首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Resveratrol, a plant phenolic compound, is found in grapes and red wine, but is not widely distributed in other common food sources. The pathway for resveratrol biosynthesis is well characterized. Metabolic engineering of this compound has been achieved in tomato plants ( Lycopersicon esculentum Mill.) in order to improve their nutritional value. Tomato plants synthesizing resveratrol were obtained via the heterologous expression of a grape ( Vitis vinifera L.) cDNA encoding for the enzyme stilbene synthase (StSy), under the control of the fruit-specific promoter TomLoxB. The resulting LoxS transgenic plants accumulated trans -resveratrol and trans -piceid, in particular in the skin of the mature fruits. Quantitative analyses carried out on LoxS fruits were compared with those of a tomato line constitutively expressing the stsy gene (35SS). The LoxS fruits contained levels of trans -resveratrol that were 20-fold lower than those previously reported for the 35SS line. The total antioxidant capability and ascorbate content in transformed fruits were also evaluated, and a significant increase in both was found in the LoxS and 35SS lines. These results could explain the higher capability of transgenic fruits to counteract the pro-inflammatory effects of phorbol ester in monocyte–macrophages via the inhibition of induced cyclo-oxygenase-2 enzyme.  相似文献   

2.
芪合酶基因转化番茄产生白藜芦醇的研究   总被引:11,自引:0,他引:11  
为了获得含有白藜芦醇的转基因番茄,从葡萄雷司令中克隆到芪合酶基因,以之构建了含有组成型启动子的植物表达载体pBS2,用于农杆菌介导对番茄品种Tx00l4的遗传转化。通过对诱导愈伤、出芽、生根、再生植株的筛选,得到5株再生小苗,经PCR、Southem检测证实,有3株为真正的转基因植株。用HPLC对3株转基因植株叶片进行白藜芦醇含量鲜重分析,它们中白藜芦醇的含量分别为12.45μg/g,5.35μg/g,4.55μg/g。  相似文献   

3.
    
We studied the response of glutathione‐ and ascorbate‐related antioxidant systems of the two tomato cultivars to Pseudomonas syringae pv. tomato infection. In the inoculated susceptible A 100 cultivar a substantial decrease in reduced glutathione (GSH) content, oxidised glutathione accumulation and GSH redox ratio decline as well as glutathione peroxidase activity increase were found. The enhanced glutathione reductase activity was insufficient to keep the glutathione pool reduced. A transiently increased dehydroascorbic acid (DHA) content and ascorbic acid (AA) redox ratio decrease together with ascorbate peroxidase activity suppression were observed. Adversely to the progressive reduction in GSH pool size, AA content tended to increase but the changes were more modest than those of GSH. By contrast, in interaction with the resistant Ontario cultivar the glutathione pool homeostasis was maintained throughout P. syringae attack and no significant effect on the ascorbate pool was observed. Moreover, in the resistant interaction there was a significantly higher constitutive and pathogen‐induced glutathione‐S‐transferase (GST) activity. The relationship between GST activity and DHA content found in this study indicates that this enzyme could also act as dehydroascorbate reductase. These results reflect the differential involvement of GSH and AA in tomato‐P. syringae interaction and, in favour of the former, they clearly indicate the role of GSH and GSH‐utilizing enzymes in resistance to P. syringae. The maintenance of glutathione pool homeostasis and GST induction appear to contribute to tissue inaccessibility to bacterial attack.  相似文献   

4.
芪类化合物及其合成酶的研究进展   总被引:1,自引:0,他引:1  
芪类化合物,是一种抗菌的植物抗毒素,因其具有抑菌、抗氧化、抗肿瘤等多种生物活性,越来越受到人们的重视。近年来与合成芪类化合物直接相关的芪合酶功能基因也相继在不同植物中被发现,以芪合酶为基础的转基因研究范围也不断扩大。对芪类化合物的生物合成途径、生物活性,芪合酶的结构、功能,以及芪合酶基因和转芪合酶基因的最新研究进展情况进行综述,以期为进一步的研究该类成分及获取相关功能基因而提供科学依据。  相似文献   

5.
BACKGROUND AND AIMS: Boron (B) toxicity triggers the formation of reactive oxygen species in plant tissues. However, there is still a lack of knowledge as to how B toxicity affects the plant antioxidant defence system. It has been suggested that ascorbate could be important against B stress, although existing information is limited in this respect. The objective of this study was to analyse how ascorbate and some other components of the antioxidant network respond to B toxicity. METHODS: Two tomato (Solanum lycopersicum) cultivars ('Kosaco' and 'Josefina') were subjected to 0.05 (control), 0.5 and 2 mm B. The following were studied in leaves: dry weight; relative leaf growth rate; total and free B; H(2)O(2); malondialdehyde; ascorbate; glutathione; sugars; total non-enzymatic antioxidant activity, and the activity of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, ascorbate oxidase and l-galactose dehydrogenase. KEY RESULTS: The B-toxicity treatments diminished growth and boosted the amount of B, malondialdehyde and H(2)O(2) in the leaves of the two cultivars, these trends being more pronounced in 'Josefina' than in 'Kosaco'. B toxicity increased ascorbate concentration in both cultivars and increased glutathione only in 'Kosaco'. Activities of antioxidant- and ascorbate-metabolizing enzymes were also induced. CONCLUSIONS: High B concentration in the culture medium provokes oxidative damage in tomato leaves and induces a general increase in antioxidant enzyme activity. In particular, B toxicity increased ascorbate pool size. It also increased the activity of l-galactose dehydrogenase, an enzyme involved in ascorbate biosynthesis, and the activity of enzymes of the Halliwell-Asada cycle. This work therefore provides a starting point towards a better understanding of the role of ascorbate in the plant response against B stress.  相似文献   

6.
In this study, a relationship between lipid peroxidation, the antioxidant defense system and salt stress in salt-sensitive cultivated tomato (Lycopersicon esculentum) and its salt-tolerant wild relative (L. pennellii) was established. Superoxide dismutase (SOD) activities were significantly higher in the leaves of L. pennellii than those of L. esculentum after 12 and 84 d. POX activity showed a gradual increase in both cultivars under 70 mM NaCl. POX activity in L. pennellii significantly increased after 6 and 84 d whereas showed no remarkable change in leaves of L. esculentum under 140 mM NaCl. A higher salinity tolerance of L. pennellii was also correlated with a lower lipid peroxidation, which might be due to a higher content of antioxidant enzymes studied.  相似文献   

7.
Plant Molecular Biology - Stilbene synthase (STS) is an enzyme involved in the biosynthesis of stilbenes, which are synthesized in various plants in response to pathogen attack, UV irradiation or...  相似文献   

8.
目的:体外转录合成银松素合酶(PS)基因地高辛标记反义RNA探针。方法:通过双酶切把PScDNA全长序列接到pBlueskriptⅡKS( )的多克隆位点上;同时,经由NCBI比对确定PScDNA的特异序列,设计含有SalⅠ和XbaⅠ这2个酶切位点的上、下游引物,用PCR法扩增含有该位点的目的片段,并连接到pBlueskriptⅡKS( )的多克隆位点上;最后利用pBlueskriptⅡKS( )上的启动子T7,用T7RNA聚合酶在体外转录合成地高辛标记PS全长及特异序列的反义RNA探针。结果:通过对构建探针的单、双酶切,PCR及电泳鉴定,表明成功合成了PS基因地高辛标记的全长及特异序列的反义RNA探针。结论:RNA探针的合成为后续马尾松PS基因表达的RNA原位杂交研究打下了基础。  相似文献   

9.
Expression of a chimeric stilbene synthase gene in transgenic wheat lines   总被引:11,自引:0,他引:11  
A chimeric stilbene synthase (sts)gene was transferred into wheat. Stilbene synthases play a role in the defence against fungal diseases in some plant species (e.g. groundnut or grapevine) by producing stilbenetype phytoalexins like resveratrol. Resveratrol is also claimed to have positive effects to human health. Embryogenic scutellar calli derived from immature embryos of the two commercial German spring wheat cultivars Combi and Hanno were used as target tissue for cotransformation by microprojectile delivery. The selectable marker/reporter gene constructs contained the bargene either driven by the ubiquitinpromoter from maize (pAHC 25, also containing the uidAgene driven by the ubiquitinpromoter), or by the actinpromoter (pDM 302) from rice. The cotransferred plasmid pStil 2 consisted of a grapevine stscoding region driven by the ubiquitin promoter. Eight transgenic Combi and one Hanno TOplant were obtained and, except one Combi TOplant, found to be cotransformants due to the integration of both the stsgene and the selectable marker or reporter genes. Expression of the stsgene was proven by RTPCR, and, for the first time, by detection of the stilbene synthase product resveratrol by HPLC and mass spectrometry. The stsgene was expressed in four of the seven transgenic Combi T_oplants. Two of the respective T1progenies segregated in a Mendelian manner were still expressing the gene. Investigations into methylation of the stsgene showed that in three nonexpressing progenies inactivation was paralleled by methylation.  相似文献   

10.
The role that the constituents of the ascorbate–glutathione cycle play in the mechanism of contrasting ozone sensitivities was examined in mature and old tobacco leaves after acute ozone-fumigation (150 p.p.b., 5 h). Levels of the enzyme activities associated with the detoxifying system were lower in ozone-sensitive Bel W3 control plants than in unfumigated ozone-tolerant Bel B plants. In particular, the endogenous activities of ascorbate peroxidase (APX) and glutathione reductase (GR), and the metabolites ascorbic acid (AA) and reduced glutathione (GSH) were more abundant in Bel B than Bel W3 control plants. These results suggest that the higher tolerance of Bel B to O3 is associated with a greater initial content of the antioxidant enzymes or metabolites. Only in the mature leaves of the ozone-tolerant Bel B cv. did fumigation trigger activation of APX and, weakly, of dehydroascorbate reductase (DHAR). The activity of these enzymes was significantly lower after ozone treatment in both mature and old leaves of Bel W3 than in control plants. Fumigation had little effect on the ascorbate content. Its main effects on the glutathione pool were that it boosted the oxidized form and lowered the reduced form, particularly in mature Bel W3 leaves. Extractable GR activity remained unchanged in both Bel B and Bel W3 immediately after fumigation, but increased slightly 24 h later, particularly in mature leaves of Bel W3. Exposure to O3 caused a sharp decline in chloroplastic GR mRNA levels in both cultivars. However, as Western blot analysis failed to detect any major changes in GR protein content at this time, the protein must be highly stable. There is therefore a good correlation between tolerance to O3 and high endogenous levels of antioxidant metabolites such as AA and GSH in tobacco. In addition, the degree of inducibility of the system discriminates the two cultivars investigated.  相似文献   

11.
12.
Effect of high intracellular concentrations of the antioxidants ascorbate and glutathione on the extractable activity of the reducting enzymes dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase were investigated with spinach cells ( Spinacia oleracea ). An elevated ascorbate concentration was obtained by treatment with the ascorbate biosynthesis precursor L-galactono-1,4-lactone (GAL). To increase the intracellular level of glutathione, cells were treated with the 5-oxo-L-proline analog L-2-oxothiazolidin-4-carboxylate (OTC), or with the peroxidative herbicide acifluorfen (sodium 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid). Extractable monodehydroascorbate reductase activity increased in the presence of a high level of ascorbate or glutathione, and enzyme activity was at maximum when cells were treated with acifluorfen + OTC, or acifluorfen + GAL. Extractable dehydroascorbate reductase activity decreased when the intracellular concentration of glutathione was high and non-enzymatic reduction of dehydroascorbate by glutathione was the dominant reaction. Maximal decrease of enzyme activity was found in cells treated with acifluorfen + OTC. Extractable activity of glutathione reductase (GR) increased after treatment of cells with acifluorfen alone, or acifluorfen + OTC, but enzyme activity was unaffected by a high intracellular concentration of glutathione obtained by treatment of cells with OTC alone, or by treatment with acifluorfen + GAL. The degree of GR activation seemed to be controlled by several factors including inhibition by a high concentration of glutathione and possibly oxidative damage to the enzyme. Overall, the enzymes tested in this study, which provide the reduced forms of ascorbate and glutathione, were differently affected by high antioxidant levels.  相似文献   

13.
与对低温不敏感的粳稻台北309和武育粳相比,对低温敏感的籼稻IR64、CA212和Pusa经光照条件下8℃处理后最大光合速率(Pmax)和原初光化学效率(Fv/Fm)下降较多,出现了O2-·、过氧化氢、氧化型谷胱甘肽(GSSG)和氧化型抗坏血酸(DHA)的大量累积,其GSSG和DHA的含量分别与叶绿素含量的下降呈极显著负相关,表明光照条件下低温胁迫下,还原态的谷胱甘肽(GSH)和抗坏血酸的再生受阻,不能有效地清除活性氧,导致其叶绿素含量降低和光合能力受抑,而汕优63的变化位于上述两种类型之间。其中AsA/DHA和GSH/GSSG的变化与叶绿素含量的变化呈极显著正相关。  相似文献   

14.
Release of iron from ferritin requires reduction of ferric to ferrous iron. The iron can participate in the diabetogenic action of alloxan. We investigated the ability of ascorbate to catalyze the release of iron from ferritin in the presence of alloxan. Incubation of ferritin with ascorbate alone elicited iron release (33 nmol/10 min) and the generation of ascorbate free radical, suggesting a direct role for ascorbate in iron reduction. Iron release by ascorbate significantly increased in the presence of alloxan, but alloxan alone was unable to release measurable amounts of iron from ferritin. Superoxide dismutase significantly inhibited ascorbate-mediated iron release in the presence of alloxan, whereas catalase did not. The amount of alloxan radical (A·) generated in reaction systems containing both ascorbate and alloxan decreased significantly upon addition of ferritin, suggesting that A· is directly involved in iron reduction. Although release of iron from ferritin and generation of A· were also observed in reactions containing GSH and alloxan, the amount of iron released in these reactions was not totally dependent on the amount of A· present, suggesting that other reductants in addition to A· (such as dialuric acid) may be involved in iron release mediated by GSH and alloxan. These results suggest that A· is the main reductant involved in ascorbate-mediated iron release from ferritin in the presence of alloxan and that both dialuric acid and A· contribute to GSH/alloxan-mediated iron release.  相似文献   

15.
French bean (Phaseolus vulgaris L. cv. Contender) plants at five developmental stages (4, 8, 12, 16 and 20 d after sowing) were exposed to one of three treatments: 1 - 25 °C (control), 2 - exposure to chilling at 10 °C only for 2 d prior to sampling, and 3 - long-term exposure to chilling at 10 °C. Short- and long-term chilling decreased plant growth. Higher concentrations of ascorbate and glutathione were found in the chilling-treated plants throughout the different period of growth in comparison with those in the control plants. The activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase increased in the chilling-treated seedlings while activities of catalase and peroxidase and of β-carotene content decreased in young chilling-treated plants and slightly increased in older ones. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
    
The enantioselective effects of chiral compounds have been the subject of extensive studies in recent years due to their important implications for contaminant behavior and risk as well as the design of drug and pesticide formulations. The potential alterations of enantioselectivity, however, still remain elusive from the available data suggesting the effects of numerous environmental factors and the coexisting achiral and chiral compounds. Herein we studied the effect of nonylphenol (NP), a ubiquitous contaminant and ingredient in pesticide formulation, on the enantioselectivity of diclofop acid (DC) through ascorbate‐glutathione (AsA‐GSH) cycle in Microcystis aeruginosa. The enantioselectivity of DC in the AsA and GSH antioxidant defense system of M. aeruginosa was affected significantly by the addition of NP. Specifically, although R‐ DC and S‐DC were added with an equal toxic concentration (at their EC50 values), NP addition to the DC treatments altered the enantiomeric ratios of the activities of monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR), key enzymes in the regeneration of AsA and GSH, respectively. NP also modified the enantiomeric ratios of AsA and GSH levels in both the AsA and GSH antioxidant defense systems of M. aeruginosa. Overall, the oxidative damage induced by R‐DC was further deteriorated, whereas that induced by S‐DC was alleviated after NP addition. These altered enantioselectivities indicate a need to reexamine the risks and biological effects of chiral compounds in the complex environmental matrices containing a multitude of other chemicals, including commercial chiral agricultural chemicals. Chirality 28:475–481, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
  总被引:1,自引:0,他引:1  
Ascorbate and glutathione are indispensable cellular redox buffers and allow plants to acclimate stressful conditions. Arabidopsis contains three functional dehydroascorbate reductases (DHAR1-3), which catalyzes the conversion of dehydroascorbate into its reduced form using glutathione as a reductant. We herein attempted to elucidate the physiological role in DHAR1 and DHAR2 in stress responses. The total DHAR activities in DHAR knockout Arabidopsis plants, dhar1 and dhar2, were 22 and 92%, respectively, that in wild-type leaves. Under high light (HL), the levels of total ascorbate and dehydroascorbate were only reduced and increased, respectively, in dhar1. The oxidation of glutathione under HL was significantly inhibited in both dhar1 and dhar2, while glutathione contents were only enhanced in dhar1. The dhar1 showed stronger visible symptoms than the dhar2 under photooxidative stress conditions. Our results demonstrated a pivotal role of DHAR1 in the modulation of cellular redox states under photooxidative stress.  相似文献   

18.
Dehydroascorbate reductase was detected in the leaves of several plants and has been partially purified from spinach leaves. The enzyme has a MW of ca 25 000, a pH optimum of 7.5, a Km for glutathione (GSH) of 4.43 ± 0.4 mM and a Km for dehydroascorbate of 0.34 ± 0.05 mM. High concentrations of dehydroascorbate inhibit the enzyme. Cysteine cannot replace GSH as a donor. The purified dehydroascorbate reductase is extremely unstable and also inhibited by compounds which react with thiol groups. Dehydroascorbate does not protect the enzyme against such inhibition. GSH reduces dehydroascorbate non-enzymically at alkaline pH values.  相似文献   

19.
    
A male cone-specific promoter from Pinus radiata D. Don (radiata pine) was used to express a stilbene synthase gene (STS) in anthers of transgenic Nicotiana tabacum plants, resulting in complete male sterility in 70% of transformed plants. Three plants were 98%-99.9% male sterile, as evidenced by pollen germination. To identify the stage at which transgenic pollen first developed abnormally, tobacco anthers from six different developmental stages were assayed microscopically. Following the release of pollen grains from tetrads, transgenic pollen displayed an increasingly flake-like structure, which gradually rounded up during the maturation process. We further investigated whether STS expression may have resulted in an impaired flavonol or sporopollenin formation. A specific flavonol aglycone stain was used to demonstrate that significant amounts of these substances were produced only in late stages of normal pollen development, therefore excluding a diminished flavonol aglycone production as a reason for pollen ablation. A detailed analysis of the exine layer by transmission electron microscopy revealed minor structural changes in the exine layer of ablated pollen, and pyrolysis-gas chromatography-mass spectroscopy indicated that the biochemistry of sporopollenin production was unaffected. The promoter-STS construct may be useful for the ablation of pollen formation in coniferous gymnosperms and male sterility may potentially be viewed as a prerequisite for the commercial use of transgenic conifers.  相似文献   

20.
Growth, lipid peroxidation, H2O2 produciton and the response of the antioxidant enzymes and metabolites of the ascorbate glutathione pathway to oxidative stress caused by two concentrations (50 and 100 µM) of Cr(III) and Cr(VI) was studied in 15 day old seedlings of sorghum (Sorghum bicolor (L.) Moench cv CO 27) after 10 days of treatment. Cr accumulation in sorghum plants was concentration and organ dependant. There was no significant growth retardation of plants under 50 µM Cr(III) stress. 100 µM Cr(VI) was most toxic of all the treatments in terms of root and leaf growth and oxidative stress. 50 µM Cr(VI) treated roots exhibited high significant increase in superoxide dismutase (SOD), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) (p < 0.01) and significant increases in catalse (CAT), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) (p < 0.05). A high increase in ascorbic acid (AA) level was seen in roots of 50 µM Cr(VI) treated plants in comparison with control. Levels of reduced glutathione (GSH) showed a varied and complex response in all the treatments in both plant parts. GSH/GSSG ratio was not affected by Cr(III) treatment in leaves, in contrast, roots exhibited significant reduction in the ratio. Results indicate that GSH depletion increased sensitivity to oxidative stress (Cr(VI) roots and leaves and Cr(III) 100 µM roots) and AA in tandem with APX compensated for GSH depletion by acting directly on H2O2 and the mechanism of defensive response in roots as well as leaves varied in its degree and effectiveness due to the concentration dependant differences observed in translocation of the element itself, reactive oxygen species (ROS) generation and enzyme inhibition based on the oxidation state supplied to the plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号