首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 445 毫秒
1.
目的:探讨中药提取物beta- 榄香烯对胶质瘤SHG44 细胞增殖抑制作用及对Bax 和Bcl-2 蛋白表达的影响,并进一步探讨发 生的机制。方法:用不同浓度的beta-榄香烯对体外培养的SHG44 细胞进行干预,分别采用MTT、流式细胞仪检测法,观察beta-榄香 烯对SHG44细胞增殖的抑制和凋亡诱导作用,并通过Western blot检测凋亡相关蛋白Bax 与Bcl-2 蛋白表达情况。结果:经beta- 榄香烯处理SHG44细胞后,MTT 结果其发现SHG44细胞生长受药物浓度和时间的影响,细胞生长明显被抑制,且(P<0.05),流 式细胞术显示,茁- 榄香烯诱导SHG44细胞后,细胞凋亡指数伴随药物作用时间的延长凋亡显著增加;Western blot 结果发现,beta- 榄香烯对SHG44 细胞的诱导后,使促凋亡蛋白Bax 和抑凋亡蛋白Bcl-2 与对照组相比发生了显著改变,且实验组Bax 蛋白表达 明显高于对照组,而抑凋亡蛋白Bcl-2 的表达伴随beta- 榄香烯的作用时间的增加,表达也逐渐减少。结论:beta- 榄香烯能显著抑制胶 质瘤SHG44 细胞的增殖,促进其凋亡;其机制可能与调控Bcl-2 和Bax表达有关。  相似文献   

2.
王毅  鲍进  盛巡  李萍  马辉 《激光生物学报》2005,14(4):274-278
目的:用光学二次谐波成像的方法比较成熟皮肤与新生皮肤内不同种类胶原的含量,以及正常皮肤与创伤皮肤内胶原种类的变化。方法:用前向及背向二次谐波观察正常及创伤皮肤内的胶原,并与传统的天狼猩红染色法相对照。结果:与传统方法相比,二次谐波可以更快速,更灵敏地检测组织中的胶原。背向二次谐波信号强度随着切片厚度的增加而增强。结论:光学二次谐波成像技术是一种灵敏、简单、快速检测皮肤组织内胶原的新方法,具有很好的应用前景,可应用于活体检测。  相似文献   

3.
二次谐波显微成像技术   总被引:1,自引:0,他引:1  
二次谐波非线性显微成像技术是近年发展起来的一种新型光学成像方法,已广泛应用于生物医学的各个领域。介绍了光学二次谐波产生的原理、成像装置及其技术发展,描述了二次谐波的成像特点和它与双光子荧光成像的异同,并对其在生物医学上的应用及发展前景做出展望。  相似文献   

4.
由于生物组织的复杂性和多样性,以及样品制备等因素的影响,实验观察到的生物组织的背向二次谐波(second harmonic generation,SHG)和双光子激发荧光(two-photon excitation fluorescence,TPEF)效应的差异较大。以鼠尾组织作为实验对象,共40个切片,分为横向和纵向、HE染色和未染色四组,采用飞秒激光器作为激发光,用双光子激光扫描共焦显微镜(two-photon laser scanning confocal microscope,TPLSCM)观察和分析了样品在不同的制备方式、激发波长、激发功率、扫描深度等条件下的背向SHG和TPEF的变化曲线,讨论和比较了生物组织的背向SHG和TPEF的影响因素以及二者之间的异同,并尝试对实验现象做出了一定的解释。  相似文献   

5.
6.
All‐optical microspectroscopic and tomographic tools have a great potential for the clinical investigation of human skin and skin diseases. However, automated optical tomography or even microscopy generate immense data sets. Therefore, in order to implement such diagnostic tools into the medical practice in both hospitals and private practice, there is a need for automated data handling and image analysis ideally implementing automized scores to judge the physiological state of a tissue section. In this contribution, the potential of an image processing algorithm for the automated classification of skin into normal or keloid based on second‐harmonic generation (SHG) microscopic images is demonstrated. Such SHG data is routinely recorded within a multimodal imaging approach. The classification of the tissue implemented in the algorithm employs the geometrical features of collagen patterns that differ depending on the constitution, i.e., physiological status of the skin. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Keratoconus is an eye disorder that causes the cornea to take an abnormal conical shape, thus impairing its refractive functions and causing blindness. The late diagnosis of keratoconus is among the principal reasons for corneal surgical transplantation. This pathology is characterized by a reduced corneal stiffness in the region immediately below Bowman's membrane, probably due to a different lamellar organization, as suggested by previous studies. Here, the lamellar organization in this corneal region is characterized in three dimensions by means of second‐harmonic generation (SHG) microscopy. In particular, a method based on a three‐dimensional correlation analysis allows to probe the orientation of sutural lamellae close to the Bowman's membrane, finding statistical differences between healthy and keratoconic samples. This method is demonstrated also in combination with an epi‐detection scheme, paving the way for a potential clinical ophthalmic application of SHG microscopy for the early diagnosis of keratoconus.

SHG image acquired with sagittal optical sectioning ( A ) of a healthy cornea and ( B ) of a keratoconic cornea. Scale bars: 30 μm.  相似文献   


8.
In this study multiphoton tomography, based on second harmonic generation (SHG), and two-photon-excited fluorescence (TPEF) was used to visualize both the extracellular matrix and tumor cells in different morphological and molecular subtypes of human breast cancer. It was shown, that quantified assessment of the SHG based imaging data has great potential to reveal differences of collagen quantity, organization and uniformity in both low- and highly- aggressive invasive breast cancers. The values of quantity and uniformity of the collagen fibers distribution were significantly higher in low-aggressive breast cancer compared to the highly-aggressive subtypes, while the value representing collagen organization was lower in the former type. Additionally, it was shown, that TPEF detection of elastin fibers and amyloid protein may be used as a biomarker of detection the low-aggressive breast cancer subtype. Thus, TPEF/SHG imaging offers the possibility of becoming a useful tool for the rapid diagnosis of various subtypes of breast cancer during biopsy as well as for the intraoperative determinination of tumor-positive resection margins.  相似文献   

9.
Cyclic octapeptide carrying one or two nonlinear optical chromophores, disperse red 1 (DR‐1), was synthesized and immobilized on a substrate to attain an active surface for second‐harmonic generation (SHG). Each cyclic octapeptide was transferred on a fused quartz substrate by the Langmuir–Blodgett (LB) method to afford a uniform monolayer. Infrared reflection–absorption spectroscopy of the LB monolayer revealed that the cyclic skeleton lay roughly flat on the surface. The SHG intensity from the monolayer of the cyclic peptide with two DR‐1 units was stronger than that from that with one DR‐1 unit. The difference is discussed in terms of molecular orientation and surface density of the active chromophores. The cyclic peptide is shown here to be an effective scaffold to modify a substrate surface with functional groups of a monolayer with taking stability of the monolayer and orientation of the functional group into consideration. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Several specific alterations of the extracellular matrix can be considered a distinctive hallmark of cancer. In particular, a different morphology of the collagen scaffold is frequently found within the peritumoural environment. In this study, we report about a significant difference in the ultrastructural organization of collagen at the supra‐molecular level between the perilesional scaffold and the tumour area in human breast carcinoma samples. In particular, we demonstrated that polarization‐resolved second‐harmonic generation (P‐SHG) microscopy is able to link the altered collagen architecture at the ultrastructural level found in perilesional tissue with a different organization of collagen fibrils at the molecular level.  相似文献   

11.
Non-alcoholic steatohepatitis (NASH) is a common liver disorder caused by fatty liver. Because NASH is associated with fibrotic and morphological changes in liver tissue, a direct imaging technique is required for accurate staging of liver tissue. For this purpose, in this study we took advantage of two label-free optical imaging techniques, second harmonic generation (SHG) and auto-fluorescence (AF), using two-photon excitation microscopy (TPEM). Three-dimensional ex vivo imaging of tissues from NASH model mice, followed by image processing, revealed that SHG and AF are sufficient to quantitatively characterize the hepatic capsule at an early stage and parenchymal morphologies associated with liver disease progression, respectively.  相似文献   

12.
Due to specific structural organization at the molecular level, several biomolecules (e.g., collagen, myosin etc.) which are strong generators of second harmonic generation (SHG) signals, exhibit unique responses depending on the polarization of the excitation light. By using the polarization second harmonic generation (p‐SHG) technique, the values of the second order susceptibility components can be used to differentiate the types of molecule, which cannot be done by the use of a standard SHG intensity image. In this report we discuss how to implement p‐SHG on a commercial multiphoton microscope and overcome potential artifacts in susceptibility (χ) image. Furthermore we explore the potential of p‐SHG microscopy by applying the technique to different types of tissue in order to determine corresponding reference values of the ratio of second‐order χ tensor elements. These values may be used as a bio‐marker to detect any structural alterations in pathological tissue for diagnostic purposes.

The SHG intensity image (red) in ( a ) shows the distribution of collagen fibers in ovary tissue but cannot determine the type of collagen fiber. However, the histogram distribution ( b ) for the values of the χ tensor element ratio can be used to quantitatively identify the types of collagen fibers.  相似文献   


13.
Collagen is the protein primarily responsible for the load-bearing properties of tissues and collagen architecture is one of the main determinants of the mechanical properties of tissues. Visualisation of changes in collagen three-dimensional structure is essential in order to improve our understanding of collagen fibril formation and remodelling, e.g. in tissue engineering experiments. A recently developed collagen probe, based on a natural collagen binding protein (CNA35) conjugated to a fluorescent dye, showed to be much more specific to collagen than existing fluorescent techniques currently used for collagen visualisation in live tissues. In this paper, imaging with this fluorescent CNA35 probe was compared to imaging with second harmonic generation (SHG) and the imaging of two- and three-dimensional collagen organisation was further developed. A range of samples (cell culture, blood vessels and engineered tissues) was imaged to illustrate the potential of this collagen probe. This images of collagen organisation showed improved detail compared to images generated with SHG, which is currently the most effective method for viewing three-dimensional collagen organisation in tissues. In conclusion, the fluorescent CNA35 probe allows easy access to high resolution imaging of collagen, ranging from very young fibrils to more mature collagen fibres. Furthermore, this probe enabled real-time visualisation of collagen synthesis in cell culture, which provides new opportunities to study collagen synthesis and remodelling.  相似文献   

14.
The plasma membrane is a lipid bilayer of < 10 nm width that separates intra- and extra-cellular environments and serves as the site of cell-cell communication, as well as communication between cells and the extracellular environment. As such, biophysical phenomena at and around the plasma membrane play key roles in determining cellular physiology and pathophysiology. Thus, the selective visualization and characterization of the plasma membrane are crucial aspects of research in wide areas of biology and medicine. However, the specific characterization of the plasma membrane has been a challenge using conventional imaging techniques, which are unable to effectively distinguish between signals arising from the plasma membrane and those from intracellular lipid structures. In this regard, interface-specific second harmonic generation (SHG) and sum-frequency generation (SFG) imaging demonstrate great potential. When combined with exogenous SHG/SFG active dyes, SHG/SFG can specifically highlight the plasma membrane as the most prominent interface associated with cells. Furthermore, SHG/SFG imaging can be readily extended to multimodal multiphoton microscopy with simultaneous occurrence of other multiphoton phenomena, including multiphoton excitation and coherent Raman scattering, which shed light on the biophysical properties of the plasma membrane from different perspectives. Here, we review traditional and current applications, as well as the prospects of long-known but unexplored SHG/SFG imaging techniques in biophysics, with special focus on their use in the biophysical characterization of the plasma membrane.  相似文献   

15.
Our previous study on rat skin showed that cumulative oxidative pressure induces profound structural and ultrastructural alterations in both rat skin epidermis and dermis during aging. Here, we aimed to investigate the biophotonic properties of collagen as a main dermal component in the function of chronological aging. We used second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) on 5 μm thick skin paraffin sections from 15-day-, 1-month- and 21-month-old rats, respectively, to analyze collagen alterations, in comparison to conventional light and electron microscopy methods. Obtained results show that polarization-resolved SHG (PSHG) images can detect collagen fiber alterations in line with chronological aging and that this method is consistent with light and electron microscopy. Moreover, the β coefficient calculated from PSHG images points out that delicate alterations lead to a more ordered structure of collagen molecules due to oxidative damage. The results of this study also open the possibility of successfully applying this fast and label-free method to previously fixed samples.  相似文献   

16.
Following our established theoretical model to deal with the second-harmonic generation (SHG) excited by a linearly polarized focused beam in type I collagen, in this paper, we further quantitatively characterize the differences between SHG emissions in type I collagen excited by collimated and focused beams. The effects of the linear polarization angle (α) and the fibril polarity characterized by the hyperpolarizability ratio ρ on SHG emission has been compared under collimated and focused beam excitation, respectively. In particular, SHG emission components along the i axis ( I2w,i )\left( {I_{2\omega {,}i} } \right) (i = x,y,z), the induced SHG emission deviation angle γ ij , and the detected SHG signals (I 2ω,ij ) in the ij plane by rotating the applied polarizer angle φ ij have been investigated (i = x, x, y; j = y, z, z). Results show that under our simulation model, SHG emission in the xy plane, such as I 2ω,x ,I 2ω,y ,γ xy and I 2ω,xy varying as polarization angle (α) under collimated and focused light, presents no significant difference. The reverse of the fibril polarity has induced great impact on I 2ω,x ,γ xy and I 2ω,xy in both collimated and focused light. I 2ω,x and γ xy show similarity, but I 2ω,xy at α = 30° demonstrates a slight difference in focused light to that in collimated light. Under focused light, the reverse of fibril polarity causes obvious changes of the collected SHG intensity I 2ω,xz and I 2ω,yz at a special polarization angle α = 60° and γ xz , γ yz along α.  相似文献   

17.

Background

It is not understood why some pulmonary fibroses such as cryptogenic organizing pneumonia (COP) respond well to treatment, while others like usual interstitial pneumonia (UIP) do not. Increased understanding of the structure and function of the matrix in this area is critical to improving our understanding of the biology of these diseases and developing novel therapies. The objectives herein are to provide new insights into the underlying collagen- and matrix-related biological mechanisms driving COP versus UIP.

Methods

Two-photon second harmonic generation (SHG) and excitation fluorescence microscopies were used to interrogate and quantify differences between intrinsic fibrillar collagen and elastin matrix signals in healthy, COP, and UIP lung.

Results

Collagen microstructure was different in UIP versus healthy lung, but not in COP versus healthy, as indicated by the ratio of forward-to-backward propagating SHG signal (FSHG/BSHG). This collagen microstructure as assessed by FSHG/BSHG was also different in areas with preserved alveolar architecture adjacent to UIP fibroblastic foci or honeycomb areas versus healthy lung. Fibrosis was evidenced by increased col1 and col3 content in COP and UIP versus healthy, with highest col1:col3 ratio in UIP. Evidence of elastin breakdown (i.e. reduced mature elastin fiber content), and increased collagen:mature elastin ratios, were seen in COP and UIP versus healthy.

Conclusions

Fibrillar collagen’s subresolution structure (i.e. “microstructure”) is altered in UIP versus COP and healthy lung, which may provide novel insights into the biological reasons why unlike COP, UIP is resistant to therapies, and demonstrates the ability of SHG microscopy to potentially distinguish treatable versus intractable pulmonary fibroses.  相似文献   

18.
Repeated fluctuation in plasma glucose levels, as well as chronic hyperglycemia, is an important phenomenon frequently observed in diabetic patients. Recently, several studies have reported that glucose fluctuation, compared to chronic hyperglycemia, mediates more adverse effects due to induced oxidative and/or endoplasmic reticulum (ER) stress. In type 2 diabetes, stimulation of insulin secretion by glucagon-like peptide-1 (GLP-1) has been found to be reduced, and the results of recent studies have shown that the expression of the GLP-1 receptor (GLP-1R) is reduced by chronic hyperglycemia. However, GLP-1R signaling in glucose fluctuation has not been elucidated clearly. In this study, we hypothesized that intermittent high glucose (IHG) conditions also reduced GLP-1-mediated cellular signaling via reduction in GLP-1R expression. To evaluate this hypothesis, rat insulinoma cells (INS-1) were exposed for 72 h to either sustained high glucose (SHG) conditions (30 mM glucose) or IHG conditions (11 and 30 mM glucose, alternating every 12 h). In comparison to both the SHG and control groups, IHG conditions induced a more significant impairment of insulin release and calcium influx in response to 1 nM GLP-1 treatment. In addition, the activity of caspase 3/7 as well as the gene expression of binding protein (Bip) and C/EBP homologous protein (CHOP), molecular markers of ER stress, was significantly higher in IHG-treated cells than in SHG-treated cells. Interestingly, the expression level of GLP-1R was significantly lower under IHG conditions than under SHG conditions. Collectively, these findings indicated that glucose fluctuation reduces GLP-1R expression through ER stress more profoundly than sustained hyperglycemia, which may contribute to the diminished response of GLP-1.  相似文献   

19.
Second-harmonic generation (SHG) microscopy has emerged as a powerful modality for imaging fibrillar collagen in a diverse range of tissues. Because of its underlying physical origin, it is highly sensitive to the collagen fibril/fiber structure, and, importantly, to changes that occur in diseases such as cancer, fibrosis and connective tissue disorders. We discuss how SHG can be used to obtain more structural information on the assembly of collagen in tissues than is possible by other microscopy techniques. We first provide an overview of the state of the art and the physical background of SHG microscopy, and then describe the optical modifications that need to be made to a laser-scanning microscope to enable the measurements. Crucial aspects for biomedical applications are the capabilities and limitations of the different experimental configurations. We estimate that the setup and calibration of the SHG instrument from its component parts will require 2-4 weeks, depending on the level of the user's experience.  相似文献   

20.
The requirement of center asymmetry for the creation of second harmonic generation (SHG) signals makes it an attractive technique for visualizing changes in interfacial layers such as the plasma membrane of biological cells. In this article, we explore the use of lipophilic SHG probes to detect minute perturbations in the plasma membrane. Three candidate probes, Di-4-ANEPPDHQ (Di-4), FM4-64, and all-trans-retinol, were evaluated for SHG effectiveness in Jurkat cells. Di-4 proved superior with both strong SHG signal and limited bleaching artifacts. To test whether rapid changes in membrane symmetry could be detected using SHG, we exposed cells to nanosecond-pulsed electric fields, which are believed to cause formation of nanopores in the plasma membrane. Upon nanosecond-pulsed electric fields exposure, we observed an instantaneous drop of ∼50% in SHG signal from the anodic pole of the cell. When compared to the simultaneously acquired fluorescence signals, it appears that the signal change was not due to the probe diffusing out of the membrane or changes in membrane potential or fluidity. We hypothesize that this loss in SHG signal is due to disruption in the interfacial nature of the membrane. The results show that SHG imaging has great potential as a tool for measuring rapid and subtle plasma membrane disturbance in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号