首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. The pH-dependences of the second-order rate constant (k) for the reactions of papain (EC 3.4.22.2) with 2-(acetamido)ethyl 2'-pyridyl disulphide and with ethyl 2-pyridyl disulphide and of k for the reaction of benzimidazol-2-ylmethanethiol (as a minimal model of cysteine proteinase catalytic sites) with the former disulphide were determined in aqueous buffers at 25 degrees C at I 0.1. 2. Of these three pH-k profiles only that for the reaction of papain with 2-(acetamido)ethyl 2'-pyridyl disulphide has a rate maximum at pH approx. 6; the others each have a rate minimum in this pH region and a rate maximum at pH 4, which is characteristic of reactions of papain with other 2-pyridyl disulphides that do not contain a P1-P2 amide bond in the non-pyridyl part of the molecule. 3. The marked change in the form of the pH-k profile consequent upon introduction of a P1-P2 amide bond into the probe molecule for the reaction with papain but not for that with the minimal catalytic-site model is interpreted in terms of the induction by binding of the probe in the S1-S2 intersubsite region of the enzyme of a transition-state geometry in which nucleophilic attack by the -S- component of the catalytic site is assisted by association of the imidazolium ion component with the leaving group. 4. The greater definition of the rate maximum in the pH-k profile for the reaction of papain with an analogous 2-pyridyl disulphide reactivity probe containing both a P1-P2 amide bond and a potential occupant for the S2 subsite [2-(N'-acetyl-L-phenylalanylamino)ethyl 2'-pyridyl disulphide [Brocklehurst, Kowlessur, O'Driscoll, Patel, Quenby, Salih, Templeton, Thomas & Willenbrock (1987) Biochem. J. 244, 173-181]) suggests that a P2-S2 interaction substantially increases the population of transition states for the imidazolium ion-assisted reaction. 5. The overall kinetic solvent 2H-isotope effect at pL 6.0 was determined to be: for the reaction of papain with 2,2'-dipyridyl disulphide, 0.96 (i.e. no kinetic isotope effect), for its reaction with the probe containing only the P1-P2 amide bond, 0.75, for its reaction with the probe containing both the P1-P2 amide bond and the occupant for the S2 subsite, 0.61, and for kcat./Km for its catalysis of the hydrolysis of N-methoxycarbonylglycine 4-nitrophenyl ester, 0.67.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
1. 2-(N'-Acetyl-L-phenylalanylamino)ethyl 2'-pyridyl disulphide [compound (III)] and 2-(acetamido)ethyl 2'-pyridyl disulphide [compound (IV)] were synthesized by acylation of the common intermediate, 2-aminoethyl 2'-pyridyl disulphide, to provide examples of chromogenic thiol-specific substrate-derived two-protonic-state electrophilic probe reagents. These two reagents, together with n-propyl 2-pyridyl disulphide [compound (II)], provide structural variation in the non-pyridyl part of the molecule from a simple hydrocarbon side chain in compound (II) to a P1-P2 amide bond in compound (IV) and further to both a P1-P2 amide bond and a hydrophobic side chain (of phenylalanine) at P2 as a potential occupant of S2 subsites. 2. These disulphides were used as reactivity probes to investigate specificity and binding-site-catalytic-site signalling in a number of cysteine proteinases by determining (a) the reactivity at pH 6.0 at 25 degrees C at I 0.1 of compound (III) (a close analogue of a good papain substrate) towards 2-mercaptoethanol, benzimidazol-2-ylmethanethiol [compound (V), as a minimal catalytic-site model], chymopapains B1-B3, chymopapain A, papaya proteinase omega, actinidin, cathepsin B and papain, (b) the effect of changing the structure of the probe as indicated above on the reactivities of compound (V) and of the last five of these enzymes, and (c) the forms of pH-dependence of the reactivities of papain and actinidin towards compound (III). 3. The kinetic data suggest that reagents of the type investigated may be sensitive probes of molecular recognition features in this family of enzymes and are capable not only of detecting differences in binding ability of the various enzymes but also of identifying enzyme-ligand contacts that provide for binding-site-catalytic-site signalling mechanisms. 4. The particular value of this class of probe appears to derive from the possibility of activating the 2-mercaptopyridine leaving group not only by formal protonation, as was recognized previously [see Brocklehurst (1982) Methods Enzymol. 87C, 427-469], but also by hydrogen-bonding to the pyridyl nitrogen atom when the appropriate geometry in the catalytic site is provided by enzyme-ligand contacts involving the non-pyridyl part of the molecule.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
1. The influence on the reactivities of the catalytic sites of papain (EC 3.4.22.2) and actinidin (3.4.22.14) of providing for interactions involving the S1-S2 intersubsite regions of the enzymes was evaluated by using as a series of thiol-specific two-hydronic-state reactivity probes: n-propyl 2-pyridyl disulphide (I) (a 'featureless' probe), 2-(acetamido)ethyl 2'-pyridyl disulphide (II) (containing a P1-P2 amide bond), 2-(acetoxy)ethyl 2'-pyridyl disulphide (III) [the ester analogue of probe (II)] and 2-carboxyethyl 2'-pyridyl disulphide N-methylamide (IV) [the retroamide analogue of probe (II)]. Syntheses of compounds (I), (III) and (IV) are reported. 2. The reactivities of the two enzymes towards the four reactivity probes (I)-(IV) and also that of papain towards 2-(N'-acetyl-L-phenylalanylamino)ethyl 2'-pyridyl disulphide (VII) (containing both a P1-P2 amide bond and an L-phenylalanyl side chain as an occupant for the S2 subsite), in up to four hydronic (previously called protonic) states, were evaluated by analysis of pH-dependent stopped-flow kinetic data (for the release of pyridine-2-thione) by using an eight-parameter rate equation [described in the Appendix: Brocklehurst & Brocklehurst (1988) Biochem. J. 256, 556-558] to provide pH-independent rate constants and macroscopic pKa values. The analysis reveals the various ways in which the two enzymes respond very differently to the binding of ligands in the S1-S2 intersubsite regions despite the virtually superimposable crystal structures in these regions of the molecules. 3. Particularly striking differences between the behaviour of papain and that of actinidin are that (a) only papain responds to the presence of a P1-P2 amide bond in the probe such that a rate maximum at pH 6-7 is produced in the pH-k profile in place of the rate minimum, (b) only in the papain reactions does the pKa value of the alkaline limb of the pH-k profile change from 9.5 to approx. 8.2 [the value characteristic of a pH-(kcat./Km) profile] when the probe contains a P1-P2 amide bond, (c) only papain reactivity is affected by two positively co-operative hydronic dissociations with pKI congruent to pKII congruent to 4 and (d) modulation of the reactivity of the common -S(-)-ImH+ catalytic-site ion-pair (Cys-25/His-159 in papain and Cys-25/His-162 in actinidin) by hydronic dissociation with pKa approx. 5 is more marked and occurs more generally in reactions of actinidin than is the case for papain reactions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
1. 2-(N'-Acetyl-D-phenylalanylamino)ethyl 2'-pyridyl disulphide (compound I) [m.p. 123-124 degrees C; [alpha]20D -7.1 degrees (c 0.042 in methanol)] was synthesized, and the results of a study of the pH-dependence of the second-order rate constant (k) for its reaction with the catalytic-site thiol group of papain (EC 3.4.22.2), together with existing kinetic data for the analogous reaction of the L-enantiomer (compound II), were used to evaluate the consequences for transition-state geometry of the difference in chirality at the P2 position of the probe molecule. 2. The kinetic data suggest that the D-enantiomer binds approx. 40-fold less tightly to papain than the L-enantiomer but that the binding-site--catalytic-site signalling that results in a (His-159)-Im(+)-H-assisted transition state occurs equally effectively in the interaction of the former probe as in that of the latter. This results in pH-k profiles for the reactions of both enantiomers each characterized by four macroscopic pKa values (3.7-3.9, 4.1-4.3, 7.9-8.3 and 9.4-9.5) in which k is maximal at pH approx. 6 where the -Im(+)-H-assisted transition state is most fully developed. 3. Model building indicates that both enantiomers can bind to papain such that the phenyl ring of the N-acetylphenylalanyl group makes hydrophobic contacts in the binding pocket of the S2 subsite with preservation of the three hydrogen-bonding interactions involving the substrate analogue reagent and (Asp-158) C = O, (Gly-66) C = O, and (Gly-66)-N-H of papain. Earlier predictions that binding of N-acyl-D-phenylalanine derivatives to papain would be prevented on steric grounds [Berger & Schechter (1970) Philos. Trans. R. Soc. London B 257, 249-264; Lowe & Yuthavong (1971) Biochem. J. 124, 107-115; Lowe (1976) Tetrahedron 32, 291-302] were based on assumed models that are not consistent with the X-ray-diffraction data for papain inhibited by alkylation of Cys-25 with N-benzyloxycarbonyl-Phe-Ala-chloromethane [Drenth, Kalk & Swen (1976) Biochemistry 15, 3731-3738]. 4. The possibility that the kinetic expression of P2-S2 stereospecificity may depend on the nature of the chemistry occurring in the catalytic site of papain is discussed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The kinetics of the reactions of the active-centre thiol groups of papain (EC 3.4.22.2) and ficin (EC 3.4.22.3) with the two-protonic-state reactivity probes 2,2'-dipyridyl disulphide, n-propyl 2-pyridyl disulphide and 4-(N-aminoethyl 2'-pyridyl disulphide)- 7-nitrobenzo-2-oxa-1,3-diazole (compound I) were studied over a wide range of pH. Differences between the reactivities of ficin and papain towards the cationic forms of the alkyl 2-pyridyl disulphide probes suggest that ficin contains a cationic site without exact analogue in papain, and the striking difference in the shapes of the pH-rate profiles for the reactions of the two enzymes with compound (1) suggests differences in the mobilities or dispositions of the active-centre histidine imidazole groups with respect to relevant hydrophobic binding areas. The evidence from reactivity-probe studies that the papain catalytic mechanism involves substantial repositioning of the active-centre imidazole group during the catalytic act does not apply also to ficin. If ficin contains an aspartic acid residue analogous to aspartic acid-158 in papain, the pKa of its carboxy group is probably significantly lower than the pKa of the analogous group in papain.  相似文献   

6.
1. The pH-dependence of the second-order rate constant (k) for the reaction of actinidin (EC 3.4.22.14) with 2-(N'-acetyl-L-phenylalanylamino)ethyl 2'-pyridyl disulphide was determined and the contributions to k of various hydronic states were evaluated. 2. The data were used to assess the consequences for transition-state geometry of providing P2/S2 hydrophobic contacts in addition to hydrogen-bonding opportunities in the S1-S2 intersubsite region. 3. The P2/S2 contacts (a) substantially improve enzyme-ligand binding, (b) greatly enhance the contribution to reactivity of the hydronic state bounded by pKa 3 (the pKa characteristic of the formation of catalytic-site-S-/-ImH+ state) and pKa 5 (a relatively minor contributor in reactions that lack the P2/S2 contacts), such that the major rate optimum occurs at pH 4 instead of at pH 2.8-2.9, and (c) reveal the kinetic influence of a pKa approx. 6.3 not hitherto observed in reactions of actinidin. 4. Possibilities for the interplay of electrostatic effects and binding interactions in both actinidin and papain (EC 3.4.22.2) are discussed.  相似文献   

7.
A method is proposed by which site-specific reactivity probes that exhibit different reactivities in two ionization states can be used to detect association-activation phenomena that involve repositioning of acid/base groups in enzyme active centres. The pH-dependences of the apparent second-order rate constants (k) for the reactions of the thiol group of papain (EC 3.4.22.2) with a series of two-protonic-state reactivity probes are compared. The short-chain probes, 2,2'-dipyridyl disulphide and n-propyl 2-pyridyl disulphide, react at pH6 in adsorptive complexes and/or transition states with geometries that do not permit hydrogen-bonding of the pyridyl nitrogen atom with the active-centre imidazolium ion, as evidenced by the rate minima at pH6 and the rate maxima at pH4 provided by reagent protonation. Only when the probe molecule, e.g. 4-(N-aminoethyl 2'-pyridyl disulphide)-7-nitrobenzo-2-oxa-1,3-diazole [compound(III)], contains a long hydrophobic side chain is the reaction characterized by maximal rates at about pH6, as in the acylation step of the catalytic act (at pH6, k(compound III)/k(2,2'-dipyridyl disulphide) approximately 100). It is proposed that this striking difference in profile shape may result from binding of the hydrophobic side chain of compound (III) possibly in the S(2)-subsite of papain, which promotes a change in catalytic-site geometry involving repositioning of the imidazolium ion of histidine-159 and hydrogen-bonding with the N atom of the leaving group, as has been postulated to occur in the acylation step of substate hydrolysis.  相似文献   

8.
The structure of the phosphoryl binding region of human N-ras p21 was probed by using heteronuclear proton-observed NMR methods. Normal protein and a Gly-12----Asp-12 mutant protein were prepared with two amino acids labeled with 15N at their amide positions: valine and glycine, aspartic acid and glycine, and lysine and glycine. We completed the identification of amide 15NH resonances from Gly-12 and Asp-12 to the end of the phosphoryl binding domain consensus sequence (Lys-16) in protein complexed with GDP and have made tentative amide identifications from Val-9 to Ser-17. The methods used, together with initial identifications of the Gly-12 and -13 amide resonances, were described previously [Campbell-Burk, S. (1989) Biochemistry 28, 9478-9484]. The amide resonances of both Gly-13 and Lys-16 are shifted downfield below 10.4 ppm in both the normal and mutant proteins. These downfield shifts are presumed to be due to strong hydrogen bonds with the beta-phosphate oxygens of GDP.  相似文献   

9.
The role of binding subsite A, located at the terminal of the six binding subsites of hen egg-white lysozyme, in substrate binding and catalytic reactions was investigated by kinetic studies using a chemical modification method. Computer simulation showed that, although subsite A participates in the binding of the substrate, a decrease in the affinity of subsite A to the sugar residue does not cause a lowering of the rate of substrate consumption but changes the mode of the reaction by changing the distribution of the products formed. The binding free energies of subsites for Asp-101-modified lysozymes were estimated by data-fitting from the experimental time-courses. The contribution of Asp-101 in hen egg-white lysozyme to the substrate binding at subsite A was estimated to correspond to a binding free energy of about -3 kJ/mol, 30% of the total binding free energy of subsite A. Modification of Asp-101 affected not only the binding free energy of subsite A but also that of subsite C.  相似文献   

10.
The characteristics of actinidin (EC 3.4.22.14) and papain (EC 3.4.22.2), two cysteine proteinases whose catalytic-site regions appear to superimpose to a degree that approaches atomic co-ordinate accuracy of both crystal structures, were evaluated by determining (a) the pH-dependence in acid media of the acylation process of the catalytic act (k+2/Ks) using N alpha-benzoyl-L-arginine p-nitroanilide (L-Bz-Arg-Nan) as substrate and (b) the sensitivity of the reactivity of the catalytic-site thiol group and its pH-dependence to structural change in small, thiol-specific, two-protonic-state reactivity probes (2,2'-dipyridyl disulphide and methyl 2-pyridyl disulphide) where enzyme-probe contacts should be restricted to areas close to the catalytic site. Distortion of the catalytic sites of the two enzymes at pH less than 4 was evaluated over time-scales appropriate for both stopped-flow reactivity probe kinetics (less than or equal to 1-2 s) and steady-state substrate catalysis kinetics (3-5 min) by using the 2,2'-dipyridyl disulphide monocation as a titrant for non-distorted catalytic sites. This permitted a lower pH limit to be defined for valid kinetic analysis of both types. The behaviour of the enzymes at pH less than 4 requires a kinetic model in which the apparently biomolecular reaction of enzyme with probe reagent is separated from the process leading to loss of conformational integrity by a potentially reversible step. The acylation of actinidin with L-Bz-Arg-Nan in acidic media occurs in two protonic states, one produced by raising the pH across pKa less than 4 which probably characterizes the formation of -S-/-ImH+ ion pair (pKa approx. 3) and the other, of higher reactivity, produced by raising the pH across pKa 5.5, which may characterize rearrangement of catalytic-site geometry. The pH-dependence of the acylation of papain by L-Bz-Arg-Nan is quite different and is not influenced by protonic dissociation with pKa values in the range 5-6. The earlier conclusion that the acylation of papain depends on two protonic dissociations each with pKa approx. 4 was confirmed. This argument is now more firmly based because titration with 2,2'-dipyridyl disulphide permits the loss of conformational integrity to be taken into account in the analysis of the kinetic data at very low pH. Methyl 2-pyridyl disulphide was synthesized by reaction of pyridine-2-thione with methyl methanethiolsulphonate and its pKa at I = 0.1 was determined by spectral analysis at 307 nm to be 2.8.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Photolabeling of nucleotide binding sites in nucleotide-depleted mitochondrial F1 has been explored with 2-azido [alpha-32P]adenosine diphosphate (2-N3[alpha-32P] ADP). Control experiments carried out in the absence of photoirradiation in a Mg2+-supplemented medium indicated the presence of one high affinity binding site and five lower affinity binding sites per F1. Similar titration curves were obtained with [3H]ADP and the photoprobe 3'-arylazido-[3H]butyryl ADP [( 3H]NAP4-ADP). Photolabeling of nucleotide-depleted F1 with 2-N3[alpha-32P]ADP resulted in ATPase inactivation, half inactivation corresponding to 0.6-0.7 mol of photoprobe covalently bound per mol F1. Only the beta subunit was photolabeled, even under conditions of high loading with 2-N3[alpha-32P]ADP. The identification of the sequences labeled with the photoprobe was achieved by chemical cleavage with cyanogen bromide and enzymatic cleavage by trypsin. Under conditions of low loading with 2-N3[alpha-32P]ADP, resulting in photolabeling of only one vacant site in F1, covalently bound radioactivity was located in a peptide fragment of the beta subunit spanning Pro-320-Met-358 identical to the fragment photolabeled in native F1 (Garin, J., Boulay, F., Issartel, J.-P., Lunardi, J., and Vignais, P. V. (1986) Biochemistry 25, 4431-4437). With a heavier load of photoprobe, leading to nearly 4 mol of photoprobe covalently bound per mol F1, an additional region of the beta subunit was specifically labeled, corresponding to a sequence extending from Gly-72 to Arg-83. The isolated beta subunit also displayed two binding sites for 2-N3-[alpha-32P]ADP. When F1 was first photolabeled with a low concentration of NAP4-ADP, leading to the covalent binding of 1.5 mol of NAP4-ADP/mol F1, with the bound NAP4-ADP distributed equally between the alpha and beta subunits, a subsequent photoirradiation in the presence of 2-N3[alpha-32P]ADP resulted in covalent binding of the 2-N3[alpha-32P]ADP to both alpha and beta subunits. It is concluded that each beta subunit in mitochondrial F1 contains two nucleotide binding regions, one of which belongs to the beta subunit per se, and the other to a subsite shared with a subsite located on a juxtaposed alpha subunit. Depending on the experimental conditions, the subsite located on the alpha subunit is either accessible or masked. Unmasking of the subsite in the three alpha subunits of mitochondrial F1 appears to proceed by a concerted mechanism.  相似文献   

12.
The specificity of the S1 subsite of papain   总被引:1,自引:1,他引:0       下载免费PDF全文
The specificity of the S(1)' subsite of the proteolytic enzyme papain was investigated by studying the effect of l-alpha-amino acid amides on the enzyme-catalysed hydrolysis of N-benzyloxycarbonylglycine p-nitrophenyl ester and by determining the kinetic parameters for the enzyme-catalysed hydrolysis of some N-benzyloxycarbonylglycyl-l-amino acid amides. These studies showed that the S(1)' subsite has a predilection for hydrophobic residues, in particular l-leucine and l-tryptophan. The specificity for these residues is manifest in both the binding and acylation steps. N-Benzyloxycarbonylglycine amide is not hydrolysed under comparable conditions, indicating that the amide group adjacent to and on the C-terminal side of the peptide bond about to be cleaved makes an important contribution to the rate of the papain-catalysed hydrolysis of peptides.  相似文献   

13.
Plant-type ferredoxin (Fd), a [2Fe-2S] iron-sulfur protein, functions as an one-electron donor to Fd-NADP(+) reductase (FNR) or sulfite reductase (SiR), interacting electrostatically with them. In order to understand the protein-protein interaction between Fd and these two different enzymes, 10 acidic surface residues in maize Fd (isoform III), Asp-27, Glu-30, Asp-58, Asp-61, Asp-66/Asp-67, Glu-71/Glu-72, Asp-85, and Glu-93, were substituted with the corresponding amide residues by site-directed mutagenesis. The redox potentials of the mutated Fds were not markedly changed, except for E93Q, the redox potential of which was more positive by 67 mV than that of the wild type. Kinetic experiments showed that the mutations at Asp-66/Asp-67 and Glu-93 significantly affected electron transfer to the two enzymes. Interestingly, D66N/D67N was less efficient in the reaction with FNR than E93Q, whereas this relationship was reversed in the reaction with SiR. The static interaction of the mutant Fds with each the two enzymes was analyzed by gel filtration of a mixture of Fd and each enzyme, and by affinity chromatography on Fd-immobilized resins. The contributions of Asp-66/Asp-67 and Glu-93 were found to be most important for the binding to FNR and SiR, respectively, in accordance with the kinetic data. These results allowed us to map the acidic regions of Fd required for electron transfer and for binding to FNR and SiR and demonstrate that the interaction sites for the two enzymes are at least partly distinct.  相似文献   

14.
1. N-Acetyl-L-phenylalanylglycine 4-nitroanilide and its D-enantiomer were synthesized and characterized and used as substrates with which to evaluate stereochemical selectivity in papain (EC 3.4.22.2)-catalysed hydrolysis. 2. Kinetic analysis at pH 6.0, I 0.1, 8.3% (v/v) NN-dimethylformamide and 25 degrees C by using initial-rate data with [S] much less than Km and weighted non-linear regression provided values of kcat./Km for the catalysed hydrolysis of both enantiomers as (kcat./Km)L = 2040 +/- 48 M-1.S-1 and (kcat./Km)D = 5.9 +/- 0.07 M-1.S-1. These data, taken together with individual values of kcat. and Km for the hydrolysis of the L-enantiomer (a) estimated in the present work as kcat. = 3.2 +/- 1.2 S-1 and Km = 1.5 +/- 0.6 mM and (b) reported by Lowe & Yuthavong [(1971) Biochem. J. 124, 107-115] for the reaction at pH 6.0 in 10% (v/v) NN-dimethylformamide and 35 degrees C, as kcat. = 1.3 +/- 0.2 S-1 and Km = 0.88 +/- 0.1 mM, suggest that (kcat./Km)L congruent to 2000 M-1.S-1 and thus that (kcat./Km)L/(kcat./Km)D congruent to 330.3. Model building indicates that both enantiomeric 4-nitroanilides can bind to papain such that the phenyl ring of the N-acetylphenylalanyl group makes hydrophobic contacts in the S2 subsite with preservation of mechanistically relevant hydrogen-bonding interactions and that the main difference is in the positioning of the beta-methylene group. 4. The dependence of P2-S2 stereochemical selectivity of papain on the nature of the catalytic-site chemistry for reactions involving derivatives of N-acetylphenylalanine is discussed. The variation in the index of stereochemical selectivity (ratio of the appropriate kinetic or thermodynamic parameter for a given pair of enantiomeric ligands), from 330 for the overall acylation process of the catalytic act, through 40 and 31 for the reaction at electrophilic sulphur in 2-pyridyl disulphides respectively without and with assistance by (His-159)-Im(+)-H, to 5 for the formation of thiohemiacetal adducts by reaction at aldehydic carbon, is interpreted in terms of the extent to which conformational variation of the bound ligand in the catalytic-site region permits the binding mode of the -CH2-Ph group of the D-enantiomer to approach that of the L-enantiomer.  相似文献   

15.
Nägler DK  Tam W  Storer AC  Krupa JC  Mort JS  Ménard R 《Biochemistry》1999,38(15):4868-4874
The specificity of cysteine proteases is characterized by the nature of the amino acid sequence recognized by the enzymes (sequence specificity) as well as by the position of the scissile peptide bond (positional specificity, i.e., endopeptidase, aminopeptidase, or carboxypeptidase). In this paper, the interdependency of sequence and positional specificities for selected members of this class of enzymes has been investigated using fluorogenic substrates where both the position of the cleavable peptide bond and the nature of the sequence of residues in P2-P1 are varied. The results show that cathepsins K and L and papain, typically considered to act strictly as endopeptidases, can also display dipeptidyl carboxypeptidase activity against the substrate Abz-FRF(4NO2)A and dipeptidyl aminopeptidase activity against FR-MCA. In some cases the activity is even equal to or greater than that observed with cathepsin B and DPP-I (dipeptidyl peptidase I), which have been characterized previously as exopeptidases. In contrast, the exopeptidase activities of cathepsins K and L and papain are extremely low when the P2-P1 residues are A-A, indicating that, as observed for the normal endopeptidase activity, the exopeptidase activities rely heavily on interactions in subsite S2 (and possibly S1). However, cathepsin B and DPP-I are able to hydrolyze substrates through the exopeptidase route even in absence of preferred interactions in subsites S2 and S1. This is attributed to the presence in cathepsin B and DPP-I of specific structural elements which serve as an anchor for the C- or N-terminus of a substrate, thereby allowing favorable enzyme-substrate interaction independently of the P2-P1 sequence. As a consequence, the nature of the residue at position P2 of a substrate, which is usually the main factor determining the specificity for cysteine proteases of the papain family, does not have the same contribution for the exopeptidase activities of cathepsin B and DPP-I.  相似文献   

16.
1. A rapid method of isolation of fully active actinidin, the cysteine proteinase from Actinidia chinensis (Chinese gooseberry or kiwifruit), by covalent chromatography, was devised. 2. The active centre of actinidin was investigated by using n-propyl 2-pyridyl disulphide, 4-(N-aminoethyl 2'-pyridyl disulphide)-7-nitrobenzo-2-oxa-1,3-diazole and 4-chloro-7-nitrobenzofurazan as reactivity probes. 3. The presence in actinidin in weakly acidic media of an interactive system containing a nucleophilic sulphur atom was demonstrated. 4. The pKa values (3.1 and 9.6) that characterize this interactive system are more widely separated than those that characterize the interactive active centre systems of ficin (EC 3.4.22.3) and papain (EC 3.4.22.2) (3.8 and 8.6, and 3.9 and 8.8 respectively). 5. Actinidin was shown to resemble ficin rather than papain in (i) the disposition of the active-centre imidazole group with respect to hydrophobic binding areas, and (ii) the inability of the active-centre aspartic acid carboxy group to influence the reactivity of the active-centre thiol group at pH values of about 4. 6. The implications of the results for one-state and two-state mechanisms for cysteine-proteinase catalysis are discussed.  相似文献   

17.
1. The kinetics of the reactions of the catalytic-site thiol groups of actinidin (the cysteine proteinase from Actinidia chinensis), ficin (EC 3.4.22.3), papain (EC 3.4.22.2) and papaya peptidase A (the other monothiol cysteine proteinase component of Carica papaya) with 4,4'-dipyridyl disulphide (4-Py-S-S-4-Py) and with 5,5'-dithiobis-(2-nitrobenzoate) dianion (Nbs22-) were studied in the pH range approx. 6-10. These studies provided the pH-independent second-order rate constants (k) for the reactions of the two probe reagents with the catalytic-site thiolate anions each in the environment of a neutral histidine side chain where an active-centre carboxy group would be ionized. 2. The ratio R equal to kNbs22-/k4-Py-S-S-4-Py provides an index of the catalytic-site solvation properties of the four cysteine proteinases and varies markedly from one enzyme to another, being 0.80 for papaya peptidase A (0.86 for the model thiol, 2-mercaptoethanol), 29 for actinidin, 0.18 for ficin and 0.015 for papain. These differences appear to derive mainly from the response of the enzyme to the negative charge on Nbs22-. 3. Possible implications of these results for (a) mechanisms of cysteine proteinase catalysis and (b) the possibility of using series of functionally related enzymes in the study of mechanism are discussed.  相似文献   

18.
The inhibition of papain by N-acetyl-D- and N-acetyl-L-phenylalanyl[1-13C]glycinal was investigated by 13C nuclear magnetic resonance (NMR) spectroscopy. Both the L- and D-aldehyde enantiomers formed thiohemiacetals with papain. The 13C-enriched carbon of the thiohemiacetals formed with the L- and D-aldehydes has chemical shifts at 74.7 and 75.1 ppm, respectively. The difference in chemical shift for the two inhibitor complexes is attributed to each forming a different diastereomeric papain thiohemiacetal. Each enantiomeric inhibitor formed two diastereomeric thiohemiacetals with chiral thiols but produced a single diastereoisomer with papain. It is concluded that with papain thiohemiacetal formation is stereospecific. The D inhibitor is bound only 5-fold less tightly than the L inhibitor, which suggests that in both these inhibitor complexes the phenyl ring of the inhibitor phenylalanine is bound at the S2 hydrophobic pocket of papain. This is supported by computer modeling studies that show that both the N-acetyl-D- and N-acetyl-L-phenylalanine moieties can be separately fitted into the S2 subsite with the phenyl ring of phenylalanine in the S2 hydrophobic pocket. It is concluded that thiohemiacetal formation at S1 (S1 and S1' are the active center amino acid binding sites) is stereospecific with both D and L inhibitors. Computer modeling studies support this showing that, due to steric hindrance between the thiohemiacetal hydroxyl group and the backbone amide nitrogen of serine-24, only one of the two possible thiohemiacetal enantiomers can be formed at the S1 subsite. The thiohemiacetals formed from both the D- and L-aldehyde inhibitors therefore have only one permitted conformation at S1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Use of the nonphosphorylating beta,gamma-bidentate chromium(III) complex of ATP to induce a stable Ca(2+)-occluded form of the sarcoplasmic reticulum Ca(2+)-ATPase was combined with molecular sieve high performance liquid chromatography of detergent-solubilized protein to examine the ability of the Ca(2+)-ATPase mutants Gly-233-->Glu, Gly-233-->Val, Glu-309-->Gln, Gly-310-->Pro, Pro-312-->Ala, Ile-315-->Arg, Leu-319-->Arg, Asp-703-->Ala, Gly-770-->Ala, Glu-771-->Gln, Asp-800-->Asn, and Gly-801-->Val to occlude Ca2+. This provided a new approach to identification of amino acid residues involved in Ca2+ binding and in the closure of the gates to the Ca2+ binding pocket of the Ca(2+)-ATPase. The "phosphorylation-negative" mutant Asp-703-->Ala and mutants of ADP-sensitive phosphoenzyme intermediate type were fully capable of occluding Ca2+, as was the mutant Gly-770-->Ala. Mutants in which carboxylic acid-containing residues in the putative transmembrane segments had been substituted ("Ca(2+)-site mutants") and mutant Gly-801-->Val were unable to occlude either of the two calcium ions. In addition, the mutant Gly-310-->Pro, previously classified as ADP-insensitive phosphoenzyme intermediate type (Andersen, J.P., Vilsen, B., and MacLennan, D.H. (1992). J. Biol. Chem. 267, 2767-2774), was unable to occlude Ca2+, even though Ca(2+)-activated phosphorylation from MgATP took place in this mutant.  相似文献   

20.
The goals of this study are to investigate the mechanism and site of action whereby a human ether-a-go-go-related gene (HERG)-specific scorpion peptide toxin, ErgTx, suppresses HERG current. We apply cysteine-scanning mutagenesis to the S5-P and P-S6 linkers of HERG and examine the resulting changes in ErgTx potency. Data are compared with the characteristics of charybdotoxin (ChTx, or its analogs) binding to the Shaker channel. ErgTx binds to the outer vestibule of HERG but may not physically occlude the pore. In contrast to ChTx.Shaker interaction, elevating [K](o) (from 2 to 98 mm) does not affect ErgTx potency, and through-solution electrostatic forces only play a minor role in influencing ErgTx.HERG interaction. Cysteine mutations of three positions in S5-P linker (Trp-585, Gly-590, and Ile-593) and 1 position in P-S6 linker (Pro-632) induce profound changes in ErgTx binding (DeltaDeltaG > 2 kcal/mol). We propose that the long S5-P linker of the HERG channel forms an amphipathic alpha-helix that, together with the P-S6 linker, forms a hydrophobic ErgTx binding site. This study paves the way for future mutant cycle analysis of interacting residues in the ErgTx.HERG complex, which, in conjunction with NMR determination of the ErgTx solution structure, will yield information about the topology of HERG's outer vestibule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号