首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spinach-leaf ribulose-5-phosphate kinase catalyzes the reaction of (Rp)-[beta, gamma-18O, gamma-18O]adenosine 5'-(3-thiotriphosphate) with ribulose 5-phosphate to form ribulose 1-[18O]phosphorothioate 5-phosphate. This product is incubated with CO2, Mg2+, and ribulose-bisphosphate carboxylase to form the [18O]phosphorothioate of D-glycerate. Reduction of this material using phosphoglycerate kinase/ATP, glyceraldehyde-3-phosphate dehydrogenase/NADH, triose-phosphate isomerase, and glycerol-phosphate dehydrogenase/NADH produces glycerol 3-[18O]phosphorothioate, which is subjected to ring closure using diethylphosphorochloridate. This in-line reaction produces a diastereoisomeric mixture of glycerol 2,3-cyclic phosphorothioates. 31P NMR spectroscopy was used to analyze the 18O content of the products. The anti-diastereoisomer, which is the major isomer formed and corresponds to the downfield 31P NMR signal (Pliura, D.H., Schomburg, D., Richard, J.P., Frey, P.A., and Knowles, J.R. (1980) Biochemistry 19, 325-329), retains the 18O label. This observation indicates that the ribulose-5-phosphate kinase reaction proceeds with inversion of configuration at phosphorus. The reaction is, therefore, unlikely to involve the participation of a covalent phosphoryl-enzyme intermediate.  相似文献   

2.
The stereochemical course of the aliphatic hydroxylation of gamma-butyrobetaine by calf liver and by Pseudomonas sp AK1 gamma-butyrobetaine hydroxylases has been determined. With [3(RS)-3-3H]-gamma-butyrobetaine or [3(R)-3-3H]-gamma-butyrobetaine as substrate, a rapid and significant loss of tritium to the medium occurred. On the other hand, with [3(S)-3-3H]-gamma-butyrobetaine, only a negligible release of tritium to the aqueous medium was observed. Indeed, on hydroxylation of [3(S)-3-2H]-gamma-butyrobetaine by either the calf liver or bacterial hydroxylase, the isolated product L-carnitine was found to have retained all of the deuterium initially present in the 3(S) position. Since the absolute configuration of the product L-carnitine has been determined to be R, such results are only compatible with a hydroxylation reaction that proceeded with retention of configuration. With [methyl-14C,3(R)-3-3H]-gamma-butyrobetaine as substrate for the calf liver hydroxylase, the percentage of tritium retained in the [methyl-14C]-L-carnitine product was determined as a function of percent reaction. The results of these studies indicated that pro-R hydrogen atom abstraction exceeded 99.9%. Experiments using racemic [methyl-14C,3(RS)-3-3H]-gamma-butyrobetaine as substrate yielded similar results and additionally allowed us to estimate alpha-secondary tritium kinetic isotope effects of 1.10 and 1.31 for the bacterial and calf liver enzymes, respectively. These results are discussed within the context of the radical mechanism for gamma-butyrobetaine hydroxylase previously proposed [Blanchard, J. S., & Englard, S. (1983) Biochemistry 22, 5922], and the required topographical arrangement of enzymic oxidant and substrate is illustrated.  相似文献   

3.
When adenosine 5'-(3-thiotriphosphate), stereospecifically labeled in the gamma position with 18O, was hydrolyzed in the presence of myosin subfragment 1 in 17O-enriched water, the product inorganic [16O,17O,18O]thiophosphate was chiral. The configuration of this product showed that the hydrolysis proceeds with inversion at the transferred phosphoric residue. This result suggests a direct, in-line hydrolysis mechanism for the ATPase.  相似文献   

4.
The stereochemical course of the reaction catalyzed by the soluble form of bovine lung guanylate cyclase has been investigated using [alpha-18O]guanosine 5'-triphosphate (Rp diastereomer) and guanosine 5'-O-(1-thiotriphosphate) (Sp diastereomer) as substrates. The product from the 3-thiomorpholino-1',1'-dioxide sydnonimine-stimulated enzymatic cyclization of [alpha-18O] guanosine 5'-triphosphate was esterified with diazomethane. 31P NMR analysis of the triesters indicated that all of the 18O label was present in the axial position. Guanosine 5'-O-(1-thiotriphosphate) (Sp diastereomer) was cyclized under stimulated and basal enzyme activities and, in both cases, the Rp diastereomer of guanosine 3',5'-cyclic phosphorothioate was formed. This was determined by direct comparison with material synthesized chemically from guanosine 5'-phosphorothioate. The results from these experiments show that the reaction catalyzed by guanylate cyclase proceeds with inversion of configuration at phosphorus and this indicates that the reaction proceeds by way of a single direct displacement reaction.  相似文献   

5.
The specificity of the EcoRI restriction endonuclease   总被引:1,自引:0,他引:1  
  相似文献   

6.
7.
The stereochemical course of the ribosome-dependent GTPase reaction of elongation factor G from Escherichia coli has been determined. Guanosine 5'-(gamma-thio)triphosphate stereospecifically labeled with 17O and 18O in the gamma-position was hydrolyzed in the presence of the elongation factor and ribosomes. The configuration of the product, inorganic [16O, 17O, 18O]thiophosphate ws analyzed by 31P NMR after its stereospecific incorporation into adenosine 5'-(beta-thio)triphosphate. The analysis showed that the hydrolysis proceeds with inversion of configuration at the transferred phosphorus atom. It is therefore likely that the hydrolysis occurs in a single step by direct, in-line transfer of the phosphorus from GDP to a water oxygen, without a phosphoenzyme intermediate.  相似文献   

8.
Phosphorolysis of α,α-trehalose catalyzed by trehalose phosphorylase from the basidiomycete Schizophyllum commune proceeds via net retention of anomeric configuration and yields α- -glucose 1-phosphate and α- -glucose as the products. In reverse reaction, only the α-anomers of -glucose 1-phosphate and -glucose are utilized as glucosyl donor and acceptor, respectively, and give exclusively the α,α-product. Trehalose phosphorylase converts α- -glucose 1-fluoride and phosphate into α- -glucose 1-phosphate, a reaction requiring the stereospecific protonation of the glucosyl fluoride by a Brønsted acid. The results are discussed with regard to a plausible reaction mechanism of fungal trehalose phosphorylase.  相似文献   

9.
J A Grasby  B A Connolly 《Biochemistry》1992,31(34):7855-7861
The stereochemical course of the reaction catalyzed by the EcoRV restriction endonuclease has been determined. This endonuclease recognizes GATATC sequence and cuts between the central T and dA bases. The Rp isomer of d(GACGATsATCGTC) (this dodecamer contains a phosphorothioate rather than the usual phosphate group between the central T and dA residues, indicated by the s) was a substrate for the endonuclease. Performing this reaction in H2 18O gave [18O]dps(ATCGTC) (a pentamer containing an 18O-labeled 5'-phosphorothioate) which was converted to [18O]dAMPS with nuclease P1. This deoxynucleoside 5'-[18O]phosphorothioate was stereospecifically converted to [18O]dATP alpha S with adenylate kinase and pyruvate kinase [Brody, R. S., & Frey, P. A. (1981) Biochemistry 20, 1245-1251]. Analysis of the position of the 18O in this product by 31P NMR spectroscopy showed that it was in a bridging position between the alpha- and beta-phosphorus atoms. This indicates that the EcoRV hydrolysis proceeds with inversion of configuration at phosphorus. The simplest interpretation is that the mechanism of this endonuclease involves a direct in-line attack at phosphorus by H2O with a trigonal bipyramidal transition state. A covalent enzyme oligodeoxynucleotide species can be discounted as an intermediate. An identical result has been previously observed with the EcoR1 endonuclease [Connolly, B. A., Eckstein, F., & Pingoud, A. (1984) J. Biol. Chem. 259, 10760-10763]. X-ray crystallography has shown that both of these endonucleases contain a conserved array of amino acids at their active sites. Possible mechanistic roles for these conserved amino acids in the light of the stereochemical findings are discussed.  相似文献   

10.
The Escherichia coli B restriction endonuclease   总被引:23,自引:0,他引:23  
  相似文献   

11.
The bacteriophage P1 restriction endonuclease   总被引:6,自引:0,他引:6  
The bacteriophage P1 restriction endonuclease has been purified from Escherichia coli lysogenic for P1. This restriction endonuclease P has a sedimentation coefficient of 9.3 S. Unlike the E. coli K restriction endonuclease, endonuclease P does not require S-adenosylmethionine for breakage of DNA. S-adenosylmethionine does, however, stimulate the rate of double-strand breakage of DNA by endonuclease P. Hydrolysis of ATP by endonuclease P could not be detected under conditions in which the K restriction endonuclease massively degrades ATP.The enzyme makes a limited number of double-strand breaks in unmodified or heterologously modified λ DNA. In the presence of S-adenosylmethionine, it does not cut every DNA molecule to the same extent. Incubation of λ DNA with excess amounts of enzyme in the presence of S-adenosylmethionine results in less breakage of the DNA than with smaller amounts of enzyme. This effect is not seen in the absence of S-adenosylmethionine. The maximum amount of cutting in the absence of S-adenosylmethionine appears to be greater than the maximum amount of cutting in its presence. This is most likely due to the modification methylase activity of P1 restriction endonuclease.  相似文献   

12.
The use of guanosine 5'-O-(gamma-thio)triphosphate as a substrate for p21 c-Ha-ras was established. By using chirally labeled [gamma-17O,18O]guanosine 5'-O-(gamma-thio)triphosphate, the stereochemical course of the GTPase reaction was determined. The analysis shows that the hydrolysis occurs with inversion at the gamma-phosphorus. This shows that the most likely mechanism is a single step, in-line transfer, without a phosphoenzyme or other phosphorylated intermediate.  相似文献   

13.
The FokI restriction endonuclease is a monomeric protein that recognizes an asymmetric sequence and cleaves both DNA strands at fixed loci downstream of the site. Its single active site is positioned initially near the recognition sequence, distant from its downstream target 13 nucleotides away. Moreover, to cut both strands, it has to recruit a second monomer to give an assembly with two active sites. Here, the individual steps in the FokI reaction pathway were examined by fluorescence resonance energy transfer (FRET). To monitor DNA binding and domain motion, a fluorescence donor was attached to the DNA, either downstream or upstream of the recognition site, and an acceptor placed on the catalytic domain of the protein. A FokI variant incapable of dimerization was also employed, to disentangle the signal due to domain motion from that due to protein association. Dimerization was monitored separately by using two samples of FokI labelled with donor and acceptor, respectively. The stopped-flow studies revealed a complete reaction pathway for FokI, both the sequence of events and the kinetics of each individual step.  相似文献   

14.
The reaction mechanism for the phosphotriesterase from Pseudomonas diminuta has been examined. When paraoxon (diethyl 4-nitrophenyl phosphate) is hydrolyzed by this enzyme in oxygen-18-labeled water, the oxygen-18 label is found exclusively in the diethyl phosphate product. The absolute configurations for the (+) and (-) enantiomers of O-ethyl phenylphosphonothioic acid have been determined by X-ray diffraction structural determination of the individual crystalline 1-phenylethylamine salts. The (+) enantiomer of the free acid corresponds to the RP configuration. The RP enantiomer of O-ethyl phenylphosphonothioic acid has been converted to the SP enantiomer of EPN [O-ethyl O-(4-nitrophenyl) phenylphosphonothioate]. (SP)-EPN is hydrolyzed by the phosphotriesterase to the SP enantiomer of O-ethyl phenylphosphonothioic acid. The enzymatic reaction therefore proceeds with inversion of configuration. These results have been interpreted as an indication of a single in-line displacement by an activated water molecule directly at the phosphorus center of the phosphotriester substrate. (RP)-EPN is not hydrolyzed by the enzyme at an appreciable rate.  相似文献   

15.
The DNA sequence recognised by the HinfIII restriction endonuclease   总被引:3,自引:0,他引:3  
HinfIII is a type III restriction enzyme (Kauc &; Piekarowicz, 1978) isolated from Haemophilus influenzae Rf. Like other type III restriction endonucleases, the enzyme also catalyses the modification of susceptible DNA. It requires ATP for DNA cleavage and S-adenosyl methionine for DNA methylation. We have determined the DNA sequence recognised by HinfIII to be:
5′-C-G-A-A-T-3′·····3′-G-C-T-T-A-5′
In restriction, the enzyme cleaves the DNA about 25 base-pairs to the right of this sequence. In the modification reaction only one of the strands is methylated, that containing the 5′-C-G-A-A-T-3′ sequence.  相似文献   

16.
The recognition sequence and cleavage point of restriction endonuclease VneI have been determined as 5'-G decreases TGCAC. This enzyme is not isoschizomer of any known restriction endonucleases and therefore may be widely used in investigation of DNA structure.  相似文献   

17.
The cleavage site of the restriction endonuclease Ava II.   总被引:7,自引:5,他引:2       下载免费PDF全文
We have determined that the type II restriction enzyme Ava II, isolated from Anabaena variabilis, recognizes and cuts the sequence (formula: see article). The eight Ava II sites of pBR322 have been mapped, as well as a unique site for Ava I.  相似文献   

18.
The restriction endonuclease PalI was purified from Providencia alcalifaciens 1650-fold with a yield of 33%. The purified protein moved as a single band upon polyacrylamide gel electrophoresis. When this was carried out in the presence of sodium dodecyl sulfate, a molecular weight of 31,000 was obtained for PalI. Gel filtration through Sephacryl S200 gave molecular weights ranging from 44,000 to 53,000 when 58 to 1870 ng/ml enzyme were used, respectively. Other properties of the enzyme are described.  相似文献   

19.
Catalytic properties of the HhaII restriction endonuclease   总被引:1,自引:0,他引:1  
The catalytic properties of the HhaII restriction endonuclease were studied using plasmid pSK11 DNA containing a single 5'-G-A-N-T-C HhaII cleavage site as substrate. Reactions were followed by two methods: 1) gel electrophoretic analysis of nicked circular and linear DNA products, or 2) release of 32P-labeled inorganic phosphate from specifically labeled HhaII sites in a reaction coupled with bacterial alkaline phosphatase. The enzyme is optimally active at 37 degrees C in 10 mM Tris-HCl (pH 9.1) and 4-10 mM MgCl2 without added NaCl. Activity is stabilized by the presence of 2-mercaptoethanol and 0.2% Triton X-100 or 50 microgram/ml bovine serum albumin. At enzyme concentrations below 10 nM and using pSK11 as substrate, initial kinetic rates were dependent on the order of mixing of reactants. A lag of 3-4 min was observed if enzyme or substrate was added last. Preincubation of substrate and enzyme followed by initiation of the reaction with MgCl2 or preincubation of the enzyme with nonspecific DNA followed by initiation with substrate eliminated or reduced the lag, respectively, and speeded up the reactions. Under a wide range of reaction conditions, nicked pSK11 DNA accumulated early, while linear molecules appeared later, suggesting that HhaII cleaves one strand at a time in separate binding events. The apparent Km for covalently closed pSK11 DNA molecules was approximately 17 nM, and the turnover number for the conversion of covalent to nicked sites was 1.1 single strand scissions/min. Pre-steady state kinetic analysis indicated that cleavage of the first phosphodiester bond in a site is first order with a rate constant of about 0.8 min-1, while cleavage of the second phosphodiester bond is first order with a rate constant of about 0.2 min-1.  相似文献   

20.
Relaxed specificity of the EcoRV restriction endonuclease   总被引:6,自引:0,他引:6  
S E Halford  B M Lovelady  S A McCallum 《Gene》1986,41(2-3):173-181
The EcoRV restriction endonuclease normally shows a high specificity for its recognition site on DNA, GATATC. In standard reactions, it cleaves DNA at this site several orders of magnitude more readily than at any alternative sequence. But in the presence of dimethyl sulphoxide and at high pH, the EcoRV enzyme cleaves DNA at several sites that differ from its recognition site by one nucleotide. Of the 18 (3 X 6) possible sequences that differ from GATATC by one base, all were cleaved readily except for the following 4 sites: TATATC, CATATC, GATATA and GATATG. However, two of the sites that could be cleaved by EcoRV in the presence of dimethyl sulphoxide, GAGATC and GATCTC, were only cleaved on DNA that lacked dam methylation: both contain the sequence GATC, the recognition site for the dam methylase of Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号