首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinesin motor proteins use an ATP hydrolysis cycle to perform various functions in eukaryotic cells. Many questions remain about how the kinesin mechanochemical ATPase cycle is fine-tuned for specific work outputs. In this study, we use isothermal titration calorimetry and stopped-flow fluorometry to determine and analyze the thermodynamics of the human kinesin-5 (Eg5/KSP) ATPase cycle. In the absence of microtubules, the binding interactions of kinesin-5 with both ADP product and ATP substrate involve significant enthalpic gains coupled to smaller entropic penalties. However, when the wild-type enzyme is titrated with a non-hydrolyzable ATP analog or the enzyme is mutated such that it is able to bind but not hydrolyze ATP, substrate binding is 10-fold weaker than ADP binding because of a greater entropic penalty due to the structural rearrangements of switch 1, switch 2, and loop L5 on ATP binding. We propose that these rearrangements are reversed upon ATP hydrolysis and phosphate release. In addition, experiments on a truncated kinesin-5 construct reveal that upon nucleotide binding, both the N-terminal cover strand and the neck linker interact to modulate kinesin-5 nucleotide affinity. Moreover, interactions with microtubules significantly weaken the affinity of kinesin-5 for ADP without altering the affinity of the enzyme for ATP in the absence of ATP hydrolysis. Together, these results define the energy landscape of a kinesin ATPase cycle in the absence and presence of microtubules and shed light on the role of molecular motor mechanochemistry in cellular microtubule dynamics.  相似文献   

2.
Thoresen T  Gelles J 《Biochemistry》2008,47(36):9514-9521
A single molecule of the motor enzyme kinesin-1 keeps a tight grip on its microtubule track, making tens or hundreds of discrete, unidirectional 8 nm steps before dissociating. This high duty ratio processive movement is thought to require a mechanism in which alternating stepping of the two head domains of the kinesin dimer is driven by alternating, overlapped cycles of ATP hydrolysis by the two heads. The R210K point mutation in Drosophila kinesin heavy chain was reported to disrupt the ability of the enzyme active site to catalyze ATP P-O bond cleavage. We expressed R210K homodimers as well as isolated R210K heads and confirmed that both are essentially inactive. We then coexpressed tagged R210K subunits with untagged wild-type subunits and affinity purified R210K/wild-type heterodimers together with the inactive R210K homodimers. In contrast to the R210K head or homodimer, the heterodimer was a highly active (>50% of wild-type) microtubule-stimulated ATPase, and the heterodimer displayed high duty ratio processive movement in single-molecule motility experiments. Thus, dimerization of a subunit containing the inactivating mutation with a functional subunit can complement the mutation; this must occur either by lowering or by bypassing kinetic barriers in the ATPase or mechanical cycles of the mutant head. The observations provide support for kinesin-1 gating mechanisms in which one head stimulates the rate of essential processes in the other.  相似文献   

3.
Friel CT  Howard J 《The EMBO journal》2011,30(19):3928-3939
Unlike other kinesins, members of the kinesin-13 subfamily do not move directionally along microtubules but, instead, depolymerize them. To understand how kinesins with structurally similar motor domains can have such dissimilar functions, we elucidated the ATP turnover cycle of the kinesin-13, MCAK. In contrast to translocating kinesins, ATP cleavage, rather than product release, is the rate-limiting step for ATP turnover by MCAK; unpolymerized tubulin and microtubules accelerate this step. Further, microtubule ends fully activate the ATPase by accelerating the exchange of ADP for ATP. This tuning of the cycle adapts MCAK for its depolymerization activity: lattice-stimulated ATP cleavage drives MCAK into a weakly bound nucleotide state that reaches microtubule ends by diffusion, and end-specific acceleration of nucleotide exchange drives MCAK into a strongly bound state that promotes depolymerization. This altered cycle accounts well for the different mechanical behaviour of this kinesin, which depolymerizes microtubules from their ends, compared to translocating kinesins that walk along microtubules. Thus, the kinesin motor domain is a nucleotide-dependent engine that can be differentially tuned for transport or depolymerization functions.  相似文献   

4.
Kinesins form a large and diverse superfamily of proteins involved in numerous important cellular processes. The majority of them are molecular motors moving along microtubules. Conversion of chemical energy into mechanical work is accomplished in a sequence of events involving both biochemical and conformational alternation of the motor structure called the mechanochemical cycle. Different members of the kinesin superfamily can either perform their function in large groups or act as single molecules. Conventional kinesin, a member of the kinesin-1 subfamily, exemplifies the second type of motor which requires tight coordination of the mechanochemical cycle in two identical subunits to accomplish processive movement toward the microtubule plus end. Recent results strongly support an asymmetric hand-over-hand model of "walking" for this protein. Conformational strain between two subunits at the stage of the cycle where both heads are attached to the microtubule seems to be a major factor in intersubunit coordination, although molecular and kinetic details of this phenomenon are not yet deciphered. We discuss also current knowledge concerning intersubunit coordination in other kinesin subfamilies. Members of the kinesin-3 class use at least three different mechanisms of movement and can translocate in monomeric or dimeric forms. It is not known to what extent intersubunit coordination takes place in Ncd, a dimeric member of the kinesin-14 subfamily which, unlike conventional kinesin, exercises a power-stroke toward the microtubule minus end. Eg5, a member of the kinesin-5 subfamily is a homotetrameric protein with two kinesin-1-like dimeric halves controlled by their relative orientation on two microtubules. It seems that diversity of subunit organization, quaternary structures and cellular functions in the kinesin superfamily are reflected also by the divergent extent and mechanism of intersubunit coordination during kinesin movement along microtubules.  相似文献   

5.
Members of the kinesin-8 motor family play a central role in controlling microtubule length throughout the eukaryotic cell cycle. Inactivation of kinesin-8 causes defects in cell polarity during interphase and astral and mitotic spindle length, metaphase chromosome alignment, timing of anaphase onset and accuracy of chromosome segregation. Although the biophysical mechanism by which kinesin-8 molecules influence microtubule dynamics has been studied extensively in a variety of species, a consensus view has yet to emerge. One reason for this might be that some members of the kinesin-8 family can associate to other microtubule-associated proteins, cell cycle regulatory proteins and other kinesin family members. In this review we consider how cell cycle specific modification and its association to other regulatory proteins may modulate the function of kinesin-8 to enable it to function as a master regulator of microtubule dynamics.  相似文献   

6.
The minimum motor domain of kinesin-1 is a single head. Recent evidence suggests that such minimal motor domains generate force by a biased binding mechanism, in which they preferentially select binding sites on the microtubule that lie ahead in the progress direction of the motor. A specific molecular mechanism for biased binding has, however, so far been lacking. Here we use atomistic Brownian dynamics simulations combined with experimental mutagenesis to show that incoming kinesin heads undergo electrostatically guided diffusion-to-capture by microtubules, and that this produces directionally biased binding. Kinesin-1 heads are initially rotated by the electrostatic field so that their tubulin-binding sites face inwards, and then steered towards a plus-endwards binding site. In tethered kinesin dimers, this bias is amplified. A 3-residue sequence (RAK) in kinesin helix alpha-6 is predicted to be important for electrostatic guidance. Real-world mutagenesis of this sequence powerfully influences kinesin-driven microtubule sliding, with one mutant producing a 5-fold acceleration over wild type. We conclude that electrostatic interactions play an important role in the kinesin stepping mechanism, by biasing the diffusional association of kinesin with microtubules.  相似文献   

7.
《Biophysical journal》2020,118(8):1958-1967
Microtubules are highly dynamic filaments with dramatic structural rearrangements and length changes during the cell cycle. An accurate control of the microtubule length is essential for many cellular processes, in particular during cell division. Motor proteins from the kinesin-8 family depolymerize microtubules by interacting with their ends in a collective and length-dependent manner. However, it is still unclear how kinesin-8 depolymerizes microtubules. Here, we tracked the microtubule end-binding activity of yeast kinesin-8, Kip3, under varying loads and nucleotide conditions using high-precision optical tweezers. We found that single Kip3 motors spent up to 200 s at the microtubule end and were not stationary there but took several 8-nm forward and backward steps that were suppressed by loads. Interestingly, increased loads, similar to increased motor concentrations, also exponentially decreased the motors’ residence time at the microtubule end. On the microtubule lattice, loads also exponentially decreased the run length and time. However, for the same load, lattice run times were significantly longer compared to end residence times, suggesting the presence of a distinct force-dependent detachment mechanism at the microtubule end. The force dependence of the end residence time enabled us to estimate what force must act on a single motor to achieve the microtubule depolymerization speed of a motor ensemble. This force is higher than the stall force of a single Kip3 motor, supporting a collective force-dependent depolymerization mechanism that unifies the so-called “bump-off” and “switching” models. Understanding the mechanics of kinesin-8’s microtubule end activity will provide important insights into cell division with implications for cancer research.  相似文献   

8.
Kinesin is an ATP-driven molecular motor that moves processively along a microtubule. Processivity has been explained as a mechanism that involves alternating single- and double-headed binding of kinesin to microtubules coupled to the ATPase cycle of the motor. The internal load imposed between the two bound heads has been proposed to be a key factor regulating the ATPase cycle in each head. Here we show that external load imposed along the direction of motility on a single kinesin molecule enhances the binding affinity of ADP for kinesin, whereas an external load imposed against the direction of motility decreases it. This coupling between loading direction and enzymatic activity is in accord with the idea that the internal load plays a key role in the unidirectional and cooperative movement of processive motors.  相似文献   

9.
ABSTRACT

Kin I kinesins are members of the diverse kinesin superfamily of molecular motors. Whereas most kinesins use ATP to move along microtubules, Kin I kinesins depolymerize microtubules rather than walk along them. Functionally, this distinct subfamily of kinesins is important in regulating cellular microtubule dynamics and plays a crucial role in spindle assembly and chromosome segregation. The molecular mechanism of Kin I-induced microtubule destabilization is as yet unclear. It is generally believed that Kin Is induce a structural change on the microtubule that leads to microtubule destabilization. Recently, much progress has been made towards understanding how Kin Is may cause this structural change, and how ATPase activity is employed in the catalytic cycle.  相似文献   

10.
Mackey AT  Gilbert SP 《Biochemistry》2000,39(6):1346-1355
Ncd is a minus-end-directed microtubule motor and a member of the kinesin superfamily. The Ncd dimer contains two motor domains, and cooperative interactions between the heads influence the interactions of each respective motor domain with the microtubule. The approach we have taken to understand the cooperativity between the two motor domains is to analyze the ATPase cycle of dimeric MC1 and monomeric MC6. The steps in the ATPase cycle where cooperativity occurs can be identified by comparing the two mechanisms. The rate-limiting step in the MC6 mechanism is ADP release at 3.4 s(-)(1). The observed rate constant for ATP-induced dissociation from the microtubule is 14 s(-)(1). However, the relative amplitude associated with MC6 dissociation is extremely small in comparison to the amplitude associated with dimeric MC1 dissociation kinetics. The amplitude data indicate that monomeric MC6 does not detach from the microtubule during the initial turnovers of ATP, and ATP hydrolysis is uncoupled from movement. The results show that cooperative interactions between the motor domains of the dimer are required for ATP-dependent dissociation; therefore, one function of the partner motor domain may be to weaken the interaction of the adjacent head with the microtubule.  相似文献   

11.
Active transport along the microtubule lattice is a complex process that involves both the Kinesin and Dynein superfamily of motors. Transportation requires sophisticated regulation much of which occurs through the motor's tail domain. However, a significant portion of this regulation also occurs through structural changes that arise in the motor and the microtubule upon binding. The most obvious structural change being the manifestation of asymmetry. To a first approximation in solution, kinesin dimers exhibit twofold symmetry, and microtubules exhibit helical symmetry. The higher symmetries of both the kinesin dimers and microtubule lattice are lost on formation of the kinesin–microtubule complex. Loss of symmetry has functional consequences such as an asymmetric hand‐over‐hand mechanism in plus‐end‐directed kinesins, asymmetric microtubule binding in the Kinesin‐14 family, spatially biased stepping in dynein and cooperative binding of additional motors to the microtubule. This review focusses on how the consequences of asymmetry affect regulation of motor heads within a dimer, dimers within an ensemble of motors, and suggests how these asymmetries may affect regulation of active transport within the cell.  相似文献   

12.
An expanding collection of proteins localises to microtubule ends to regulate cytoskeletal dynamics and architecture by unknown molecular mechanisms. Electron microscopy is invaluable for studying microtubule structure, but because microtubule ends are heterogeneous, their structures are difficult to determine. We therefore investigated whether tubulin oligomers induced by the drug dolastatin could mimic microtubule ends. The microtubule end-dependent ATPase of kinesin-13 motors is coupled to microtubule depolymerisation. Significantly, kinesin-13 motor ATPase activity is stimulated by dolastatin-tubulin oligomers, suggesting, first, that these oligomers share properties with microtubule ends and, second, that the physical presence of an end is less important than terminal tubulin flexibility for microtubule end recognition by the kinesin-13 motor. Using electron microscopy, we visualised the kinesin-13 motor-dolastatin-tubulin oligomer interaction in nucleotide states mimicking steps in the ATPase cycle. This enabled us to detect conformational changes that the motor undergoes during depolymerisation. Our data suggest that such tubulin oligomers can be used to examine other microtubule end-binding proteins.  相似文献   

13.
To understand the mechanism of kinesin movement we have investigated the relative configuration of the two kinesin motor domains during ATP hydrolysis using fluorescence polarization microscopy of ensemble and single molecules. We found that: (i) in nucleotide states that induce strong microtubule binding, both motor domains are bound to the microtubule with similar orientations; (ii) this orientation is maintained during processive motion in the presence of ATP; (iii) the neck-linker region of the motor domain has distinct configurations for each nucleotide condition tested. Our results fit well with a hand-over-hand type movement mechanism and suggest how the ATPase cycle in the two motor domains is coordinated. We propose that the motor neck-linker domain configuration controls ADP release.  相似文献   

14.
Kin I kinesins are members of the diverse kinesin superfamily of molecular motors. Whereas most kinesins use ATP to move along microtubules, Kin I kinesins depolymerize microtubules rather than walk along them. Functionally, this distinct subfamily of kinesins is important in regulating cellular microtubule dynamics and plays a crucial role in spindle assembly and chromosome segregation. The molecular mechanism of Kin I-induced microtubule destabilization is as yet unclear. It is generally believed that Kin Is induce a structural change on the microtubule that leads to microtubule destabilization. Recently, much progress has been made towards understanding how Kin Is may cause this structural change, and how ATPase activity is employed in the catalytic cycle.  相似文献   

15.
Conventional kinesin (kinesin-1) is a motor protein that performs a vital function in the eukaryotic cell: it actively transports cargo to required destinations. Kinesin pulls cargo along microtubule tracks using twin linked motor domains (heads) that bind the microtubule, hydrolyse ATP, and alternately step forward. The detail of the kinesin walk has yet to be discovered but a prominent theory is that the mechanism is rectified Brownian motion (RBM) biased by linker zippering. There is evidence that an ATP binding gate coordinates the heads. The hypothesis proposed here is that the gate is unnecessary, that entropic linker strain is sufficient to enable procession. An agent-based computer simulation has been devised to explore head coordination in the RBM model. Walking was found to emerge in silico without a gate to synchronise the heads. Further investigation of the model by applying a range of hindering loads resulted in backstepping or detachment with similar characteristics to behaviour observed in vitro. It is unclear whether kinesin waits at an obstacle but adding an ATP hydrolysis gate to the model in order to force waiting resulted in the model behaving less realistically under load. It is argued here that an RBM model free of gating is a good candidate for explaining kinesin procession.  相似文献   

16.
Long-distance transport in cells is driven by kinesin and dynein motors that move along microtubule tracks. These motors must be tightly regulated to ensure the spatial and temporal fidelity of their transport events. Transport motors of the kinesin-1 and kinesin-3 families are regulated by autoinhibition, but little is known about the mechanisms that regulate kinesin-2 motors. We show that the homodimeric kinesin-2 motor KIF17 is kept in an inactive state in the absence of cargo. Autoinhibition is caused by a folded conformation that enables nonmotor regions to directly contact and inhibit the enzymatic activity of the motor domain. We define two molecular mechanisms that contribute to autoinhibition of KIF17. First, the C-terminal tail interferes with microtubule binding; and second, a coiled-coil segment blocks processive motility. The latter is a new mechanism for regulation of kinesin motors. This work supports the model that autoinhibition is a general mechanism for regulation of kinesin motors involved in intracellular trafficking events.  相似文献   

17.
Yun M  Zhang X  Park CG  Park HW  Endow SA 《The EMBO journal》2001,20(11):2611-2618
Molecular motors move along actin or microtubules by rapidly hydrolyzing ATP and undergoing changes in filament-binding affinity with steps of the nucleotide hydrolysis cycle. It is generally accepted that motor binding to its filament greatly increases the rate of ATP hydrolysis, but the structural changes in the motor associated with ATPase activation are not known. To identify the conformational changes underlying motor movement on its filament, we solved the crystal structures of three kinesin mutants that decouple nucleotide and microtubule binding by the motor, and block microtubule-activated, but not basal, ATPase activity. Conformational changes in the structures include a disordered loop and helices in the switch I region and a visible switch II loop, which is disordered in wild-type structures. Switch I moved closer to the bound nucleotide in two mutant structures, perturbing water-mediated interactions with the Mg2+. This could weaken Mg2+ binding and accelerate ADP release to activate the motor ATPASE: The structural changes we observe define a signaling pathway within the motor for ATPase activation that is likely to be essential for motor movement on microtubules.  相似文献   

18.
The kinesin-3 family (KIF) is one of the largest among the kinesin superfamily and an important driver of a variety of cellular transport events. Whereas all kinesins contain the highly conserved kinesin motor domain, different families have evolved unique motor features that enable different mechanical and functional outputs. A defining feature of kinesin-3 motors is the presence of a positively charged insert, the K-loop, in loop 12 of their motor domains. However, the mechanical and functional output of the K-loop with respect to processive motility of dimeric kinesin-3 motors is unknown. We find that, surprisingly, the K-loop plays no role in generating the superprocessive motion of dimeric kinesin-3 motors (KIF1, KIF13, and KIF16). Instead, we find that the K-loop provides kinesin-3 motors with a high microtubule affinity in the motor''s ADP-bound state, a state that for other kinesins binds only weakly to the microtubule surface. A high microtubule affinity results in a high landing rate of processive kinesin-3 motors on the microtubule surface. We propose that the family-specific K-loop contributes to efficient kinesin-3 cargo transport by enhancing the initial interaction of dimeric motors with the microtubule track.  相似文献   

19.
Motile kinesins are motor proteins that move unidirectionally along microtubules as they hydrolyze ATP. They share a conserved motor domain (head) which harbors both the ATP‐ and microtubule‐binding activities. The kinesin that has been studied most moves toward the microtubule (+)‐end by alternately advancing its two heads along a single protofilament. This kinesin is the subject of this review. Its movement is associated to alternate conformations of a peptide, the neck linker, at the C‐terminal end of the motor domain. Recent progress in the understanding of its structural mechanism has been made possible by high‐resolution studies, by cryo electron microscopy and X‐ray crystallography, of complexes of the motor domain with its track protein, tubulin. These studies clarified the structural changes that occur as ATP binds to a nucleotide‐free microtubule‐bound kinesin, initiating each mechanical step. As ATP binds to a head, it triggers orientation changes in three rigid motor subdomains, leading the neck linker to dock onto the motor core, which directs the other head toward the microtubule (+)‐end. The relationship between neck linker docking and the orientations of the motor subdomains also accounts for kinesin's processivity, which is remarkable as this motor protein only falls off from a microtubule after taking about a hundred steps. As tools are now available to determine high‐resolution structures of motor domains complexed to their track protein, it should become possible to extend these studies to other kinesins and relate their sequence variations to their diverse properties.  相似文献   

20.
The neck-linker is a structurally conserved region among most members of the kinesin superfamily of molecular motor proteins that is critical for kinesin’s processive transport of intracellular cargo along the microtubule surface. Variation in the neck-linker length has been shown to directly modulate processivity in different kinesin families; for example, kinesin-1, with a shorter neck-linker, is more processive than kinesin-2. Although small differences in processivity are likely obscured in vivo by the coupling of most cargo to multiple motors, longer and more flexible neck-linkers may allow different kinesins to navigate more efficiently around the many obstacles, including microtubule-associated proteins (MAPs), that are found on the microtubule surface within cells. We hypothesize that, due to its longer neck-linker, kinesin-2 can more easily navigate obstacles (e.g., MAPs) on the microtubule surface than kinesin-1. We used total internal reflection fluorescence microscopy to observe single-molecule motility from different kinesin-1 and kinesin-2 neck-linker chimeras stepping along microtubules in the absence or presence of two Tau isoforms, 3RS-Tau and 4RL-Tau, both of which are MAPs that are known to differentially affect kinesin-1 motility. Our results demonstrate that unlike kinesin-1, kinesin-2 is insensitive to the presence of either Tau isoform, and appears to have the ability to switch protofilaments while stepping along the microtubule when challenged by an obstacle, such as Tau. Thus, although kinesin-1 may be more processive, the longer neck-linker length of kinesin-2 allows it to be better optimized to navigate the complex microtubule landscape. These results provide new insight, to our knowledge, into how kinesin-1 and kinesin-2 may work together for the efficient delivery of cargo in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号