首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In human organism, the gaseous radical molecule nitric oxide (NO) is produced in various cells from L-arginine by the catalytic action of NO synthases (NOS). The metabolic fate of NO includes oxidation to nitrate by oxyhaemoglobin in red blood cells and autoxidation in haemoglobin-free media to nitrite. Nitrate and nitrite circulate in blood and are excreted in urine. The concentration of these NO metabolites in the circulation and in the urine can be used to measure NO synthesis in vivo under standardized low-nitrate diet. Circulating nitrite reflects constitutive endothelial NOS activity, whereas excretory nitrate indicates systemic NO production. Today, nitrite and nitrate can be measured in plasma, serum and urine of humans by various analytical methods based on different analytical principles, such as colorimetry, spectrophotometry, fluorescence, chemiluminescence, gas and liquid chromatography, electrophoresis and mass spectrometry. The aim of the present article is to give an overview of the most significant currently used quantitative methods of analysis of nitrite and nitrate in human biological fluids, namely plasma and urine. With minor exception, measurement of nitrite and nitrate by these methods requires method-dependent chemical conversion of these anions. Therefore, the underlying mechanisms and principles of these methods are also discussed. Despite the chemical simplicity of nitrite and nitrate, accurate and interference-free quantification of nitrite and nitrate in biological fluids as indicators of NO synthesis may be difficult. Thus, problems associated with dietary and laboratory ubiquity of these anions and other preanalytical and analytical factors are addressed. Eventually, the important issue of quality control, the use of commercially available assay kits, and the value of the mass spectrometry methodology in this area are outlined.  相似文献   

2.
Valproyl taurinamides are a novel group of compounds that possess anticonvulsant activity. In this study a gas chromatographic micromethod was developed for the quantification of selected valproyl taurinamides and some of their metabolites in biological samples. Valproyl taurinamide (VTD), N-methyl valproyl taurinamide (M-VTD), N,N-dimethyl valproyl taurinamide (DM-VTD) and N-isopropyl valproyl taurinamide (I-VTD) were analyzed in mouse and dog plasma and in dog urine using gas chromatography. Flame ionization detection and mass spectrometric detection were compared. The plasma samples were prepared by solid-phase extraction using C(18) cartridges. The urine samples were prepared by liquid-liquid extraction. The sample volume used was 100 microl of dog plasma, 50 microl of mouse plasma and 20 microl of dog or mouse urine. The quantification range of the method was 1.5-50 mg/l in dog plasma (VTD only), 2.5-250 mg/l in mouse plasma (0.7-90 pmol injected) and 0.04-2 mg/ml in dog urine (VTD only). The inter-day precision in plasma and urine samples was around 10% for all quantified concentrations except LOQ (15-20%). The accuracy for all four compounds was between 90 and 110% within the entire concentration range. The developed method was suitable for quantification of a series of CNS-active valproyl taurineamide derivatives in biological samples at relevant in vivo concentrations.  相似文献   

3.
Prostaglandins (PGs) derived from the enzymatic oxidation of arachidonic acid by the cyclooxygenases (COXs) are potent lipid mediators involved in human physiology and pathophysiology. Structurally similar compounds, the isoprostanes (IsoPs), are generated from the free radical-catalyzed oxidation of arachidonic acid independent of COX. IsoPs exhibit significant bioactivity and play a role in the pathogenesis of diseases associated with oxidant injury. As one of the major PGs, prostaglandin F(2alpha) (PGF(2alpha)) is present in human urine in significant concentrations and is presumed to be derived from COX activity. We determined, however, that levels of putative PGF(2alpha) in urine cannot be suppressed by nonsteroidal anti-inflammatory agents, suggesting that it is generated via another mechanism(s). An important difference between COX-derived PGF(2alpha) and the IsoPs is that the former is an optically pure compound, whereas IsoPs are racemic. Utilizing a rodent model of oxidative stress, we now show that significant amounts of compounds identical in all respects to PGF(2alpha) and its enantiomer, ent-PGF(2alpha), are formed in equal amounts esterified in tissue phospholipids, suggesting that these compounds are derived via the IsoP pathway. Further, employing liquid chromatography/mass spectrometry, the vast majority of putative PGF(2alpha) in human urine is derived from the free radical-initiated peroxidation of arachidonate independent of COX and is composed of PGF(2alpha) and its enantiomer, although the latter compound is approximately 2-fold more abundant. Thus, quantification of urinary PGF(2alpha) actually reflects oxidative stress status as opposed to COX activity. Indeed, levels of this compound are elevated in urine from cigarette smokers and in humans with hypercholesterolemia, two conditions associated with oxidant stress. The elucidation that urinary PGF(2alpha) in humans is derived from the IsoP pathway has implications regarding PG formation and inhibition in vivo.  相似文献   

4.
Prostaglandin F(2alpha) (PGF(2alpha)) is a major stable prostaglandin formed in vivo in physiological and pathophysiological situations and has mainly potent vasoconstrictive and pro-inflammatory properties. PGF(2alpha) is now used as an indicator of acute and chronic inflammation in human clinical settings but the extent of daily variation of PGF(2alpha)in vivo in healthy humans is unknown. We quantified levels of the PGF(2alpha) metabolite 15-keto-dihydro-PGF(2alpha) in 10 healthy males and females in spot urine samples during the day (including morning urine sample) and in 24-h urine during the same day. The intra-day coefficient of variation was 20.9%. However, the total mean value of 15-keto-dihydro-PGF(2alpha) in urine collected in the morning did not significantly differ from the mean level of 15-keto-dihydro-PGF(2alpha) in the 24-h urine samples in the 10 subjects. 15-Keto-dihydro-PGF(2alpha) levels in morning urine showed a positive linear correlation with levels of 15-keto-dihydro-PGF(2alpha) in 24-h urine (R=0.72, P<0.05). In conclusion, formation of PGF(2alpha) shows a biological variation within the day in healthy humans which should not be overlooked when planning a clinical study. Single morning urine samples can be used as an alternative to 24-h urine collections for quantification of PGF(2alpha) formation to simplify the sampling regime in larger clinical studies.  相似文献   

5.
A modified gas chromatographic—mass spectrometric (GC—MS) assay has been developed to quantitate metoclopramide (MCP) and two of its metabolites [monodeethylated-MCP (mdMCP), dideethylated-MCP (ddMCP)] in the plasma, bile and urine of sheep. The heptafluorobutyryl derivatives of the compounds were formed and quantitated using electron-impact ionization in the selected-ion monitoring mode (MCP, m/z 86, 380; mdMCP, m/z 380 and ddMCP, m/z 380). No interference was observed from endogenous compounds following the extraction of various biological fluids obtained from non-pregnant sheep. Sample preparation has been simplified and the method is more selective and sensitive (2 fold) than our previous assay using electron-capture detection. The limit of quantitation for MCP, mdMCP and ddMCP was 1 ng/ml in plasma, urine and bile, requiring 0.5 ml of sample. This represents 2.5 pg of the analytes at the detector. The standard curves were linear over a working range of 1–40 ng/ml. Absolute recoveries in plasma ranged from 76.5–94.7%, 79.2–96.8%, 80.3–102.2% for MCP, mdMCP and ddMCP, respectively. In urine, recoveries ranged from 56.5–87.8%, 61.5–87.5%, 62.6–90.2% for MCP, mdMCP and ddMCP, respectively. Recoveries in bile ranged from 83.5–100.9%, 78.5–90.5%, 66.9–79.2% for MCP, mdMCP and ddMCP, respectively. Overall intra-day precision ranged from 2.9% for MCP in plasma to 12.6% for mdMCP in bile. Overall inter-day precision ranged from 5.9% for MCP in urine to 14.9% for ddMCP in bile. Bias was the greatest at the 1 ng/ml concentration in all biological fluids ranging from a low of 2.4% for mdMCP in plasma to a high of 11.9% for ddMCP in urine. Applicability of the assay for pharmacokinetic studies of MCP, mdMCP and ddMCP in the plasma and urine of a non-pregnant ewe is demonstrated.  相似文献   

6.
Tetrahydroisoquinolines (TIQs) might be formed endogenously and can act centrally to promote a mechanism governing alcohol drinking behaviour. The possibility that biosynthesis occurs through a stereospecific enzymatic reaction is considered. Several TIQs were transformed into diastereomers by a two-step derivatization with N-methyl-N-trimethylsilyltrifluoracetamide and R-(−)-2-phenylbutyrylic acid and were analyzed by gas chromatography-mass spectrometry (GC-MS). High resolution of the TIQ enantiomers was achieved. This method was applied to the quantification of the enantiomers of salsolinol (SAL) in urine and plasma of healthy humans. Deuterated SAL was used as the internal standard. SAL was extracted from biological material using phenulboronic Deuterated SAL was used as the internal standard. SAL was extracted from biological material using phenylboronic phase cartridges and transformed into diastereomers. The sensitivity and specificity of the assay permit the determination of the enantiomeric composition of SAL in plasma and urine. The limit of quantification was found to be 100 pg/ml for each enantiomer. The described method has the advantage that optimal resolution of the SAL enantiomers without peak overlapping between analyte and other compounds can be achieved. Contrary to other findings, our GC-MS studies have demonstrated that endogenously formed SAL is racemic in plasma as well as in urine of healthy subjects.  相似文献   

7.
PGD2 undergoes extensive isomerization in vivo followed by metabolism by 11-ketoreductase to yield a family of biologically active isomeric PGF2 compounds, including 9, alpha 11 beta-PGF2. Because immunologically activated human mast cells produce substantial quantities of PGD2 and eosinophils accumulate around mast cells at sites of immediate hypersensitivity reactions, the ability of eosinophils to metabolize PGD2 was investigated. Purified human circulating eosinophils from four different donors transformed PGD2 to 9, alpha 11 beta-PGF2 and 12-epi-9 alpha, 11 beta-PGF2 in a time- and concentration-dependent manner. The formation of these compounds increased rapidly during the first 30 min of incubation of eosinophils with PGD2 and tended to plateau at approximately 2 h. Detection and quantification of the formation of 9 beta,11 beta-PGF2 and its 12-epi isomer was accomplished by a negative ion chemical ionization gas chromatography/mass spectrometry assay. On one occasion, eosinophils from one donor also transformed PGD2 to two additional isomeric PGF2 compounds, the stereochemical structures of which were not identified. The ability of eosinophils to produce PGD2 was then investigated. After stimulation with 2 microM A23187, the major cyclooxygenase product formed was thromboxane B2 (2247 pg/10(6) eosinophils) whereas only small quantities of PGD2 were produced (50 pg/10(6) eosinophils). Inasmuch as PGF2 compounds can exert biologic actions that differ from those of PGD2, this ability of eosinophils to transform PGD2 to PGF2 compounds could alter the local biologic effects of PGD2 released from adjacent mast cells and thus may represent a physiologically relevant mast cell-eosinophil interaction.  相似文献   

8.
Measurement of nitrotyrosine levels in biological fluids can serve as a biomarker for oxidative/nitrative damage arising from formation of reactive nitrogen species, including peroxynitrite. Peroxynitrite is formed by the reaction of the superoxide radical (O2.-) with the nitric oxide radical (.NO) that is generated by nitric oxide synthase (NOS). This article describes an immunoaffinity liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to measure 3-nitrotyrosine at very low (picomolar) levels. Incorporation of a pronase digestion step prior to the immunoaffinity LC-MS/MS allowed for measuring not only free amino acid but also protein 3-nitrotyrosine in biological fluids. The use of an in-line antibody column allowed for increased specificity as compared with previously reported assays. The assay is linear over a range of 5 to 500 pg/ml (0.022-2.20 nM, r(2)=0.9987), with the lower detection limit being 5 pg/ml. In addition to its increased sensitivity and specificity, this assay showed great nitrotyrosine recovery from biological fluids when either nitrotyrosine or nitrotyrosine-containing peptides were added exogenously. The utility of this assay for nitrotyrosine as a clinically translatable biomarker was demonstrated by quantifying both free and total nitrotyrosine levels in various biological fluids, including urine, plasma, serum, cerebrospinal fluid (CSF), and synovial fluid (SF) from both preclinical species and human subjects. Thus, whether in an animal model of human disease or in a clinical setting, the quantification of nitrotyrosine levels should provide support for NOS-driven pathology and its blockade following therapeutic intervention.  相似文献   

9.
A specific and sensitive gas chromatographic/mass spectrometric method was developed and validated for the determination of the antidepressant levoprotiline in blood, plasma and urine and the simultaneous determination of levoprotiline and its desmethyl metabolite in urine. Deuterium-labelled analogues were used as internal standards. The compounds were isolated from the biological fluids by liquid-liquid extraction under basic conditions. Following derivatization with perfluoropropionic anhydride, the samples were analysed by capillary column gas chromatography/electron impact mass spectrometry with selected ion monitoring. The analysis of spiked samples demonstrated the high accuracy and precision of the method. Blood concentrations of levoprotiline down to 0.7 nmol l-1 (1 ml used for analysis) could be quantified with a coefficient of variation of 10% or less. The method is suitable for use in pharmacokinetic and bioavailability studies of levoprotiline in humans.  相似文献   

10.
A method for the quantitative determination of chlorpromazine and five of its major metabolites in a single sample of biological fluid in the ng/ml range has been developed utilizing gas chromatography/mass spectrometry with selected ion recording. The assay is highly specific and quantification is accomplished by an inverse stable isotope dilution technique, using deuterium-labeled variants of the compounds as internal standards. In this way the concentrations of chlorpromazine and five of its major metabolites (the sulfoxide, the N-oxide, the monodemethylated, the didemethylated, and the 7-hydroxylated compounds) can be determined in biological fluids. Levels in humans have been measured both in plasma and in red blood cells and are compared to those found in related in vitro studies.  相似文献   

11.
We have developed a method for the simultaneous estimation of the levels of the prostanoids 6-keto prostaglandin (PG) Flalpha, PGB2, PGD2, PGE2, PGF2(alpha), PGJ2, and thromboxane (TX) B2 in blood- or serum-containing medium using liquid chromatography-tandem mass spectrometry. These prostanoids and their deuterium derivatives, which were used as internal standards, were subjected to solid-phase extraction using Empore C18 HD disk cartridges and analyzed in the selected reaction-monitoring mode. A linear response curve starting at 10 pg of prostanoid/tube was observed for each prostanoid. The accuracy of the method was demonstrated with samples containing known amounts of the prostanoids. Furthermore, we used this method to analyze the prostanoids produced in mouse bone marrow-derived mast cells stimulated with arachidonic acid, which resulted in the production of PGD2, PGE2, PGF2alpha, and TXB2. The results suggest that this simultaneous quantification method is useful for the analysis of the production of biomedically important prostanoids.  相似文献   

12.
In human organism, the gaseous radical molecule nitric oxide (NO) is produced in various cells from l-arginine by the catalytic action of NO synthases (NOS). The metabolic fate of NO includes oxidation to nitrate by oxyhaemoglobin in red blood cells and autoxidation in haemoglobin-free media to nitrite. Nitrate and nitrite circulate in blood and are excreted in urine. The concentration of these NO metabolites in the circulation and in the urine can be used to measure NO synthesis in vivo under standardized low-nitrate diet. Circulating nitrite reflects consitutive endothelial NOS activity, whereas excretory nitrate indicates systemic NO production. Today, nitrite and nitrate can be measured in plasma, serum and urine of humans by various analytical methods based on different analytical principles, such as colorimetry, spectrophotometry, fluorescence, chemiluminescence, gas and liquid chromatography, electrophoresis and mass spectrometry. The aim of the present article is to give an overview of the most significant currently used quantitative methods of analysis of nitrite and nitrate in human biological fluids, namely plasma and urine. With minor exception, measurement of nitrite and nitrate by these methods requires method-dependent chemical conversion of these anions. Therefore, the underlying mechanisms and principles of these methods are also discussed. Despite the chemical simplicity of nitrite and nitrate, accurate and interference-free quantification of nitrite and nitrate in biological fluids as indicators of NO synthesis may be difficult. Thus, problems associated with dietary and laboratory ubiquity of these anions and other preanalytical and analytical factors are addressed. Eventually, the important issue of quality control, the use of commercially available assay kits, and the value of the mass spectrometry methodology in this area are outlined.  相似文献   

13.
The metabolism of PGF2α in cattle results initially in the formation of 15-keto-13,14-dihydro-PGF2α (15-ketodihydro-PGF2α) and later the 11-ketotetranor PGF metabolites. Both types of metabolites appear in the peripheral circulation and finally the 11-ketotetranor PGF metabolites are found in large quantities in the urine in a species-related pattern. Several approaches can be made to the quantitative analysis of PGF2α release during reproductive studies. First, assay of the 15-ketodihydro-PGF2α metabolite in the peripheral circulation; second, analysis of the longer-lived 11-ketotetranor PGF metabolites in the peripheral circulation; and finally analysis of the latter metabolites in the urine. The antibodies used in radioimmunoassays of both types of metabolites of PGF2α were found to be specific and the results agree well with those obtained earlier by mass spectrometric analysis. The assay of 11-ketotetranor PGF metabolites was used to study the excretion of urinary metabolites in the cow after i.v. infusion of PGF2α and also during the normal estrous cycle and early pregnancy. These studies suggest that 11-ketotetranor PGF metabolites in cow urine serve as a good parameter of PGF2α release, especially for long–term studies, but when a precise pattern of PGF2α release is required, measurement of 15-ketodihydro-PGF2α levels in frequently collected plasma samples is preferable.  相似文献   

14.
The cyclopentenone isoprostanes (A(2)/J(2)-IsoPs) are formed in significant amounts in humans and rodents esterified in tissue phospholipids. Nonetheless, they have not been detected unesterified in the free form, presumably because of their marked reactivity. A(2)/J(2)-IsoPs, similar to other electrophilic lipids such as 15-deoxy-Delta(12,14)-prostaglandin J(2) and 4-hydroxynonenal, contain a highly reactive alpha,beta-unsaturated carbonyl, which allows these compounds to react with thiol-containing biomolecules to produce a range of biological effects. We sought to identify and characterize in rats the major urinary metabolite of 15-A(2t)-IsoP, one of the most abundant A(2)-IsoPs produced in vivo, in order to develop a specific biomarker that can be used to quantify the in vivo production of these molecules. Following intravenous administration of 15-A(2t)-IsoP containing small amounts of [(3)H(4)]15-A(2t)-IsoP, 80% of the radioactivity excreted in the urine remained in aqueous solution after extraction with organic solvents, indicating the formation of a polar conjugate(s). Using high pressure liquid chromatography/mass spectrometry, the major urinary metabolite of 15-A(2t)-IsoP was determined to be the mercapturic acid sulfoxide conjugate in which the carbonyl at C9 was reduced to an alcohol. The structure was confirmed by direct comparison to a synthesized standard and via various chemical derivatizations. In addition, this metabolite was found to be formed in significant quantities in urine from rats exposed to an oxidant stress. The identification of this metabolite combined with the finding that these metabolites are produced in in vivo settings of oxidant stress makes it possible to use this method to quantify, for the first time, the in vivo production of cyclopentenone prostanoids.  相似文献   

15.
(+)-Catechin and (-)-epicatechin are known to be biologically effective antioxidants present in the human diet, particularly in wine and tea. We studied the metabolism of these compounds to elucidate the truly active structures in biological fluids by their oral administration to rats. Without any treatment with beta-glucuronidase and sulfatase, a pair of metabolites were detected at much higher concentrations in the plasma, bile, and urine than the originally ingested compounds. Each major metabolite found in the plasma at the highest concentration was excreted in both the bile and urine, and was purified from urine. Their chemical structures were established to be (+)-catechin 5-O-beta-glucuronide and (-)-epicatechin 5-O-beta-glucuronide by MS and NMR analyses. These glucuronide conjugates exhibited high antioxidative activities as superoxide anion radical scavengers like their parent compounds. It is concluded that (+)-catechin 5-O-beta-glucuronide and (-)-epicatechin 5-O-beta-glucuronide are the biologically active in vivo structures of the ingested polyphenolic antioxidants.  相似文献   

16.
The use of mass spectrometric immunoassay (MSIA) in analyzing beta-2-microglobulin (beta(2)m) present in human biological fluids (tears, saliva, plasma, and urine) is described. Pipettor tips containing porous affinity frits, derivatized with polyclonal anti-beta(2)m immunoglobulin, were manufactured and used to selectively isolate and concentrate beta(2)m from the biofluids, after which matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to detect beta(2)m unambiguously at its characteristic molecular mass. The affinity tips were found rapid to use, requiring approximately 15 min per analysis, and exhibited low nonspecific binding properties that yielded essentially interference-free analyses. The beta(2)m MSIA was made quantitative by inclusion of an internal standard into the analysis for signal normalization. The resulting assay had a Linear dynamic range (R(2) = 0.983) covering a beta(2)m concentration range of 0.010-1.0 mg/L with a standard error of approximately 5%. In application, urine samples from healthy individuals were screened and compared with sample from an individual suffering from renal infection. Results indicated an approximately 30-fold increase in beta(2)m levels in samples taken from the infected individual. During the screening, MSIA was able to distinguish between wild-type and glycosylated forms of beta(2)m, which made possible the accurate quantification of wild-type beta(2)m without interference from glycosylated versions of the protein. These results demonstrate a new approach to the rapid and accurate detection/quantification of beta(2)m present in biological fluids.  相似文献   

17.
Free radical-catalysed oxidation of arachidonic acid esterified to lipids leads to the formation of the F(2)-isoprostane family which may theoretically comprise up to 64 isomers. We have previously shown that the combination of TLC and GC-tandem MS (referred to as method A) allows for the accurate and highly specific quantification of 8-iso-PGF(2alpha) (iPF(2alpha)-III, 15-F(2t)-IsoP) in human urine. Immunoaffinity column chromatography (IAC) with immobilized antibodies raised against 8-iso-PGF(2alpha) (i.e. 15(S)-8-iso-PGF(2alpha)) has been shown by others to be highly selective and specific for this 8-iso-PGF(2alpha) isomer when quantified by GC-MS. In the present study we established IAC for urinary 8-iso-PGF(2alpha) for subsequent quantification by GC-tandem MS (referred to as method B). This method was fully validated and found to be highly accurate and precise for urinary 15(S)-8-iso-PGF(2alpha). 8-iso-PGF(2alpha) was measured in urine of 10 young healthy humans by both methods. 8-iso-PGF(2alpha) was determined to be 291+/-102 pg/mg creatinine by method A and 141+/-41 pg/mg creatinine by method B. Analysis of the combined through and wash phases of the IAC step, i.e. of the unretained compounds, by method A showed the presence of non-immunoreactive 8-iso-PGF(2alpha) at 128+/-55 pg/mg creatinine. This finding suggests that urinary 8-iso-PGF(2alpha) is heterogenous, with 15(S)-8-iso-PGF(2alpha) contributing by approximately 50%. PGF(2alpha) and other 8-iso-PGF(2alpha) isomers including 15(R)-8-iso-PGF(2alpha) are not IAC-immunoreactive and are chromatographically separated from 15(S)-8-iso-PGF(2alpha). We assume that ent-15(S)-8-iso-PGF(2alpha) is also contributing by approximately 50% to urinary 8-iso-PGF(2alpha). This finding may have methodological, mechanistic and clinical implications.  相似文献   

18.
A high-performance liquid chromatographic method has been developed for the analysis of the novel antiparasitic agent, licochalcone A (Lica), and three of its glucuronic acid conjugates in plasma and urine. The high-performance liquid chromatography assay was performed using gradient elution and UV detection at 360 nm. The proposed technique is selective, reliable and sensitive. The limits of quantification for Lica are 0.2 μg/ml in plasma and 0.14 μg/ml in urine, 1.2 μg/ml for the 4′-glucuronide in plasma and 1.4 μg/ml in urine, and 2.0 μg/ml for the 4-glucuronide in plasma and 3.2 μg/ml in urine. The reproducibility of the analytical method according to the statistical coefficients is 7% or below. The accuracy of the method is good, that is, the relative error is below 10%. The stability of Lica and its glucuronides in urine and plasma samples has been assessed during storage in the autosampler and freezer. The applicability of the assay for determining Lica and its intact glucuronide conjugates in biological fluids was shown using a single dose study in rat.  相似文献   

19.
A high-pressure liquid chromatographic assay for uric acid in biological fluids has been developed. Blood uric acid can be analyzed in as little as 20 μl of plasma. The mean and range of plasma uric acid concentrations in healthy adults determined by high-pressure liquid chromatography were similar to these obtained by enzymatic analysis. One of the advantages of the present method is that naturally occurring metabolites in biological fluids or drugs do not interfere with the analysis. Data are presented for blood and urine specimens obtained from mice fed a known uricase inhibitor, potassium oxonate. Comparisons are made between the present method and methods previously employed for uric acid determination.  相似文献   

20.
A specific assay method for radiolabelled digoxin and its known apolar metabolites in plasma, urine and saliva was developed. The assay permits the delineation of the pharmacokinetics of digoxin and its metabolites after single-dose administration of the drug to humans. Column chromatographic and solvent extraction procedures were used for the separation of apolar and polar compounds. Thin-layer chromatography was applied for the individual and specific assessment of digoxin and its apolar metabolites. Apolar and polar standards were used for quantitative assessments of all the procedures used. Accuracy and precision of the assay developed were evaluated in plasma, urine and saliva using biological samples spiked with known amounts of standards and by measuring replicates of biological samples obtained from pharmacokinetic studies with digoxin administration to humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号