首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-density lipoproteins (density = 1.019-1.063 g/ml) were isolated in 10 subjects with type V hyperlipoproteinemia by ultracentrifugation in a zonal rotor under rate flotation conditions. Plasma LDL concentrations in these patients were extremely reduced, as well as being heterogeneous, and two different subclasses consisting of LDL2 (density = 1.019-1.045 g/ml) and LDL3 (density = 1.045-1.063 g/ml) were observed. LDL2 and LDL3 have similar electrophoretic mobilities in beta position in agarose gel, and their diameters, calculated from gel filtration studies, were inversely proportional to their densities. LDL2 and LDL3 have a mean hydrated density of 1.034 and 1.054 g/ml, respectively. In comparison with normal LDL2, the LDL2 and LDL3 of hypertriglyceridemic subjects are particularly rich in triacylglycerols and poor in cholesteryl esters and free cholesterol, while they have an increasing amount of proteins. The protein moiety is composed almost exclusively of apolipoprotein B-100 in IDL, LDL2 and LDL3 ; in addition, IDL also contain apolipoprotein C peptides. This characterization of LDL heterogeneity in type V hyperlipoproteinemia should be considered in interpreting kinetic data in human normal and pathological lipid metabolism and in evaluating the atherogenic risk of hypertriglyceridemia.  相似文献   

2.
To determine the metabolic mechanism of hypercholesterolemia in rabbits produced by feeding cholesterol-rich diets, control and hypercholesterolemic rabbits were injected with I-labelled very low density lipoproteins (VLDL, d 1.006 g/ml) from control and/or hypercholesterolemic donors. Apolipoprotein B in VLDL decayed biphasically. The first phase occurred much more rapid than the second. 95% of the VLDL apolipoprotein B was catabolized via the first phase (t1/2 = 0.55 +/- 0.19 h) in normal rabbit with the immediate appearance of this radioactivity in intermediate density lipoproteins (IDL, d 1.006-1.025 g/ml) and low density lipoproteins (LDL, d 1.025-1.063 g/ml). The apolipoproteins C and E at the same time were transferred to high density lipoproteins where they decayed biphasically. The apolipoprotein B from hypercholesterolemic VLDL in the normal recipient disappeared at a similar rate as from normal VLDL via phase I; however, it was incompletely converted to IDL and LDL. Apolipoprotein B from normal VLDL in cholesterol-fed rabbits disappeared at a normal rate via phase I, but only 82% was catabolized by this phase. Hypercholesterolemic VLDL injected into the hypercholesterolemic recipient was less rapidly catabolized via phase I (T1/2 = 2.5 +/- 0.89 H) and only a small fraction was converted to IDL and LDL.  相似文献   

3.
Patients with type 2 diabetes have high levels of triglyceride-rich lipoproteins (TRLs), including apolipoprotein B-48 (apoB-48)-containing TRLs of intestinal origin, but the mechanism leading to overaccumulation of these lipoproteins remains to be fully elucidated. Therefore, the objective of this study was to examine the in vivo kinetics of TRL apoB-48 and VLDL, intermediate density lipoprotein (IDL), and LDL apoB-100 in type 2 diabetic subjects (n = 11) and nondiabetic controls (n = 13) using a primed-constant infusion of l-[5,5,5-D(3)]leucine for 12 h in the fed state. Diabetic subjects had significantly higher fasting glycemia, higher fasting insulinemia, higher plasma triglyceride, and lower HDL-cholesterol levels than controls. Compared with controls, diabetic subjects had increased TRL apoB-48, VLDL apoB-100, and IDL apoB-100 pool sizes as a result of increased production rates (PRs) and reduced fractional catabolic rates of these lipoprotein subfractions. Furthermore, multiple linear regression analyses revealed that the diabetic/control status was an independent predictor of TRL apoB-48 PR and represented nearly 35% of its variance. These results suggest that the overaccumulation of TRLs seen in patients with type 2 diabetes is attributable to increased PRs of both intestinally derived apoB-48-containing lipoproteins and TRL apoB-100 of hepatic origin and to decreased catabolism of these subfractions.  相似文献   

4.
The measurement of apolipoprotein B (apoB) in purified lipoproteins by immunological assays is subject to criticism because of denatured epitopes or immunoreactivity differences between purified lipoproteins and standard. Chemical methods have therefore been developed, such as the selective precipitation of apoB followed by quantification of the precipitate. In this study, we present the measurement of apoB concentration in lipoproteins purified by ultracentrifugation by combining isopropanol precipitation and gas chromatography/mass spectrometry. Very low density lipoprotein (VLDL; d < 1.006 g/mL); VLDL plus intermediate density lipoprotein (VLDL + IDL; d < 1.019 g/mL); and VLDL, IDL, and low density lipoprotein (VLDL + IDL + LDL; d < 1.063 g/mL) were purified by ultracentrifugation. Apolipoprotein B-100 was selectively precipitated by isopropanol. The leucine content of the pellet was then determined by gas chromatography/mass spectrometry, using norleucine as internal standard. Knowledge of the number of leucine molecules in one apoB-100 molecule makes it possible to calculate the plasma concentration of apoB in the various lipoprotein fractions. ApoB in IDL (d 1.006-1.019 g/mL) and LDL (d 1.019-1.063 g/mL) were then determined by subtracting VLDL-apoB from apoB in lipoproteins d < 1.019 and apoB in lipoproteins d < 1.019 g/mL from apoB in lipoproteins d < 1.063 g/mL, respectively. The isopropanol precipitate was verified as pure apoB (>97%) in lipoprotein fractions isolated from normo- and hyperlipidemic plasma and the method appeared reproducible.The combination of isopropanol precipitation and the GC/MS method appears therefore to be a precise and reliable method for kinetic and epidemiological studies.  相似文献   

5.
Low density lipoprotein receptor (LDLR)-deficient mice fed a chow diet have a mild hypercholesterolemia caused by the abnormal accumulation in the plasma of apolipoprotein B (apoB)-100- and apoB-48-carrying intermediate density lipoproteins (IDL) and low density lipoproteins (LDL). Treatment of LDLR-deficient mice with ciprofibrate caused a marked decrease in plasma apoB-48-carrying IDL and LDL but at the same time caused a large accumulation of triglyceride-depleted apoB-100-carrying IDL and LDL, resulting in a significant increase in plasma cholesterol levels. These plasma lipoprotein changes were associated with an increase in the hepatic secretion of apoB-100-carrying very low density lipoproteins (VLDL) and a decrease in the secretion of apoB-48-carrying VLDL, accompanied by a significant decrease in hepatic apoB mRNA editing. Hepatic apobec-1 complementation factor mRNA and protein abundance were significantly decreased, whereas apobec-1 mRNA and protein abundance remained unchanged. No changes in apoB mRNA editing occurred in the intestine of the treated animals. After 150 days of treatment with ciprofibrate, consistent with the increased plasma accumulation of apoB-100-carrying IDL and LDL, the LDLR-deficient mice displayed severe atherosclerotic lesions in the aorta. These findings demonstrate that ciprofibrate treatment decreases hepatic apoB mRNA editing and alters the pattern of hepatic lipoprotein secretion toward apoB-100-associated VLDL, changes that in turn lead to increased atherosclerosis.  相似文献   

6.
The lipid transport system of 3-month-old male C57BL/6J obese (ob/ob) mice was investigated. Serum lipoproteins were separated by density gradient ultracentrifugation and characterized by their chemical and electrophoretic properties as well as their relative apolipoprotein contents, defined according to molecular weight and charge. Obese, ob/ob mice exhibited a marked hyperlipoproteinemia resulting from large increases in low-density lipoproteins (LDL, d 1.021-1.058 g/ml) and high-density lipoproteins (HDL, d 1.058-1.137 g/ml), particularly, the HDL2 subclass (d 1.058-1.109 g/ml). This increase in lipoproteins was entirely responsible for their hypercholesterolemia and hyperphospholipidemia. By contrast, these obese mice had a net decrease in very-low-density lipoproteins (VLDL, d less than 1.016 g/ml) and intermediate-density lipoproteins (IDL, d 1.016-1.021 g/ml), which accounted for their moderate hypotriglyceridemia. The chemical composition of heterogeneous light LDL (d 1.021-1.040 g/ml and dense LDL (d 1.040-1.058 g/ml) overlapped by HDL-like particles was highly modified. These modifications consisted of increases in the percentages of cholesteryl ester and phospholipid and decreases in that of triacylglycerol. There were also marked changes in the relative values of the apolipoproteins of VLDL, but principally, IDL and LDL. IDL and light LDL were poorer in apolipoproteins BH (Mr 340,000-320,000) and eventually in apolipoprotein BL (Mr 220,000-200,000) and enriched in apolipoproteins E (Mr 37,000-35,000) and C-A-II (Mr approximately equal to 12,000). A similar and very significant change occurred in VLDL for both the apolipoproteins BL and C-A-II. Dense LDL, mainly poorer in apolipoprotein BH and enriched in apolipoprotein A-I (Mr 28,000-27,000), closely resembled HDL2 in all the groups, and were enriched in apolipoproteins C-A-II in only the obese mice. We suggest that ob/ob mice are probably protected against atheromata because of the low VLDL and IDL levels, and the increase in HDL2.  相似文献   

7.
Plasma lipoproteins from 5-week old male chickens were separated over the density range 1.006-1.172 g/ml into 22 subfractions by isopycnic density gradient ultracentrifugation, in order to establish the distribution of these particles and their constituent apolipoproteins as a function of density. Lipoprotein subfractions were characterized by electrophorectic, chemical and morphological analyses, and their protein moieties were defined according to net charge at alkaline pH, molecular weight and isoelectric point. These analyses have permitted us to reevaluate the density limits of the major chicken lipoprotein classes and to determine their main characteristics, which are as follows: (1) very-low-density lipoproteins (VLDL), isolated at d less than 1.016 g/ml, were present at low concentrations (less than 0.1 mg/ml) in fasted birds; their mean diameter determined by gradient gel electrophoresis and by electron microscopy was 20.5 and 31.4 nm respectively; (2) as the the density increased from VLDL to intermediate density lipoproteins (IDL), d 1.016-l.020 g/ml) and low-density lipoproteins (LDL, d 1.020-1.046 g/ml), the lipoprotein particles contained progressively less triacylglycerol and more protein, and their Stokes diameter decreased to 20.0 nm; (3) apolipoprotein B-100 was the major apolipoprotein in lipoproteins of d less than 1.046 g/ml, with an Mr of 350000; small amounts of apolipoprotein B-100 were detectable in HDL subfractions of d less than 1.076 g/ml; urea-soluble apolipoproteins were present in this density range as minor components of Mr 38000-39000, 27000-28000 (corresponding to apolipoprotein A-1) and Mr 11000-12000; (4) high density lipoprotein (HDL, d 1.052-1.130 g/ml) was isolated as a single band, whose protein content increased progressively with increase in density; the chemical composition of HDL resembled that of human HDL2, with apolipoprotein A-1 (M 27000-28000) as the major protein component, and a protein of Mr 11000-12000 as a minor component; (5) heterogeneity was observed in the particle size and apolipoprotein distribution of HDL subfractions: two lipoprotein bands which additional apolipoproteins of Mr 13000 and 15000 were detected. These studies illustrate the inadequacy in the chicken of the density limits applied to fractionate the lipoprotein spectrum, and particularly the inappropriateness of the 1.063 g/ml density limit as the cutoff for LDL and HDL particle populations in the species.  相似文献   

8.
We have examined the capability of a previously developed compartmental model to explain the kinetics of radioiodinated apolipoprotein (apo) B-100 in very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL), and low density lipoproteins (LDL) separated by density gradient ultracentrifugation after intravenous injection of radioiodinated VLDL into New Zealand white (NZW) and Watanabe heritable hyperlipidemic (WHHL) rabbits. Our model was developed primarily from kinetics in whole blood plasma of apoB-100 in particles with and without apoE after intravenous injection of large VLDL, total VLDL, IDL, and LDL. When the initial conditions for this model were assumed to be an intravenous injection of radiolabeled VLDL, the plasma VLDL and LDL simulations for NZW rabbits and the VLDL, IDL, and LDL simulations for WHHL rabbits were found to be inconsistent with the observed density gradient data. By adding a new pathway in the VLDL portion of the model for NZW rabbits and a new compartment in VLDL for WHHL rabbits, and by assuming some cross-contamination in the density gradient ultracentrifugal separations, it was possible to bring our model, which was based upon measurements of 125I-labeled apoB-100 in whole plasma, into conformity with the data obtained by density gradient ultracentrifugation. The relatively modest changes required in the model to fit the gradient ultracentrifugation data support the suitability of our approach to the kinetic analysis of the metabolism of apoB-100 in VLDL and its conversion to IDL and LDL based upon measurements of 125I-labeled apoB-100 in whole plasma after injection of radiolabeled VLDL, IDL, and LDL. Furthermore, the differences in kinetics observed by us between data from whole plasma and data from plasma submitted to ultracentrifugal separation from the same or similar animals highlight the fact that small variations that can occur in the separation of lipoprotein classes by buoyant density can lead to confusing results.  相似文献   

9.
The contribution of very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL) to various low density lipoprotein (LDL) subfractions was examined in three normal subjects and two with familial combined hyperlipidemia. Autologous VLDL + IDL (d less than 1.019 g/ml) or VLDL only (d less than 1.006 g/ml; one subject only) were isolated by sequential ultracentrifugation, iodinated, and injected into each subject. The appearance, distribution, and subsequent disappearance of radioactivity into LDL density subpopulations was characterized using density gradient ultracentrifugation. These techniques help determine the contribution of precursors to various LDL subpopulations defined uniquely for each subject. The results from these studies have suggested: 1) it took up to several days of intravascular processing of precursor-derived LDL before it resembled the distribution of the 'steady-state' plasma LDL protein; 2) plasma VLDL and IDL precursors contributed rapidly to a broad density range of LDL; 3) the radiolabeled plasma precursors did not always contribute to all LDL density subfractions within an individual in proportion to their relative LDL protein mass as determined by density gradient ultracentrifugation; 4) with time, the distribution of the precursor-derived LDL became more buoyant or more dense than distribution of the LDL protein mass; and 5) the kinetic characteristics of precursor-derived particles within LDL changed within a relatively narrow density range and were not always related to the LDL density heterogeneity of each subject. These studies emphasize the complexities of apoB metabolism and the need to design studies to carefully examine the production of various LDL subpopulations, the kinetic fate and interconversions among the subpopulations, and ultimately, their relationship to the development of atherosclerosis.  相似文献   

10.
Cholesterol-fat feeding is associated with unusual alterations in the composition of plasma lipoproteins in alloxan-diabetic rabbits. In the present study plasma lipoprotein lipid and apoprotein composition was studied before and after 48 hr of fasting in cholesterol-fed diabetic and control rabbits in order to further characterize these alterations. Compared with control rabbits, the diabetic rabbits had similar plasma cholesterol levels, but 100-fold higher triglyceride levels prior to fasting. These plasma lipids were distributed mainly to large, Sf greater than 400 plasma lipoproteins in the diabetic rabbits, and to beta-VLDL in control rabbits. Sf greater than 400 lipoproteins, VLDL, IDL, LDL, and HDL from diabetic rabbits had triglyceride as the predominant lipoprotein core lipid. Sf greater than 400 lipoproteins and VLDL from diabetic rabbits had lesser amount of apoprotein E, and greater amounts of apoproteins A-I, A-IV, and B-48 as percent of total apoprotein mass in comparison with control rabbits. Fasting reduced plasma triglyceride levels by 55% in diabetic rabbits. Sf greater than 400 lipoprotein and VLDL triglyceride content decreased but remained a major core lipid. Fasting eliminated apoproteins A-I and A-IV from Sf greater than 400 lipoproteins and VLDL, but had no significant effect on apoB-48 content. Insulin treatment of the diabetic rabbits reduced plasma triglyceride by approximately 90% resulting in cholesteryl ester-rich particles reassembling beta-VLDL both in the Sf greater than 400 lipoprotein and VLDL fractions. These results indicate that the alterations in plasma lipoproteins in cholesterol-fed diabetic rabbits result from the presence in the d less than 1.006 g/ml plasma lipoprotein class of partially metabolized, intestinally derived particles.  相似文献   

11.
12.
Previous studies in our laboratory have shown that very-low-density lipoproteins (VLDL) synthesized by the intestine of the diet-induced hypercholesterolemic rat are enriched in cholesteryl esters and unesterified cholesterol compared with intestinal VLDL from control rats. In these studies, we isolated and characterized nascent intestinal Golgi intermediate-density lipoproteins (IDL, d 1.006-1.040 g/ml) and studied isotope incorporation into apoliproteins of Golgi VLDL from control and hypercholesterolemic rats. IDL were triacylglycerol-rich lipoproteins but contained more cholesteryl ester and protein than the corresponding Golgi VLDL fractions. IDL from hypercholesterolemic rats were enriched in cholesteryl esters to a greater extent than IDL from control rats. The apolipoprotein patterns of IDL fractions were the same as those of intestinal Golgi VLDL, consisting of apolipoproteins (apo) B-48, A-I and A-IV. Time-course isotope incorporation curves for apo A-I and A-IV in Golgi VLDL were similar, but they differed from curves for apo B-48. None of these curves was markedly altered in the hypercholesterolemic rat. We conclude that the major effect of increased dietary cholesterol on intestinal lipoprotein biosynthesis is to increase the percentage of cholesteryl esters in Golgi lipoproteins. Dietary cholesterol does not alter the apolipoprotein composition of Golgi lipoproteins, nor does it have a significant effect on the pattern of isotope incorporation into apolipoproteins of Golgi VLDL. The effect of cholesteryl ester enrichment on the subsequent metabolism of these particles in the circulation and the effect of these particles on hepatic lipoprotein production remain to be determined.  相似文献   

13.
We aimed to identify mechanisms by which apolipoprotein B-48 (apoB-48) could have an atherogenic role by simultaneously studying the metabolism of postprandial apoB-48 and apoB-100 lipoproteins. The kinetics of apoB-48 and apoB-100, each in four density subfractions of VLDL and intermediate density lipoprotein (IDL), were studied by stable isotope labeling in a constantly fed state with half-hourly administration of almond oil in five postmenopausal women. A non-steady-state, multicompartmental model was used. Despite a much lower production rate, VLDL and IDL apoB-48 shared a similar secretion pattern with apoB-100: both were directly secreted into all fractions with similar percentage mass distributions. Fractional catabolic rates (FCRs) of apoB-48 and apoB-100 were similar in VLDL and IDL. We identified a fast turnover compartment of light VLDL that had a residence time of <30 min for apoB-48 and apoB-100. Finally, a high secretion rate of apoB-48 was associated with a slow FCR of VLDL and IDL apoB-100. In conclusion, the intestine secretes a spectrum of apoB lipoproteins, similar to what the liver secretes, albeit with a much lower secretion rate. Once in plasma, intestinal and hepatic triglyceride-rich lipoproteins have similar rates of clearance and participate interactively in similar metabolic pathways, with high apoB-48 production inhibiting the clearance of apoB-100.  相似文献   

14.
The mechanism of inhibition by apolipoprotein C of the uptake and degradation of triglyceride-rich lipoproteins from human plasma via the low density lipoprotein (LDL) receptor pathway was investigated in cultured human skin fibroblasts. Very low density lipoprotein (VLDL) density subfractions and intermediate density lipoprotein (IDL) with or without added exogenous recombinant apolipoprotein E-3 were used. Total and individual (C-I, C-II, C-III-1, and C-III-2) apoC molecules effectively inhibited apoE-3-mediated cell metabolism of the lipoproteins through the LDL receptor, with apoC-I being most effective. When the incubation was carried out with different amounts of exogenous apoE-3 and exogenous apoC, it was shown that the ratio of apoE-3 to apoC determined the uptake and degradation of VLDL. Excess apoE-3 overcame, at least in part, the inhibition by apoC. ApoC, in contrast, did not affect LDL metabolism. Neither apoA-I nor apoA-II, two apoproteins that do not readily associate with VLDL, had any effect on VLDL cell metabolism. The inhibition of VLDL and IDL metabolism cannot be fully explained by interference of association of exogenous apoE-3 with or displacement of endogenous apoE from the lipoproteins. IDL is a lipoprotein that contains both apoB-100 and apoE. By using monoclonal antibodies 4G3 and 1D7, which specifically block cell interaction by apoB-100 and apoE, respectively, it was possible to assess the effects of apoC on either apoprotein. ApoC dramatically depressed the interaction of IDL with the fibroblast receptor through apoE, but had only a moderate effect on apoB-100. The study thus demonstrates that apoC inhibits predominantly the apoE-3-dependent interaction of triglyceride-rich lipoproteins with the LDL receptor in cultured fibroblasts and that the mechanism of inhibition reflects association of apoC with the lipoproteins and specific concentration-dependent effects on apoE-3 at the lipoprotein surface.  相似文献   

15.
The aim of this work was to compare the disappearance rate of human and rat intermediate density lipoproteins (IDL) using the rat liver perfusion system. Human and rat IDL were produced in vitro by incubating human or rat very low density lipoproteins (VLDL) with either rat post-heparin plasma (method I) or a resolubilized isopropanol precipitate of rat post-heparin plasma (method II). With both methods, the degree of triacylglycerol lipolysis was approximately 55%. The different preparations of IDL were labelled with 125I and added to perfusates of rat livers. The disappearance rates of 125I-labelled IDL were monitored by measuring the radioactivity associated with apolipoprotein (apo) B in the perfusate during a 15-min period. Both human and rat IDL prepared with method I had an increased apoE to apoC ratio as compared with their native counterparts. Furthermore, human IDL had a significantly higher apoE to apoC ratio than rat IDL. However, when IDL were produced in the absence of exchangeable apolipoproteins (method II), no change in the apoE to apoC ratios was observed for the transformation of VLDL to IDL and the ratios were similar for human and rat IDL. Despite these differences, human IDL were always removed at a lower rate than rat IDL. The only striking difference between the two types of IDL made by method II was that the apoB100 to apoB48 ratio was considerably higher in human than in rat IDL. These results suggest that the apoB100 to apoB48 ratio is likely to be responsible for the observed differences in liver uptake between rat and human IDL.  相似文献   

16.
Incubation of low (LDL), intermediate (IDL), or very low density lipoproteins (VLDL) with palmitic acid and either high density lipoproteins (HDL), delipidated HDL, or purified apolipoprotein (apo) A-I resulted in the formation of lipoprotein particles with discoidal structure and mean particle diameters ranging from 146 to 254 A by electron microscopy. Discs produced from IDL or LDL averaged 26% protein, 42% phospholipid, 5% cholesteryl esters, 24% free cholesterol, and 3% triglycerides; preparations derived from VLDL contained up to 21% triglycerides. ApoA-I was the predominant protein present, with smaller amounts of apoA-II. Crosslinking studies of discs derived from LDL or IDL indicated the presence of four apoA-I molecules per particle, while those derived from large VLDL varied more in size and contained as many as six apoA-I molecules per particle. Incubation of discs derived from IDL or LDL with purified lecithin:cholesterol acyltransferase (LCAT), albumin, and a source of free cholesterol produced core-containing particles with size and composition similar to HDL2b. VLDL-derived discs behaved similarly, although the HDL products were somewhat larger and more variable in size. When discs were incubated with plasma d greater than 1.21 g/ml fraction rather than LCAT, core-containing particles in the size range of normal HDL2a and HDL3a were also produced. A variety of other purified free fatty acids were shown to promote disc formation. In addition, some mono and polyunsaturated fatty acids facilitated the formation of smaller, spherical particles in the size range of HDL3c. Both discoidal and small spherical apoA-I-containing lipoproteins were generated when native VLDL was incubated with lipoprotein lipase in the presence of delipidated HDL. We conclude that lipolysis product-mediated dissociation of lipid-apoA-I complexes from VLDL, IDL, or LDL may be a mechanism for formation of HDL subclasses during lipolysis, and that the availability of different lipids may influence the type of HDL-precursors formed by this mechanism.  相似文献   

17.
Cholesterol feeding in miniature swine resulted in a hypercholesterolemia with a distinctive hyperlipoproteinemia and the subsequent development of atherosclerosis. Alterations in the type and distribution of plasma lipoproteins induced by cholesterol feeding were as follows: (a) the occurrence of beta-migrating lipoproteins (B-VLDL) as well as very low density lipoproteins in the d less than 1.006 ultracentrifugal fraction; (b) an increased prominence of the intermediate lipoproteins (d = 1.006-1.02); (c) an increased prominence of low density lipoproteins; and (d) the occurrence of a distinctive lipoprotein with alpha mobility which was referred to as HDLc (cholesterol induced). Characterization of the various plasma lipoproteins included chemical composition, size by electron microscopy, and apoprotein content. The B-VLDL resembled the beta-migrating lipoproteins of human Type III hyperlipoproteinemia and contained a prominent protein equivalent to the arginine-rich apoprotein in addition to the B apoprotein, apo-A-I, and the fast-migrating apoproteins (apo-C). The HDLc were rich in cholesterol, ranged in size from 100 to 240 A in diameter, and contained the arginine-rich apoprotein and apo-A0I but lacked the B apoprotein. The arginine-rich apoproteins isolated from B-VLDL and HDLc by gel chromatography were similar in amino acid analyses, with glutamic acid as their amino-terminal residue. The occurrence of a spectrum of cholesterol-rich lipoproteins which contained the arginine-rich apoprotein with the occurrence of accelerated atherosclerosis suggested an interesting, although speculative, association.  相似文献   

18.
Lipoprotein secretion by Caco-2 cells, a human intestinal cell line, was studied in cells grown on inserts containing a Millipore filter (0.45 micron), separating secretory products from the apical and basolateral membranes into separate chambers. Under these conditions, as observed by electron microscopy, the cells formed a monolayer of columnar epithelial cells with microvilli on the apical surface and tight junctions between cells. The electrical resistances of the cell monolayers were 250-500 ohms/cm2. Both 14C-labeled lipids and 35S-labeled proteins were used to assess lipoprotein secretion. After a 24-hr incubation with [14C]oleic acid, 60-80% of the secreted triglyceride (TG) was in the basolateral chamber; 40% of the TG was present in the d less than 1.006 g/ml (chylomicron + VLDL) fraction and 50% in the 1.006 less than d less than 1.063 g/ml (LDL) fraction. After a 4-hr incubation with [35S]methionine, apolipoproteins were found to be major secretory products with 75-100% secreted to the basolateral chamber. Apolipoproteins B-100, B-48, E, A-I, A-IV, and C-III were identified by immunoprecipitation. The d less than 1.006 g/ml fraction was found to contain all of the major apolipoproteins, while the LDL fraction contained primarily apoB-100 and apoE; the HDL (1.063 less than d less than 1.21 g/ml) fraction principally contained apoA-I and apoA-IV. Mn-heparin precipitated all of the [35S]methionine-labeled apoB-100 and B-48 and a majority of the other apolipoproteins, and 80% of the [14C]oleic acid-labeled triglyceride, but only 15% of the phospholipid, demonstrating that Caco-2 cells secrete triglyceride-rich lipoproteins containing apoB. Secretion of lipoproteins was dependent on the lipid content of the medium; prior incubation with lipoprotein-depleted serum specifically reduced the secretion of lipoproteins, while addition of both LDL and oleic acid to the medium maintained the level of apoB-100, B-48, and A-IV secretion to that observed in the control cultures.  相似文献   

19.
PURPOSE OF REVIEW: Binding of apolipoprotein B-100-containing lipoproteins (VLDL, IDL, and LDL) to proteoglycans and modifications of the lipoproteins, whether bound or unbound, are key processes in atherogenesis. The complex interplay between binding and modification has been studied at neutral pH conditions. It has been demonstrated that during atherogenesis the extracellular pH of the lesions decreases. We summarize findings suggesting that lipoprotein binding and modification are enhanced at acidic pH. RECENT FINDINGS: Many enzymes found in the arterial intima, such as secretory sphingomyelinase and cathepsins, are able to hydrolyze lipoproteins in vitro. These enzymes function optimally at slightly acidic pH (pH 5.5-6.5), and are likely to act on lipoproteins optimally in the acidic plaque areas. Also, the ability of human aortic proteoglycans to bind native VLDL, IDL, and LDL is dramatically increased at acidic pH; this binding can be further increased if these apolipoprotein B-100-containing particles are hydrolytically modified. SUMMARY: Recent in-vitro findings suggest that in areas of atherosclerotic arterial intima where the extracellular pH is decreased, binding of apolipoprotein B-100-containing lipoproteins to proteoglycans and modification of the lipoproteins by acidic enzymes are enhanced. The pH-induced amplification of these processes will lead to enhanced extracellular accumulation of lipoproteins and accelerated progression of the disease.  相似文献   

20.
Plasma from individual human subjects is known to contain multiple discrete subpopulations of low (LDL) and intermediate (IDL) density lipoproteins that differ in particle size and density. The metabolic origins of these subpopulations are unknown. Transformation of IDL and larger LDL to smaller, denser LDL particles had been postulated to occur as a result of the combined effects of triglyceride hydrolysis and lipid transfer. However, the presence of multiple small LDL subspecies has been described in patients lacking cholesteryl ester transfer protein. We have characterized an alternative pathway in which size decrements in IDL or LDL are produced in the presence of unesterified fatty acids and a source of apolipoprotein (apo) A-I. Incubation of IDL or LDL subfractions with palmitic acid and either high density lipoproteins (HDL), apoHDL, or purified apoA-I gives rise to apoA-I, apoB-containing complexes that can dissociate into two particles, an apoB-containing lipoprotein with particle diameter 10-30 A smaller than the starting material, and a still smaller species (apparent peak particle diameter 140-190 A) containing lipid and apoA-I but no apoB. The newly formed IDL or LDL are depleted in phospholipid and free cholesterol with no change in apoB-100 as assessed by SDS gel electrophoresis. We hypothesize that this reaction may contribute to the formation of discrete IDL and LDL subpopulations of varying size during the course of hydrolysis of triglyceride-rich lipoproteins in plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号