radially causing the rings to open up into a sector. Diabetes was associated with pronounced morphometric changes, e.g., wall thickness. With respect to the biomechanical data, the opening angle increased and reached a plateau in 4 weeks after which it decreased again (p < 0.05). The opening angle was smallest in the thoracic aorta and largest in the pulmonary artery. Furthermore, it was found that the circumferential stiffness of the arteries studied increased with the duration of diabetes. In the longitudinal direction significant differences were found 8 weeks after injection of STZ in all arteries except the pulmonary artery. In the 12 weeks group, the femoral artery was stiffest in the circumferential direction whereas the thoracic aorta was stiffest in the longitudinal direction. The accumulated serum glucose level correlated with the arterial wall thickness and elastic modulus (correlation coefficient between 0.56 and 0.81).  相似文献   

5.
The objective of our study was to study the effect of danshen, a Chinese herbal medicine known to prevent hypertension, on the zero-stress state of rat's abdominal aorta. The zero-stress state of a blood vessel represents the release of residual stress on the vessel wall, and is the basic configuration of blood vessel affected solely by intrinsic parameters. At the in vivo state, the rat's abdominal aorta was subjected to blood pressure and flow and longitudinal stress. After dissecting from the abdominal aorta, the aortic specimens were cut into small rings at no-load state, in which the internal pressure, external pressure, and longitudinal stress in a short ring-shaped segment were all zero; by cutting radially to release the residual stress in the wall, the vessel ring opened up into a sector quickly, and the sector's configuration would not change at 20 min after cutting and was defined as the zero-stress state of a blood vessel, which was characterized by its residual strain and opening angle. Then aqueous extract of danshen prepared with methanol was added in the Krebs solution, and the changes of the aorta's zero-stress state were monitored by taking photos routinely for analysis to determine the opening angle and residual strain. Additionally, other sets of samples were tested in a Norepinephrine-Krebs solution as positive control or a Krebs solution as negative control, respectively. It was demonstrated that the zero-stress state of rat's abdominal aorta was affected by danshen extract and norepinephrine in two different patterns, while the Krebs solution did not have similar effects. The present work provides a new approach to study the anti-hypertension effect and mechanism of danshen.  相似文献   

6.
Recently, a novel linearized constitutive model with a new strain measure that absorbs the material nonlinearity was validated for arteries. In this study, the linearized arterial stress-strain relationship is implemented into a finite element method package, ANSYS, via the user subroutine USERMAT. The reference configuration is chosen to be the closed cylindrical tube (no-load state) rather than the open sector (zero-stress state). The residual strain is taken into account by analytic calculation and the incompressibility condition is enforced with Lagrange penalty method. Axisymmetric finite element analyses are conducted to demonstrate potential applications of this approach in a complex boundary value problem where angioplasty balloon interacts with the vessel wall. The model predictions of transmural circumferential and compressive radial stress distributions were also validated against an exponential-type Fung model, and the mean error was found to be within 6%.  相似文献   

7.
Zero-stress states of human pulmonary arteries and veins   总被引:1,自引:0,他引:1  
The zero-stressstates of the pulmonary arteries and veins fromorder3 toorder9 were determined in six normal humanlungs within 15 h postmortem. The zero-stress state of each vessel was obtained by cutting the vessel transversely into a series of short rings, then cutting each ring radially, which caused the ring to springopen into a sector. Each sector was characterized by its opening angle.The mean opening angle varied between 92 and 163° in the arterialtree and between 89 and 128° in the venous tree. There was atendency for opening angles to increase as the sizes of the arteriesand veins increased. We computed the residual strains based on theexperimental measurements and estimated the residual stresses accordingto Hooke's law. We found that the inner wall of a vessel at the statein which the internal pressure, external pressure, and longitudinalstress are all zero was under compression and the outer wall was intension, and that the magnitude of compressive stress was greater thanthe magnitude of tensile stress.

  相似文献   

8.
The stress-strain relationship is determined by the inherent mechanical properties of the intestinal wall, the geometric configurations, the loading conditions and the zero-stress state of the segment. The purpose of this project was to provide morphometric and biomechanical data for rat duodenum, jejunum and ileum. The circumferential strains were referenced to the zero-stress state. Large morphometric variations were found along the small intestine with an increase in the outer circumferential length and luminal area and a decrease in wall thickness in distal direction. The serosal residual strain was tensile and decreased in distal direction (P < 0.05). The mucosal residual strain was compressive and the absolute value decreased in distal direction (P < 0.001). The stress-strain experiments showed that the duodenum was stiffest. All segments were stiffest in longitudinal direction (P < 0.05). In conclusion, axial variation in morphometric and biomechanical properties was found in the small intestine. The zero-stress state must be considered in future biomechanical studies in the gastrointestinal tract.  相似文献   

9.
Intestinal stress-strain distributions are important determinants of intestinal function and are determined by the mechanical properties of the intestinal wall, the physiological loading conditions and the zero-stress state of the intestine. In this study the distribution of morphometric measures, residual circumferential strains and stress-strain relationships along the rat large intestine were determined in vitro. Segments from four parts of the large intestine were excised, closed at both ends, and inflated with pressures up to 2kPa. The outer diameter and length were measured. The zero-stress state was obtained by cutting rings of large intestine radially. The geometric configuration at the zero-stress state is of fundamental importance because it is the basic state with respect to which the physical stresses and strains are defined. The outer and inner circumferences, wall thickness and opening angle were measured from digitised images. Subsequently, residual strain and stress-strain distributions were calculated. The wall thickness and wall thickness-to-circumference ratio increased in the distal direction. The opening angle varied between approximately 40 and approximately 125 degrees with the highest values in the beginning of proximal colon (F=1.739, P<0.05). The residual strain at the inner surface was negative indicating that the mucosa-submucosal layers of the large intestine in no-load state are in compression. The four segments showed stress-strain distributions that were exponential. All segments were stiffer in longitudinal direction than in the circumferential direction (P<0.05). The transverse colon seemed stiffest both in the circumferential and longitudinal directions. In conclusion, significant variations were found in morphometric and biomechanical properties along the large intestine. The circumferential residual strains and passive elastic properties must be taken into account in studies of physiological problems in which the stress and strain are important, e.g. large intestinal bolus transport function.  相似文献   

10.
Mechanical properties of the adventitia are largely determined by the organization of collagen fibers. Measurements on the waviness and orientation of collagen, particularly at the zero-stress state, are necessary to relate the structural organization of collagen to the mechanical response of the adventitia. Using the fluorescence collagen marker CNA38-OG488 and confocal laser scanning microscopy, we imaged collagen fibers in the adventitia of rabbit common carotid arteries ex vivo. The arteries were cut open along their longitudinal axes to get the zero-stress state. We used semi-manual and automatic techniques to measure parameters related to the waviness and orientation of fibers. Our results showed that the straightness parameter (defined as the ratio between the distances of endpoints of a fiber to its length) was distributed with a beta distribution (mean value 0.72, variance 0.028) and did not depend on the mean angle orientation of fibers. Local angular density distributions revealed four axially symmetric families of fibers with mean directions of 0°, 90°, 43° and ?43°, with respect to the axial direction of the artery, and corresponding circular standard deviations of 40°, 47°, 37° and 37°. The distribution of local orientations was shifted to the circumferential direction when measured in arteries at the zero-load state (intact), as compared to arteries at the zero-stress state (cut-open). Information on collagen fiber waviness and orientation, such as obtained in this study, could be used to develop structural models of the adventitia, providing better means for analyzing and understanding the mechanical properties of vascular wall.  相似文献   

11.
The stress and strain in the vessel wall are important determinants of vascular physiology and pathophysiology. Vessels are constrained radially by the surrounding tissue. The hypothesis in this work is that the surrounding tissue takes up a considerable portion of the intravascular pressure and significantly reduces the wall strain and stress. Ten swine of either sex were used to test this hypothesis. An impedance catheter was inserted into the carotid or femoral artery, and after mechanical preconditioning pressure-cross-sectional area relations were obtained with the surrounding tissue intact and dissected away (untethered), respectively. The radial constraint of the surrounding tissue was quantified as an effective perivascular pressure on the outer surface of the vessel, which was estimated as 50% or more of the intravascular pressure. For carotid arteries at pressure of 100 mmHg, the circumferential wall stretch ratio in the intact state was approximately 20% lower than in the untethered state and the average circumferential stress was reduced by approximately 70%. For femoral arteries, the reductions were approximately 15% and 70%, respectively. These experimental data support the proposed hypothesis and suggest that in vitro and in vivo measurements of the mechanical properties of vessels must be interpreted with consideration of the constraint of the surrounding tissue.  相似文献   

12.
Elastic behavior of vascular wall, assuming the vessels to be ‘thick-walled’ and utilizing finite deformation theory, was investigated. It was found that canine carotid arterial wall is neither isotropic nor transversely isotropic. Previously, stress-strain relations were obtained for carotid arteries on the basis of membrane theory (Doyle and Dobrin, 1971). Since strain gradients across the wall are fairly steep, the applicability of such expressions, for pointwise evaluation of stress, required examination. The study indicated that these relationships between mean circumferential stress and mean extension ratio in the circumferential direction could be used to relate the specific circumferential stress value to the specific extension ratio at any designated point within the wall. From this analysis it was possible to evaluate circumferential and radial wall stresses. Both of these stresses are maximal at the inner surface of the intima. At this point the radial stress is equal to the transmural pressure and is compressive, while the circumferential stress is tensile and is 1·5 to 2 times the value of the mean stress, i.e. the product of transmural pressure and the ratio of internal radius-to-wall thickness. Both stresses are lowest at the outer edge of the adventitia. These stress distributions were considered with respect to the spacing of the elastic lamellae and the absence of discernible vasa vasora in the inner third of the wall.  相似文献   

13.
This paper introduces a new method, termed Twice Cutting, for obtaining the zero-stress states of cartilage and muscle of trachea. The method applied cuts at the two junctions of tracheal cartilage and muscle perpendicular to the tangent lines of cartilage at its tips. The cartilaginous and muscular opening angles are defined for the first time in Twice Cutting methods. Based on the analysis of cartilaginous and muscular geometric information in no-load and zero-stress states, it is found that there are compressive and tensile residual strains in the inner and outer walls of the cartilage respectively. Residual strains at the muscular inner wall of tracheal rings near bifurcation are negative, whereas those of other rings are positive, and residual strains at outer wall of all rings are positive. This phenomenon of tracheal muscle residual strains is different from those of vessel etc. The results also show that the absolute values of cartilaginous strains are considerably smaller than that of muscular ones, with the ratio being around 0.05. The values of all the tracheal parameters, including residual strains and opening angles, are reducing with the increasing value of tracheal rings’ position. So the consequences obtained in this paper not only indicate that the trachea is a non-uniform tissue along the circumferential and axial directions, but also reveal the differences between the trachea and other living tissues, such as vessel, esophagus. This is a basic research for further work, such as determining stress in trachea, to which the cartilaginous and muscular zero-stress states should be referred.  相似文献   

14.
Tortuous aneurysmal arteries are often associated with a higher risk of rupture but the mechanism remains unclear. The goal of this study was to analyze the buckling and post-buckling behaviors of aneurysmal arteries under pulsatile flow. To accomplish this goal, we analyzed the buckling behavior of model carotid and abdominal aorta with aneurysms by utilizing fluid-structure interaction (FSI) method with realistic waveforms boundary conditions. FSI simulations were done under steady-state and pulsatile flow for normal (1.5) and reduced (1.3) axial stretch ratios to investigate the influence of aneurysm, pulsatile lumen pressure and axial tension on stability. Our results indicated that aneurysmal artery buckled at the critical buckling pressure and its deflection nonlinearly increased with increasing lumen pressure. Buckling elevates the peak stress (up to 118%). The maximum aneurysm wall stress at pulsatile FSI flow was (29%) higher than under static pressure at the peak lumen pressure of 130 mmHg. Buckling results show an increase in lumen shear stress at the inner side of the maximum deflection. Vortex flow was dramatically enlarged with increasing lumen pressure and artery diameter. Aneurysmal arteries are more susceptible than normal arteries to mechanical instability which causes high stresses in the aneurysm wall that could lead to aneurysm rupture.  相似文献   

15.
Examination of changes occurring in the zero-stress state of an organ provides a way to study cellular growth in the organ due to change of physical stresses. The zero-stress state of the aorta is not a tube. It is a sector with an opening angle that varies with the location on the aorta and changes with cellular remodeling. Blood vessel remodeling can be induced by imposing a constriction on the abdominal aorta by a metal clip (aortic banding), which causes an increase of blood pressure, hypertrophy of the aortic wall, and large change of opening angle. The correlation of the opening angle with the blood vessel wall thickness and blood pressure changes in rat's aorta due to aortic banding is presented in this report. The opening angle changes daily following the aortic banding. Blood pressure rises in vessels of the upper body, but that in the lower body decreases at first and then rises to an asymptotic value. Blood vessel wall thickness increases in rough proportion to blood pressure. Vessel diameter changes also. But the most dramatic is the course of change of the zero-stress state. Typically, the time to reach 50 percent of asymptotic hypertrophy of blood vessel wall thickness is about 3-5 days. The corresponding time for blood pressure is about 7 days. The opening angle of the zero-stress state, however, increases rapidly at first, reaches a peak in about 2 to 4 days, then decreases gradually to a reduced asymptote. The exact values of the time constants depend on the location along the aortic tree. In general, the course of change of residual strain is very different from those of the blood pressure and the blood vessel wall thickness.  相似文献   

16.
Stress-modulated growth, residual stress, and vascular heterogeneity.   总被引:9,自引:0,他引:9  
A simple phenomenological model is used to study interrelations between material properties, growth-induced residual stresses, and opening angles in arteries. The artery is assumed to be a thick-walled tube composed of an orthotropic pseudoelastic material. In addition, the normal mature vessel is assumed to have uniform circumferential wall stress, which is achieved here via a mechanical growth law. Residual stresses are computed for three configurations: the unloaded intact artery, the artery after a single transmural cut, and the inner and outer rings of the artery created by combined radial and circumferential cuts. The results show that the magnitudes of the opening angles depend strongly on the heterogeneity of the material properties of the vessel wall and that multiple radial and circumferential cuts may be needed to relieve all residual stress. In addition, comparing computed opening angles with published experimental data for the bovine carotid artery suggests that the material properties change continuously across the vessel wall and that stress, not strain, correlates well with growth in arteries.  相似文献   

17.
Adventitial mechanics were studied on the basis of adventitial tube tests and associated stress analyses utilizing a thin-walled model. Inflation tests of 11 nonstenotic human femoral arteries (79.3 +/- 8.2 yr, means +/- SD) were performed during autopsy. Adventitial tubes were separated anatomically and underwent cyclic, quasistatic extension-inflation tests using physiological pressures and high pressures up to 100 kPa. Associated circumferential and axial stretches were typically <20%, indicating "adventitiosclerosis." Adventitias behaved nearly elastically for both loading domains, demonstrating high tensile strengths (>1 MPa). The anisotropic and strongly nonlinear mechanical responses were represented appropriately by two-dimensional Fung-type stored-energy functions. At physiological pressure (13.3 kPa), adventitias carry ~25% of the pressure load in situ, whereas their circumferential and axial stresses were similar to the total wall stresses (~50 kPa in both directions), supporting a "uniform stress hypothesis." At higher pressures, they became the mechanically predominant layer, carrying >50% of the pressure load. These significant load-carrying capabilities depended strongly on circumferential and axial in-vessel prestretches (mean values: 0.95 and 1.08). On the basis of these results, the mechanical role of the adventitia at physiological and hypertensive states and during balloon angioplasty was characterized.  相似文献   

18.
The oesophagus is subjected to large axial strains in vivo and the zero-stress state is not a closed cylinder but an open circular cylindrical sector. The closed cylinder with no external loads applied is called the no-load state and residual strain is the difference in strain between the no-load state and zero-stress state. To understand oesophageal physiology and pathophysiology, it is necessary to know the distribution of axial strain, the zero-stress state, the stress-strain relations of oesophageal tissue, and the changes of these states and relationships due to biological remodeling of the tissue under stress. This study is addressed to such biomechanical properties in normal rabbits. The oesophagi were marked on the surface in vivo, photographed, excised (in vitro state), photographed again, and sectioned into rings (no-load state) in an organ bath containing calcium-free Kreb's solution with dextran and EGTA added. The rings were cut radially to obtain the zero-stress state for the non-separated wall and further dissected to separate the muscle and submucosa layers. Equilibrium was awaited for 30min in each state and the specimens were photographed in no-load and the zero-stress states. The oesophageal length, circumferences, layer thicknesses and areas, and openings angle were measured from the digitised images. The oesophagus shortened axially by 35% after excision. The in vivo axial strain showed a significant variation with the highest values in the mid-oesophagus (p<0.001). Luminal area, circumferences, and wall and layer thicknesses and areas varied in axial direction (in all tests p<0.05). The residual strain was compressive at the mucosal surface and tensile at the serosal surface. The dissection studies demonstrated shear forces between the two layers in the non-separated wall in the no-load and zero-stress states. In conclusion, our data show significant axial variation in passive morphometric and biomechanical properties of the oesophagus. The oesophagus is a layered composite structure with nonlinear and anisotropic mechanical behaviour.  相似文献   

19.
Vascular cross-clamping is applied in many cardiovascular surgeries such as coronary bypass, aorta repair and valve procedures. Experimental studies have found that clamping of various degrees caused damage to arteries. This study examines the effects of popular clamps on vessel wall. Models of the aorta and clamp were created in Computer Assisted Design and Finite Element Analysis packages. The vessel wall was considered as a non-linear anisotropic material while the fluid was simulated as Newtonian with pulsatile flow. The clamp was applied through displacement time function. Fully coupled two-way solid–fluid interaction models were developed. It was found that the clamp design significantly affected the stresses in vessel wall. The clamp with a protrusion feature increased the overall Von Mises stress by about 60% and the compressive stress by more than 200%. Interestingly, when the protrusion clamp was applied, the Von Mises stress at the lumen (endothelium) side of artery wall was about twice that of the outer wall. This ratio was much higher than that of the plate-like clamp which was about 1.3. The flow reversal process was demonstrated during clamping. Vibrations, flow and wall shear stress oscillations were detected immediately before total vessel occlusion. The commonly used protrusion clamp increased stresses in vessel wall, especially the compressive stress. This design also significantly increased the stresses on endothelium, detrimental to vessel health. The present findings are relevant to surgical clamp design as well as the transient mechanical loading on the endothelium and potential injury. The deformation and stress analysis may provide valuable insights into the mode of tissue injury during cross-clamping.  相似文献   

20.
BACKGROUND: Robust techniques for characterizing the biomechanical properties of mouse pulmonary arteries will permit exciting gene-level hypotheses regarding pulmonary vascular disease to be tested in genetically engineered animals. In this paper, we present the first measurements of the biomechanical properties of mouse pulmonary arteries. METHOD OF APPROACH: In an isolated vessel perfusion system, transmural pressure, internal diameter and wall thickness were measured during inflation and deflation of mouse pulmonary arteries over low (5-40 mmHg) and high (10-120 mmHg) pressure ranges representing physiological pressures in the pulmonary and systemic circulations, respectively. RESULTS: During inflation, circumferential stress versus strain showed the nonlinear "J"-shape typical of arteries. Hudetz's incremental elastic modulus ranged from 27 +/- 13 kPa (n = 7) during low-pressure inflation to 2,700 +/- 1,700 kPa (n = 9) during high-pressure inflation. The low and high-pressure testing protocols yielded quantitatively indistinguishable stress-strain and modulus-strain results. Histology performed to assess the state of the tissue after mechanical testing showed intact medial and adventitial architecture with some loss of endothelium, suggesting that smooth muscle cell contractile strength could also be measured with these techniques. CONCLUSIONS: The measurement techniques described demonstrate the feasibility of quantifying mouse pulmonary artery biomechanical properties. Stress-strain behavior and incremental modulus values are presented for normal, healthy arteries over a wide pressure range. These techniques will be useful for investigations into biomechanical abnormalities in pulmonary vascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号