首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tritrpticin is a member of the cathelicidin family of antimicrobial peptides. Starting from its native sequence (VRRFPWWWPFLRR), eight synthetic peptide analogs were studied to investigate the roles of specific residues in its biological and structural properties. This included amidation of the C-terminus paired with substitutions of its cationic and Phe residues, as well as the Pro residues that are important for its two-turn micelle-bound structure. These analogs were determined to have a significant antimicrobial potency. In contrast, two other peptide analogs, those with the three Trp residues substituted with either Phe or Tyr residues are not highly membrane perturbing, as determined by leakage and flip-flop assays using fluorescence spectroscopy. Nevertheless the Phe analog has a high activity; this suggests an intracellular mechanism for antimicrobial activity that may be part of the overall mechanism of action of native tritrpticin as a complement to membrane perturbation. NMR experiments of these two Trp-substituted peptides showed the presence of multiple conformers. The structures of the six remaining Trp-containing analogs bound to dodecylphosphocholine micelles showed major, well-defined conformations. These peptides are membrane disruptive and show a wide range in hemolytic activity. Their micelle-bound structures either retain the typical turn-turn structure of native tritrpticin or have an extended alpha-helix. This work demonstrates that closely related antimicrobial peptides can often have remarkably altered properties with complex influences on their biological activities.  相似文献   

2.
The positively charged side chains of cationic antimicrobial peptides are generally thought to provide the initial long-range electrostatic attractive forces that guide them towards the negatively charged bacterial membranes. Peptide analogs were designed to examine the role of the four Arg side chains in the cathelicidin peptide tritrpticin (VRRFPWWWPFLRR). The analogs include several noncoded Arg and Lys derivatives that offer small variations in side chain length and methylation state. The peptides were tested for bactericidal and hemolytic activities, and their membrane insertion and permeabilization properties were characterized by leakage assays and fluorescence spectroscopy. A net charge of +5 for most of the analogs maintains their high antimicrobial activity and directs them towards preferential insertion into model bacterial membrane systems with a similar extent of burial of the Trp side chains. However the peptides exhibit significant functional differences. Analogs with methylated cationic side chains cause lower levels of membrane leakage and are associated with lower hemolytic activities, making them potentially attractive pharmaceutical candidates. Analogs containing the Arg guanidinium groups cause more membrane disruption than those containing the Lys amino groups. Peptides in the latter group with shorter side chains have increased membrane activity and conversely, elongating the Arg residue causes slightly higher membrane activity. Altogether, the potential for strong hydrogen bonding between the four positive Arg side chains with the phospholipid head groups seems to be a determinant for the membrane disruptive properties of tritrpticin and many related cationic antimicrobial peptides.  相似文献   

3.
Tritrpticin, a Trp-rich cationic antimicrobial peptide with a unique amino acid sequence (VRRFPWWWPFLRR), is found in porcine cathelicidin cDNA. Tritrpticin has a broad spectrum of antibacterial and antifungal activities and hemolytic activity comparable to that of indolicidin. To investigate the mechanism of the bacterial killing action of tritrpticin and to identify structural features important for bacterial cell selectivity, we designed several tritrpticin analogs with amino acid substitutions of the Pro and Trp residues. Circular dichroism studies revealed that the substitution of Pro-->Ala (TPA) or Trp-->Phe (TWF) leads to significant conformational changes in SDS micelles, converting the beta-turn to alpha-helix or to poly-L-proline II helix, respectively. Compared to tritrpticin, TPA retained most of its antimicrobial activity, but showed enhanced hemolytic and membrane-disrupting activities. In contrast, TWF showed a 2-4-fold increase in antimicrobial activity against Gram-negative bacteria, but a marked decrease in both hemolytic and membrane-disrupting activities. Taken together, our findings suggest that compared with the beta-turn and alpha-helical structures, the poly-L-proline II helix is crucial for effective bacterial cell selectivity in tritrpticin and its analogs.  相似文献   

4.
The 13-residue cathelicidins indolicidin and tritrpticin are part of a group of relatively short tryptophan-rich antimicrobial peptides that hold potential as future substitutes for antibiotics. Differential scanning calorimetry (DSC) has been applied here to study the effect of indolicidin and tritrpticin as well as five tritrpticin analogs on the phase transition behaviour of model membranes made up of zwitterionic dimyristoylphosphatidylcholine (DMPC, DMPC/cholesterol) and anionic dimyristoylphosphatidyl glycerol (DMPG) phospholipids. Most of the peptides studied significantly modified the phase transition profile, suggesting the importance of hydrophobic forces for the peptide interactions with the lipid bilayers and their insertion into the bilayer. Indolicidin and tritrpticin are both known to be flexible in aqueous solution, but they adopt turn-turn structures when they bind to and insert in a membrane surface. Pro-to-Ala substitutions in tritrpticin, which result in the formation of a stable alpha-helix in this peptide, lead to a substantial increase in the peptide interactions with both zwitterionic and anionic phospholipid vesicles. In contrast, the substitution of the three Trp residues by Tyr or Phe resulted in a significant decrease of the peptide's interaction with anionic vesicles and virtually eliminated binding of these peptides to the zwitterionic vesicles. An increase of the cationic charge of the peptide induced much smaller changes to the peptide interaction with all lipid systems than substitution of particular amino acids or modification of the peptide conformation. The presence of multiple lipid domains with a non-uniform peptide distribution was noticed. Slow equilibration of the lipid-peptide systems due to peptide redistribution was observed in some cases. Generally good agreement between the present DSC data and peptide antimicrobial activity data was obtained.  相似文献   

5.
The 13-residue cathelicidins indolicidin and tritrpticin are part of a group of relatively short tryptophan-rich antimicrobial peptides that hold potential as future substitutes for antibiotics. Differential scanning calorimetry (DSC) has been applied here to study the effect of indolicidin and tritrpticin as well as five tritrpticin analogs on the phase transition behaviour of model membranes made up of zwitterionic dimyristoylphosphatidylcholine (DMPC, DMPC/cholesterol) and anionic dimyristoylphosphatidyl glycerol (DMPG) phospholipids. Most of the peptides studied significantly modified the phase transition profile, suggesting the importance of hydrophobic forces for the peptide interactions with the lipid bilayers and their insertion into the bilayer. Indolicidin and tritrpticin are both known to be flexible in aqueous solution, but they adopt turn-turn structures when they bind to and insert in a membrane surface. Pro-to-Ala substitutions in tritrpticin, which result in the formation of a stable α-helix in this peptide, lead to a substantial increase in the peptide interactions with both zwitterionic and anionic phospholipid vesicles. In contrast, the substitution of the three Trp residues by Tyr or Phe resulted in a significant decrease of the peptide's interaction with anionic vesicles and virtually eliminated binding of these peptides to the zwitterionic vesicles. An increase of the cationic charge of the peptide induced much smaller changes to the peptide interaction with all lipid systems than substitution of particular amino acids or modification of the peptide conformation. The presence of multiple lipid domains with a non-uniform peptide distribution was noticed. Slow equilibration of the lipid-peptide systems due to peptide redistribution was observed in some cases. Generally good agreement between the present DSC data and peptide antimicrobial activity data was obtained.  相似文献   

6.
The cathelicidin-derived antimicrobial tritrpticin could be classified as either Trp-rich or Pro/Arg-rich peptide. We recently found that the sequence modification of tritrpticin focused on Trp and Pro residues led to considerable change in structure and antimicrobial potency and selectivity, but their mechanisms of microbial killing action were still unclear. Here, to better understand the bactericidal mechanisms of tritrpticin and its two analogs, TPA and TWF, we studied their effect on the viability of Gram-positive S. aureus and Gram-negative E. coli in relation to their membrane depolarization. Although TWF more effectively inhibited growth of S. aureus and E. coli than TPA, only a 30 min exposure to TPA was sufficient to kill both bacteria and TWF required a lag period of about 3-6 h for bactericidal activity. Their different bactericidal kinetics was associated with membrane permeabilization, i.e., TWF showed negligible ability to depolarize the cytoplasmic membrane potential of target cell membrane, whereas we observed significant membrane depolarization for TPA. In addition, while TPA caused rapid and large dye leakage from negatively charged model vesicles, TWF showed very little membrane-disrupting activity. Interestingly, we have looked for a synergism among the three peptides against E. coli, supporting that they are working with different modes of action. Collectively, our results suggest that TPA disrupts the ion gradients across the membrane, causing depolarization and a loss of microbial viability. By contrast, TWF more likely translocates across the cytoplasmic membrane without depolarization and then acts against one or more intracellular targets. Tritrpticin exhibits intermediate properties and appears to act via membrane depolarization coupled to secondary intracellular targeting.  相似文献   

7.
Yang ST  Shin SY  Lee CW  Kim YC  Hahm KS  Kim JI 《FEBS letters》2003,540(1-3):229-233
In antimicrobial peptides, the cationic property due to basic amino acids has been widely recognized as an important factor to promote electrostatic interaction with negatively charged phospholipids. However, little is known about the differences between two basic residues, Arg and Lys, in membrane binding affinity. Tritrpticin is an Arg- or Trp-rich antimicrobial peptide with a broad spectrum of antibacterial and antifungal activity. To investigate the structural and functional differences between Arg and Lys residues, here we designed and synthesized Arg-containing peptides, tritrpticin and SYM11, and their counterpart Lys-substituted peptides, TRK and SYM11KK, respectively. Although there were no remarkable conformational differences between Arg-containing and Lys-substituted peptides, TRK and SYM11KK exhibited almost two-fold enhanced antibacterial activity but significantly reduced hemolytic activity as compared to tritrpticin and SYM11, respectively. Furthermore, Arg-containing peptides showed strong binding affinity to both zwitterionic and anionic liposomes, whereas Lys-substituted peptides interacted weakly with zwitterionic liposomes but strongly with anionic liposomes. These results suggest that the primary amine of Lys interacts less electrostatically with zwitterionic phospholipids than the guanidinium group of Arg. Our results obtained in this study may be helpful in the design of drugs that target negatively charged phospholipids.  相似文献   

8.
The cathelicidin-derived antimicrobial tritrpticin could be classified as either Trp-rich or Pro/Arg-rich peptide. We recently found that the sequence modification of tritrpticin focused on Trp and Pro residues led to considerable change in structure and antimicrobial potency and selectivity, but their mechanisms of microbial killing action were still unclear. Here, to better understand the bactericidal mechanisms of tritrpticin and its two analogs, TPA and TWF, we studied their effect on the viability of Gram-positive S. aureus and Gram-negative E. coli in relation to their membrane depolarization. Although TWF more effectively inhibited growth of S. aureus and E. coli than TPA, only a 30 min exposure to TPA was sufficient to kill both bacteria and TWF required a lag period of about 3-6 h for bactericidal activity. Their different bactericidal kinetics was associated with membrane permeabilization, i.e., TWF showed negligible ability to depolarize the cytoplasmic membrane potential of target cell membrane, whereas we observed significant membrane depolarization for TPA. In addition, while TPA caused rapid and large dye leakage from negatively charged model vesicles, TWF showed very little membrane-disrupting activity. Interestingly, we have looked for a synergism among the three peptides against E. coli, supporting that they are working with different modes of action. Collectively, our results suggest that TPA disrupts the ion gradients across the membrane, causing depolarization and a loss of microbial viability. By contrast, TWF more likely translocates across the cytoplasmic membrane without depolarization and then acts against one or more intracellular targets. Tritrpticin exhibits intermediate properties and appears to act via membrane depolarization coupled to secondary intracellular targeting.  相似文献   

9.
Tritrpticin and indolicidin are short 13-residue tryptophan-rich antimicrobial peptides that hold potential as future alternatives for antibiotics. Isothermal titration calorimetry (ITC) has been applied as the main tool in this study to investigate the thermodynamics of the interaction of these two cathelicidin peptides as well as five tritrpticin analogs with large unilamellar vesicles (LUVs), representing model and natural anionic membranes. The anionic LUVs were composed of (a) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPE/POPG) (7:3) and (b) natural E. coli polar lipid extract. 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was used to make model zwitterionic membranes. Binding isotherms were obtained to characterize the antimicrobial peptide binding to the LUVs, which then allowed for calculation of the thermodynamic parameters of the interaction. All peptides exhibited substantially stronger binding to anionic POPE/POPG and E. coli membrane systems than to the zwitterionic POPC system due to strong electrostatic attractions between the highly positively charged peptides and the negatively charged membrane surface, and results with tritrpticin derivatives further revealed the effects of various amino acid substitutions on membrane binding. No significant improvement was observed upon increasing the Tritrp peptide charge from +4 to +5. Replacement of Arg residues with Lys did not substantially change peptide binding to anionic vesicles but moderately decreased the binding to zwitterionic LUVs. Pro to Ala substitutions in tritrpticin, allowing the peptide to adopt an alpha-helical structure, resulted in a significant increase of the binding to both anionic and zwitterionic vesicles and therefore reduced the selectivity for bacterial and mammalian membranes. In contrast, substitution of Trp with other aromatic amino acids significantly decreased the peptide's ability to bind to anionic LUVs and essentially eliminated binding to zwitterionic LUVs. The ITC results were consistent with the outcome of fluorescence spectroscopy membrane binding and perturbation studies. Overall, our work showed that a natural E. coli polar lipid extract as a bacterial membrane model was advantageous compared to the simpler and more widely used POPE/POPG lipid system.  相似文献   

10.
The biological activities of synthetic retro and diastereo analogs of PKLLKTFLSKWIG (SPFK), a 13-residue peptide with antimicrobial and hemolytic activities, have been investigated. Retro peptides with C-terminal acid and amide exhibited antibacterial activities comparable with those of SPFK. Their hemolytic activities were, however, only marginally lower. The diastereo analog with C-terminal acid was not antibacterial and was weakly hemolytic. Amidation of this analog could restore antibacterial activity. Both retro analogs were unordered in aqueous medium but had a propensity for a helical structure in trifluoroethanol. However, diastereo analogs were unordered in both aqueous medium and trifluoroethanol. Thus, reversing the sequence in a short amphiphilic peptide may not always result in the selective loss of biological activity such as hemolytic activity. Also, introduction of enantiomeric amino acids in a short peptide to generate a diastereomer may result in loss of structure as well as antimicrobial and hemolytic activities, unless compensated by an increase in positive charges.  相似文献   

11.
Structural changes for a series of antimicrobial peptides in various solvents were investigated by a combined approach of FTIR and CD spectroscopy. The well-characterized and potent antimicrobial peptides indolicidin and tritrpticin were studied along with several analogs of tritrpticin, including Tritrp1 (amidated analog of tritrpticin), Tritrp2 (analog of Tritrp1 with Arg-->Lys substitutions), Tritrp3 (analog of Tritrp1 with Pro-->Ala substitutions) and Tritrp4 (analog of Tritrp1 with Trp-->Tyr substitutions). All peptides were studied in aqueous buffer, ethanol and in the presence of dodecylphosphocholine (DPC) micelles. It was shown that tritrpticin and its analogs preferentially adopt turn structures in all solvents studied. The turn structures formed by the tritrpticin analogs bound to DPC micelles are more compact and more conformationally restricted compared to indolicidin. While several peptides showed a slight propensity for an alpha-helical conformation in ethanol, this trend was only strong for Tritrp3, which also adopted a largely alpha-helical structure with DPC micelles. Tritrp3 also demonstrated along with Tritrp1 the highest ability to interact with DPC micelles, while Tritrp2 and Tritrp4 showed the weakest interaction.  相似文献   

12.
Tritrpticin and indolicidin are short 13-residue tryptophan-rich antimicrobial peptides that hold potential as future alternatives for antibiotics. Isothermal titration calorimetry (ITC) has been applied as the main tool in this study to investigate the thermodynamics of the interaction of these two cathelicidin peptides as well as five tritrpticin analogs with large unilamellar vesicles (LUVs), representing model and natural anionic membranes. The anionic LUVs were composed of (a) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPE/POPG) (7:3) and (b) natural E. coli polar lipid extract. 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was used to make model zwitterionic membranes. Binding isotherms were obtained to characterize the antimicrobial peptide binding to the LUVs, which then allowed for calculation of the thermodynamic parameters of the interaction. All peptides exhibited substantially stronger binding to anionic POPE/POPG and E. coli membrane systems than to the zwitterionic POPC system due to strong electrostatic attractions between the highly positively charged peptides and the negatively charged membrane surface, and results with tritrpticin derivatives further revealed the effects of various amino acid substitutions on membrane binding. No significant improvement was observed upon increasing the Tritrp peptide charge from + 4 to + 5. Replacement of Arg residues with Lys did not substantially change peptide binding to anionic vesicles but moderately decreased the binding to zwitterionic LUVs. Pro to Ala substitutions in tritrpticin, allowing the peptide to adopt an α-helical structure, resulted in a significant increase of the binding to both anionic and zwitterionic vesicles and therefore reduced the selectivity for bacterial and mammalian membranes. In contrast, substitution of Trp with other aromatic amino acids significantly decreased the peptide's ability to bind to anionic LUVs and essentially eliminated binding to zwitterionic LUVs. The ITC results were consistent with the outcome of fluorescence spectroscopy membrane binding and perturbation studies. Overall, our work showed that a natural E. coli polar lipid extract as a bacterial membrane model was advantageous compared to the simpler and more widely used POPE/POPG lipid system.  相似文献   

13.
The structures of 14-residue head-to-tail cyclic gramicidin S peptides have been investigated to develop the structural rationale for their antimicrobial and hemolytic profiles. The basis for these studies is GS14 (cyclo(VKLKVdYPLKVKLdYP)), designed as an extension of the naturally occurring antimicrobial peptide. The structure of GS14 has been determined using NMR methods and was found to exist in a highly amphipathic antiparallel beta-sheet conformation. Systematic enantiomeric substitutions within the framework of the GS14 peptide were found to decrease the amphipathicity of this molecule. These results indicated that there was a direct correlation between the high amphipathic character and potent hemolytic activity in the diastereomers, whereas an inverse correlation existed between amphipathicity and antimicrobial function. To define the structural consequences of changing the amphipathic nature of GS14 analogs to maximize antimicrobial activity and to minimize hemolysis, NMR structures were determined in water and the membrane-mimetic solvent trifluoroethanol. The structures show that these attributes are the result of induction of the beta-sheet character in a membrane environment and the positioning of charged side chains on the hydrophobic face of the cyclic framework, thus decreasing the amphipathicity and directed hydrophobicity of these molecules. Implications for the design of more effective antimicrobials are discussed.  相似文献   

14.
A novel antimicrobial peptide, designated macropin (MAC‐1) with sequence Gly‐Phe‐Gly‐Met‐Ala‐Leu‐Lys‐Leu‐Leu‐Lys‐Lys‐Val‐Leu‐NH2, was isolated from the venom of the solitary bee Macropis fulvipes. MAC‐1 exhibited antimicrobial activity against both Gram‐positive and Gram‐negative bacteria, antifungal activity, and moderate hemolytic activity against human red blood cells. A series of macropin analogs were prepared to further evaluate the effect of structural alterations on antimicrobial and hemolytic activities and stability in human serum. The antimicrobial activities of several analogs against pathogenic Pseudomonas aeruginosa were significantly increased while their toxicity against human red blood cells was decreased. The activity enhancement is related to the introduction of either l ‐ or d ‐lysine in selected positions. Furthermore, all‐d analog and analogs with d ‐amino acid residues introduced at the N‐terminal part of the peptide chain exhibited better serum stability than did natural macropin. Data obtained by CD spectroscopy suggest a propensity of the peptide to adopt an amphipathic α‐helical secondary structure in the presence of trifluoroethanol or membrane‐mimicking sodium dodecyl sulfate. In addition, the study elucidates the structure–activity relationship for the effect of d ‐amino acid substitutions in MAC‐1 using NMR spectroscopy. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
VmCT1 is a cationic antimicrobial peptide (AMP) from the venom of the scorpion Vaejovis mexicanus. VmCT1 and analogs were designed with single substitutions for verifying the influence of changes in physicochemical features described as important for AMPs antimicrobial and hemolytic activities, as well as their effect on VmCT1 analogs resistance against proteases action. The increase of the net positive charge by the introduction of an arginine residue in positions of the hydrophilic face of the helical structure affected directly the antimicrobial activity. Arg-substituted analogs presented activity against Gram-negative bacteria from the ESKAPE list of pathogens that were not observed for VmCT1. Additionally, peptides with higher net positive charge presented increased antimicrobial activity with values ranging from 0.39 to 12.5 μmol L−1 against Gram-positive and Gram-negative bacteria and fungi. The phenylalanine substitution by glycine (position 1), and the valine substitution by a proline residue (position 8) led to analogs with lower hemolytic activity (at concentrations 50 and 100 μmol L−1, respectively). These results revealed that it is possible to modulate the biological activities of VmCT1 derivatives by designing single substituted-analogs as prospective therapeutics against bacteria and fungi.  相似文献   

16.
Structural changes for a series of antimicrobial peptides in various solvents were investigated by a combined approach of FTIR and CD spectroscopy. The well-characterized and potent antimicrobial peptides indolicidin and tritrpticin were studied along with several analogs of tritrpticin, including Tritrp1 (amidated analog of tritrpticin), Tritrp2 (analog of Tritrp1 with Arg → Lys substitutions), Tritrp3 (analog of Tritrp1 with Pro → Ala substitutions) and Tritrp4 (analog of Tritrp1 with Trp → Tyr substitutions). All peptides were studied in aqueous buffer, ethanol and in the presence of dodecylphosphocholine (DPC) micelles. It was shown that tritrpticin and its analogs preferentially adopt turn structures in all solvents studied. The turn structures formed by the tritrpticin analogs bound to DPC micelles are more compact and more conformationally restricted compared to indolicidin. While several peptides showed a slight propensity for an α-helical conformation in ethanol, this trend was only strong for Tritrp3, which also adopted a largely α-helical structure with DPC micelles. Tritrp3 also demonstrated along with Tritrp1 the highest ability to interact with DPC micelles, while Tritrp2 and Tritrp4 showed the weakest interaction.  相似文献   

17.
BackgroundHigh antimicrobial efficacy of short tryptophan-and arginine-rich peptides makes them good candidates in the fight against pathogens. Substitution of tryptophan and arginine by histidine could be used to modulate the peptides efficacy by optimizing their structures.MethodsThe peptide (RRWWRWWRR), reported to showed good antimicrobial efficacy, was used as template, seven new analogs being designed substituting tryptophan or arginine with histidine. The peptides' efficacy was tested against E. coli, B. subtilis and S. aureus. The cytotoxicity and hemolytic effect were evaluated and the therapeutic index was inferred for each peptide. Atomic force microscopy and molecular simulation were used to analyze the effects of peptides on bacterial membrane.ResultsThe substitution of tryptophan by histidine proved to strongly modulate the antimicrobial activity, mainly by changing the peptide-to-membrane binding energy. The substitution of arginine has low effect on the antimicrobial efficacy. The presence of histidine residue reduced the cytotoxic and hemolytic activity of the peptides in some cases maintaining the same efficacy against bacteria. The peptides' antimicrobial activity was correlated to the 3D-hydrophobic moment and to a simple structure-based packing parameter.ConclusionThe results show that some of these peptides have the potential to become good candidates to fight against bacteria. The substitution by histidine proved to fine tune the therapeutic index allowing the optimization of the peptide structure mainly by changing its binding energy and 3D-hydrophobic moment.General significanceThe short tryptophan reach peptides therapeutic index can be maximized using the histidine substitution to optimize their structure.  相似文献   

18.
We have developed a highly constrained 18-residue cyclic peptide template based on the antimicrobial peptide tachyplesin-1 that features an end-to-end peptide backbone and a cystine knot-like motif with three evenly spaced disulfide bonds to cross-brace the antiparallel beta-strands and to approximate an amphiphatic "beta-tile"-like structure. Six beta-tile analogs were prepared to correlate different topological patterns with membranolytic specificity. Their conformations and antimicrobial and hemolytic activities were compared with tachyplesin-1 and the recently discovered Rhesus monkey theta defensin (RTD) which contains similar beta-tile structural elements. The beta-tile peptides and RTD retained broad spectrum antimicrobial activities. In general, they were less active than tachyplesin-1 in 10 tested organisms but their activity increased under high-salt (100 mM NaCl) rather than in low-salt conditions. The beta-tile peptides are highly nontoxic to human erythrocytes with EC(25) ranging from 600 to 4000 microM. Collectively, our results show that the design of a highly rigid peptide template is useful for further analog study to dissociate antimicrobial activity from cytotoxicity which would be helpful in discovering clinical applications for peptide antibiotics.  相似文献   

19.
Q. Q. Ma  Y. F. Lv  Y. Gu  N. Dong  D. S. Li  A. S. Shan 《Amino acids》2013,44(4):1215-1224
Antimicrobial peptides represent ancient host defense effector molecules present in organisms across the evolutionary spectrum. Lots of antimicrobial peptides were synthesized based on well-known structural motif widely existed in a variety of lives. Leucine-rich repeats (LRRs) are sequence motifs present in over 60,000 proteins identified from viruses, bacteria, and eukaryotes. To elucidate if LRR motif possesses antimicrobial potency, two peptides containing one or two LRRs were designed. The biological activity and membrane–peptide interactions of the peptides were analyzed. The results showed that the tandem of two LRRs exhibited similar antibacterial activity and significantly weaker hemolytic activity against hRBCs than the well-known membrane active peptide melittin. The peptide with one LRR was defective at antimicrobial and hemolytic activity. The peptide containing two LRRs formed α-helical structure, respectively, in the presence of membrane-mimicking environment. LRR-2 retained strong resistance to cations, heat, and some proteolytic enzymes. The blue shifts of the peptides in two lipid systems correlated positively with their biological activities. Other membrane-peptide experiments further provide the evidence that the peptide with two LRRs kills bacteria via membrane-involving mechanism. The present study increases our new understanding of well-known LRR motif in antimicrobial potency and presents a potential strategy to develop novel antibacterial agents.  相似文献   

20.
Antimicrobial peptides encompass a number of different classes, including those that are rich in a particular amino acid. An important subset are peptides rich in Arg and Trp residues, such as indolicidin and tritrpticin, that have broad and potent antimicrobial activity. The importance of these two amino acids for antimicrobial activity was highlighted through the screening of a complete combinatorial library of hexapeptides. These residues possess some crucial chemical properties that make them suitable components of antimicrobial peptides. Trp has a distinct preference for the interfacial region of lipid bilayers, while Arg residues endow the peptides with cationic charges and hydrogen bonding properties necessary for interaction with the abundant anionic components of bacterial membranes. In combination, these two residues are capable of participating in cation-π interactions, thereby facilitating enhanced peptide-membrane interactions. Trp sidechains are also implicated in peptide and protein folding in aqueous solution, where they contribute by maintaining native and nonnative hydrophobic contacts. This has been observed for the antimicrobial peptide from human lactoferrin, possibly restraining the peptide structure in a suitable conformation to interact with the bacterial membrane. These unique properties make the Arg- and Trp-rich antimicrobial peptides highly active even at very short peptide lengths. Moreover, they lead to structures for membrane-mimetic bound peptides that go far beyond regular α-helices and β-sheet structures. In this review, the structures of a number of different Trp- and Arg-rich antimicrobial peptides are examined and some of the major mechanistic studies are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号