首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The spatial relationship between Lys-61, the nucleotide binding site and Cys-374 was studied. Lys-61 was labelled with fluorescein-5-isothiocyanate as a resonance energy acceptor, the nucleotide-binding site was labelled with the fluorescent ATP analogues epsilon ATP or formycin-A 5'-triphosphate (FTP) and Cys-374 was labelled with 5-(2-[(iodoacetyl)amino]ethyl)aminonaphthalene-1-sulfonic acid (1,5-IAEDANS) as a resonance energy donor. The distances between the nucleotide binding site and Lys-61 or between Lys-61 and Cys-374 were calculated to be 3.5 +/- 0.3 nm and 4.60 +/- 0.03 nm, respectively. (The assumption has been made in calculating these distances that the energy donor and acceptor rotate rapidly relative to the fluorescence lifetime.) On the other hand, when doubly-labelled actin with 1,5-IAEDANS at Cys-374 and FITC at Lys-61 was polymerized in the presence of a twofold molar excess of phalloidin [Miki, M. (1987) Eur. J. Biochem. 164, 229-235], the fluorescence of 1,5-IAEDANS bound to actin was quenched significantly. This could be attributed to inter-monomer energy transfer. The inter-monomer distance between FITC attached to Lys-61 in a monomer and 1,5-IAEDANS attached to Cys-374 in its nearest-neighbour monomer in an F-actin filament was calculated to be 3.34 +/- 0.06 nm, assuming that the likely change in the intra-monomer distance does not change during polymerization by more than 0.4 nm. One possible spatial relationship between Lys-61, Cys-374 and the nucleotide binding site in an F-actin filament is proposed. The effect of myosin subfragment-1 (S1) binding on the energy transfer efficiency was studied. The fluorescence intensity of AEDANS-FITC-actin decreased by 30% upon interaction with S1. The fluorescence intensity of AEDANS-FITC-actin polymer in the presence of phalloidin increased by 21% upon interaction with S1. The addition of ATP led to the fluorescence intensity returning to the initial level. Assuming that the change of fluorescence intensity can be attributed to conformational change in the actin molecule induced by S1 binding, the intra-monomer distance was reduced by 0.4 nm and the inter-monomer distance was increased by 0.2 nm.  相似文献   

2.
Fluorescence polarization measurements were used to study changes in the orientation and order of different sites on actin monomers within muscle thin filaments during weak or strong binding states with myosin subfragment-1. Ghost muscle fibers were supplemented with actin monomers specifically labeled with different fluorescent probes at Cys-10, Gln-41, Lys-61, Lys-373, Cys-374, and the nucleotide binding site. We also used fluorescent phalloidin as a probe near the filament axis. Changes in the orientation of the fluorophores depend not only on the state of acto-myosin binding but also on the location of the fluorescent probes. We observed changes in polarization (i.e., orientation) for those fluorophores attached at the sites directly involved in myosin binding (and located at high radii from the filament axis) that were contrary to the fluorophores located at the sites close to the axis of thin filament. These altered probe orientations suggest that myosin binding alters the conformation of F-actin. Strong binding by myosin heads produces changes in probe orientation that are opposite to those observed during weak binding.  相似文献   

3.
Modification of Lys-61 in actin with fluorescein-5-isothiocyanate (FITC) blocks actin polymerization [Burtnick, L. D. (1984) Biochim. Biophys. Acta 791, 57-62]. FITC-labelled actin recovered its ability to polymerize on addition of phalloidin. The polymers had the same characteristic helical thread-like structure as normal F-actin and the addition of myosin subfragment-1 to the polymers formed the characteristic arrowhead structure in electron microscopy. The polymers activated the ATPase activity of myosin subfragment-1 as efficiently as normal F-actin. These results indicate that Lys-61 is not directly involved in an actin-actin binding region nor in myosin binding site. From static fluorescence polarization measurements, the rotational relaxation time of FITC-labelled actin filaments was calculated to be 20 ns as the value reduced in water at 20 degrees C, while any rotational relaxation time of 1,5-IAEDANS bound to Cys-374 on F-actin in the presence of a twofold molar excess of phalloidin could not be detected by static polarization measurements under the same conditions. This indicates that the Lys-61 side chain is extremely mobile even in the filamentous structure. Fluorescence resonance energy transfer between the donor 1,5-IAEDANS bound to SH1 of myosin subfragment-1 and the acceptor fluorescein-5-isothiocyanate bound to Lys-61 of actin in the rigor complex was measured. The transfer efficiency was 0.39 +/- 0.05 which corresponds to the distance of 5.2 +/- 0.1 nm, assuming that the energy donor and acceptor rotate rapidly relative to the fluorescence lifetime and that the transfer occurs between a single donor and an acceptor.  相似文献   

4.
Polarized fluorimetry was used to study in ghost muscle fibers the influence of a 40-kDa protein from the thin filaments of the mussel Crenomytilus grayanus on conformational changes of F-actin modified by the fluorescent probes 1,5-IAEDANS and FITC-phalloidin during myosin subfragment (S1) binding in the absence of nucleotides and in the presence of MgADP or MgATP. The fluorescence probes were rigidly bound with actin, which made the absorption and emission dipoles of the probes sensitive to changes in the orientation and mobility of both actin monomer and its subdomain-1 in thin filaments of the muscle fiber. On modeling different intermediate states of actomyosin, the orientation and mobility of oscillators of the dyes were changed discretely, which suggests multistep changes in the actin conformation during the cycle of ATP hydrolysis. The 40-kDa protein influenced the orientation and mobility of the fluorescent probes markedly, suppressing changes in their orientation and mobility in the absence of nucleotides and in the presence of MgADP, but enhancing these changes in the presence of MgATP. The calponin-like 40-kDa protein is supposed to prevent formation of the strong binding state of actomyosin in the absence of nucleotides and in the presence of MgADP but to activate formation of this state in the presence of MgATP.  相似文献   

5.
Using polarized microfluorometry techniques, a study was made on the orientation and mobility of fluorescent probes 1,5-IAEDANS and rhomadin-phalloidin, located in various parts of actin, muscle fibers free of myosin, tropomyosin and troponin (ghost fibres) being used. It was found that the binding of a myosin subfragment 1 (S1) to actin induced changes in polarized fluorescence of the fibers. The analysis of these data showed that the formation of actin-S1 and actin-S1-ADP complexes in a muscle fiber resulted in a decrease in the angle between the thin filaments and the emission dipole of phalloidin-rhodamine, as well as in an increase of the mobility of this dye. In the experiments with the 1,5-IAEDANS label the angle of emission dipole increased, while the mobility of the label decreased. These changes were smaller in the presence of Mg-ADP than in its absence. It is assumed that the changes in actin monomer structure occur when a myosin head interacts with actin. These changes are expressed as those in orientation and mobility of large and small domains of actin in thin filaments. The domain orientation in actomyosin complex changes, influenced by Mg-ADP. The data obtained allow to propose the involvement of interdomain motions of some parts of actin monomer in the mechanisms of muscle contraction.  相似文献   

6.
The orientation and mobility of an N-(iodoacetyl)-(1-naphtyl-5-sulpho-ethylenediamine) fluorescent probe (1.5-IAEDANS) specifically bound to Cys-374 of actin in ghost muscle fibers isolated from fast and slow rat muscles were studied by polarized fluorimetry in the absence and presence of a myosin subfragment-1 (S1) in intact rats and in animals with a gradual (2–5 weeks) reduction in the level of thyroid hormones (development of hypothyroidism). The binding of S1 to F-actin of ghost muscle fibers was shown to induce changes in the orientation of dipoles of the 1.5-IAEDANS fluorescent probe and in the relative amount of the randomly oriented fluorophores that indicates changes in actin subdomain-1 orientation and mobility resulting from formation of its strong binding with S1. This effect is markedly inhibited by the development of hypothyroidism. The maximal effect of hypothyroidism is observed after 34 days of the development of the disease. It is suggested that the change in the thyroid status in muscle inhibits the ability of F-actin to form strong binding with myosin, which is essential for the generation of force.  相似文献   

7.
19F NMR study of the myosin and tropomyosin binding sites on actin   总被引:1,自引:0,他引:1  
J A Barden  L Phillips 《Biochemistry》1990,29(5):1348-1354
Actin was labeled with pentafluorophenyl isothiocyanate at Lys-61. The label was sufficiently small not to affect the rate or extent of actin polymerization unlike the much larger fluorescein 5-isothiocyanate which completely inhibits actin polymerization [Burtnick, L. D. (1984) Biochim. Biophys. Acta 791, 57-62]. Furthermore, the label resonances in the 376.3-MHz 19F NMR spectrum were unaffected by actin polymerization. However, the binding of the relaxing protein tropomyosin resulted in the fluorinated Lys-61 resonances broadening out beyond detection due to a substantial increase in the effective correlation time of the label. Similarly, the binding of myosin subfragment 1 to F-actin resulted in the dramatic broadening of the labeled Lys-61 resonances. Thus, Lys-61 on actin appears to be closely associated with the binding sites for both tropomyosin and myosin, suggesting that both these proteins can compete for the same site on actin. The other region of actin known to be involved in myosin binding, Cys-10, was found to be more remote from the actin-actin interfaces than Lys-61. Labels on Cys-10 exhibited substantially greater mobility than fluorescein 5-isothiocyanate attached to Lys-61 which appeared to be held down on the surface of the actin monomer. This may sterically hinder the actin-actin interaction about 1 nm from the tropomyosin/myosin binding site.  相似文献   

8.
The effect of electrostimulation of fast (EDL) and slow (SOL) rat muscles on the orientation and mobility of fluorescent probes rhodamine-phalloidine and 1.5-IAEDANS (N-iodoacetyl-N'-(5-sulpho-1-naphtyl)-ethylenediamine), located in various parts of actin molecule, has been studied by polarized microfluorimetry techniques. Muscles were stimulated at 20 Hz with the pulse width of 0.3 msec, some muscles were treated for 6 h during the first day, the other muscles for 6 h a day during the next 4 days before glycerinization. Then muscle fibres freed by the extraction of myosin, tropomyosin and troponin (ghost fibres) were used. It was shown that the binding of myosin subfragment 1 (S1) to actin induced the changes in polarized fluorescence of the fibres. The analysis of the obtained data showed that the formation of actomyosin complex in stimulated muscles resulted in increasing the angle between the thin filaments and the emission dipole of rhodamine-phalloidine, as well as in decreasing the mobility of this dye. In the experiments with the 1.5-IAEDANS label, the angle of the emission dipole decreased, while the label mobility increased. It was suggested that the orientation of domains in actomyosin complex changes following the electrostimulation to affect both the conformational state of F-actin in thin filaments of ghost fibres and actin-myosin interaction.  相似文献   

9.
R Takashi 《Biochemistry》1979,18(23):5164-5169
The fast-reacting thiol (SH1) of myosin subfragment-1 (S-1) was covalently and specifically labeled with (iodoacetamido)fluorescein (IAF), while Cys-373 of actin was also covalently and preferentially labeled with N-(iodoacetyl)-N'-(1-sulfo-5-naphthyl)ethylenediamine (1,5-IAEDANS). The method of fluorescence energy transfer was used to examine the spatial proximity between the two sites, i.e., SH1 and Cys-373, in the rigor complex of acto-S-1. Approximately 30% fluorescence energy transfer was observed from the 1,5-IAEDANS on actin as a donor to the IAF on S-1 as an acceptor in their rigor complex; under certain assumptions this corresponds to a distance of ca. 6.0 nm.  相似文献   

10.
Muscle fibres, free of myosin, troponin and tropomyosin, containing thin filaments reconstructed from G-actin and modified by fluorescent label 1,5-IAEDANS were used for polarized microfluorimetric studies of the effect of tropomyosin (TM) from smooth muscles, and of subfragment 1 (S1) from skeletal muscles on the structural state of F-actin. TM and S1 were shown to initiate different changes in polarized fluorescence of 1,5-IAEDANS of F-actin: TM increases, whereas S1 decreases fluorescent anisotropy. It was suggested that the structural state of F-actin may differ in the C-terminal of polypeptide chain of actin.  相似文献   

11.
In order to elucidate the role of DNA-binding loop of actin (amino acid residues 38-52) in mechanisms of muscle contraction, polarizational fluorimetry and ghost muscle fibers, containing thin filaments reconstructed by intact and subtilisin-cleaved G-actin were used. The thin filaments were modified by fluorescent probes rhodamin-phalloidin and 1,5-IAEDANS. Changes in orientation and mobility of the probes were considered as an indication of changes in actin conformation. The stage AM of ATP hydrolysis cycle was simulated. For this purpose, thin filaments were decorated by myosin subfragment-1 (S1) in the absence of nucleotide. It has been shown that S1 binding to actin is accompanied by changes in orientation and mobility of the fluorescent probes. For intact filaments, the changes of these parameters indicate the formation of a strong binding between S1 and actin. Cleavage of DNA-binding loop by subtilisin markedly inhibits this effect. The cleavage of actin by subtilisin has also been shown to diminish the changes in fiber birefringence, which takes place at the formation of F-actin-S1 complex in the muscle fiber. The spatial organization of the actin DNA-binding loop is suggested to play an important role in determining the character of myosin interaction with actin in the ATP hydrolysis cycle.  相似文献   

12.
Using polarization fluorimetry, the orientation and mobility of 1,5-IAEDANS specifically bound to Cys707 of myosin subfragment-1 (S1) were studied in ghost muscle tropomyosin-containing fibers in the absence and in the presence of MgADP, MgAMP-PNP, MgATPgammaS, or MgATP. Modeling of various intermediate states was accompanied by discrete changes in actomyosin orientation and mobility of fluorescent dye dipoles. This suggests multistep changes in the structural state of the myosin head during the ATPase cycle. Maximal differences in the probe orientation by 4 degrees and its mobility by 30% were found between actomyosin states in the presence of MgADP and MgATP. It is suggested that interaction of S1 with F-actin induces nucleotide-dependent rotation of the whole motor domain of the myosin head or only the dye-binding site and also change in the head mobility.  相似文献   

13.
At low ionic strength (7-25 mM) Mg2(+)-ATPase of myosin subfragment 1 (S1) isoforms containing alkali light chain A1 [S1(A1)] is activated by actin 1.5-2.5 times as strongly as Mg2(+)-ATPase of S1 isoforms containing alkali light chain A2[S1(A2)]. Data from analytical ultracentrifugation suggest that at low ionic strength in the absence of ATP in solution S1(A1) displays a higher affinity for F-actin than S1(A2). Such a higher affinity of S1(A1) for F-actin was also demonstrated by experiments, in which the interaction of S1 isoforms fluorescently labeled by 1.5-IAEDANS with F-actin of ghost fibers (single glycerinated muscle fibers containing F-actin but devoid of myosin) was studied. Using polarization microfluorimetry, it was shown that the interaction of both S1 isoforms with ghost fiber F-actin induces similar changes in the parameters of polarized tryptophan fluorescence. At the same time the mobility of the fluorescent probe, 1.5-IAEDANS, specifically attached to the SH-group of Cys-374 in the C-terminal region of action is markedly decreased by S1(A1) and is only slightly affected by S1(A2). The data obtained suggest that S1(A1) and S1(A2) interact with the C-terminal region of the actin molecule in different ways, i.e. S1(A1) is attached more firmly than S1(A2). This may be due to the existence of contacts between the alkali light chain of A1 of S1(A1) and the C-terminal region of actin as well as to the absence of such contacts in the case of S1(A2).  相似文献   

14.
Influence of the bound nucleotide on the molecular dynamics of actin   总被引:1,自引:0,他引:1  
Rotational dynamics of actin spin-labelled with maleimide probes at the reactive thiol Cys-374 were studied. Replacement of the bound nucleotide by Br8ATP in G-actin and Br8ADP in F-actin causes significant increase of the rotational correlation time of the spin probe, indicating reduced motion in both G and F-actin. The orientation dependence of the electron paramagnetic resonance spectra in oriented F-actin filaments revealed an altered molecular order of the probe when the nucleotide was a Br-substituted one. The bound nucleotide affects the myosin S1 ATPase activation by actin; both Vmax and K(actin) decreased significantly when the bound nucleotide of actin was Br8ADP.  相似文献   

15.
E Kim  E Reisler 《Biophysical journal》1996,71(4):1914-1919
The recently reported structural connectivity in F-actin between the DNase I binding loop on actin (residues 38-52) and the C-terminus region was investigated by fluorescence and proteolytic digestion methods. The binding of copper to Cys-374 on F- but not G-actin quenched the fluorescence of dansyl ethylenediamine (DED) attached to Gin-41 by more than 50%. The blocking of copper binding to DED-actin by N-ethylmaleimide labeling of Cys-374 on actin abolished the fluorescence quenching. The quenching of DED-actin fluorescence was restored in copolymers (1:9) of N-ethylmaleimide-DED-actin with unlabeled actin. The quenching of DED-actin fluorescence by copper was also abolished in copolymers (1:4) of DED-actin and N-ethylmaleimide-actin. These results show intermolecular coupling between loop 38-52 and the C-terminus in F-actin. Consistent with this, the rate of subtilisin cleavage of actin at loop 38-52 was increased by the bound copper by more than 10-fold in F-actin but not in G-actin. Neither acto-myosin subfragment-1 (S1) ATPase activity nor the tryptic digestion of G-actin and F-actin at the Lys-61 and Lys-69 sites were affected by the bound copper. These observations suggest that copper binding to Cys-374 does not induce extensive changes in actin structure and that the perturbation of loop 38-52 environment results from changes in the intermolecular contacts in F-actin.  相似文献   

16.
The spatial relationships between Lys-61, Cys-374 on actin or SH1 on myosin subfragment-1 (S1) and Cys-190 on tropomyosin or Cys-133 on troponin-I (TnI) in a reconstituted thin filament were studied by fluorescence resonance energy transfer. 5-(2-Iodoacetylaminoethyl)aminonaphthalene 1-sulfonic acid (IAEDANS) attached to Lys-190 on tropomyosin or to Cys-133 on TnI was used as a donor. Fluorescein 5-isothiocyanate (FITC) attached to Lys-61 or 5-(iodoacetoamido)fluorescein (IAF) attached to Cys-374 on actin and 4-dimethylaminophenyl-azophenyl 4'-maleimide (DABMI) attached to SH1 on S1 were used as an acceptor. The transfer efficiency between AEDANS attached to Cys-190 on tropomyosin and FITC attached to Lys-61 on actin was 0.42 in the absence of troponin, 0.46 in the presence of troponin and Ca2+ and 0.55 in the presence of troponin and absence of Ca2+. The corresponding distances between the probes were calculated to be 4.7 nm, 4.6 nm and 4.3 nm respectively, assuming a random orientation factor K2 = 2/3. A large difference in the transfer efficiency from AEDANS attached to Cys-133 on TnI to FITC attached to Lys-61 on actin was observed between in the presence (0.52) and absence (0.70) of Ca2+. The corresponding distances between the probes were calculated to be 4.5 nm in the presence of Ca2+ and 3.9 nm in the absence of Ca2+. The distance between Cys-190 on tropomyosin and Cys-374 on actin was measured to be 5.1 nm and the transfer efficiency (0.35) did not change upon addition of troponin whether Ca2+ is present or not, in agreement with the previous report [Tao, T., Lamkin, M. & Lehrer, S. S. (1983) Biochemistry 22, 3059-3064]. The distance between Cys-133 on TnI and Cys-374 on actin was measured to be 4.4 nm. No detectable change in transfer efficiency (0.58) was observed between values in the presence and absence of Ca2+. These results suggest that a relative movement of the two domains of actin monomer in a reconstituted thin filament occurs in response to a change in Ca2+ concentration. The transfer efficiencies between DABMI attached to SH1 on S1 and AEDANS attached to Cys-190 on tropomyosin or Cys-133 on TnI were too small (less than 2%) for an accurate estimation of the distances, suggesting the distances are longer than 7.3 nm.  相似文献   

17.
15N- and 2H-substituted maleimido-TEMPO spin label ([15N,2H]MTSL) and the fluorescent label 1,5-IAEDANS were used to specifically modify sulfhydryl 1 of myosin to study the orientation of myosin cross-bridges in skeletal muscle fibers. The electron paramagnetic resonance (EPR) spectrum from muscle fibers decorated with labeled myosin subfragment 1 ([15N,2H]MTSL-S1) or the fluorescence polarization spectrum from fibers directly labeled with 1,5-IAEDANS was measured from fibers in various physiological conditions. The EPR spectra from fibers with the fiber axis oriented at 90 degrees to the Zeeman field show a clear spectral shift from the rigor spectrum when the myosin cross-bridge binds MgADP. This shift is attributable to a change in the torsion angle of the spin probe from cross-bridge rotation and is observable due mainly to the improved angular resolution of the substituted probe. The EPR data from [15N,2H]MTSL-S1 decorating fibers are combined with the fluorescence polarization data from the 1,5-IAEDANS-labeled fibers to map the global angular transition of the labeled cross-bridges due to nucleotide binding by an analytical method described in the accompanying paper [Burghardt, T. P., & Ajtai, K. (1992) Biochemistry (preceding paper in this issue)]. We find that the spin and fluorescent probes are quantitatively consistent in the finding that the actin-bound cross-bridge rotates through a large angle upon binding MgADP. We also find that, if the shape of the cross-bridge is described as an ellipsoid with two equivalent minor axes, then cross-bridge rotation takes place mainly about an axis parallel to the major axis of the ellipsoid. This type of rotation may imitate the rotation motion of cross-bridges during force generation.  相似文献   

18.
To better characterize the conformational differences of G- and F-actin, we have compared the interaction between G- and F-actin with myosin subfragment 1 (S1) which had part of its F-actin binding site (residues 633-642) blocked by a complementary peptide or "antipeptide" (Chaussepied, P., and Morales, M. F. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 7471-7475). Light scattering, sedimentation, and electron microscopy measurements showed that, with the antipeptide covalently attached to the S1 heavy chain, S1 was not capable of inducing G-actin polymerization in the absence of salt. Moreover, the antipeptide-carrying S1 did not change the fluorescence polarization of 5-[2-(iodoacetyl)-aminoethyl]aminonaphthalene-1-sulfonic acid (1,5-IAEDANS)-labeled G-actin or of 1,5-IAEDANS-labeled actin dimer, compared to the control S1. This result, interpreted as a lack of interaction between G-actin and antipeptide-carrying S1, was confirmed further by the following experiments: in the presence of G-actin, antipeptide.S1 heavy chain was not protected against trypsin and papain proteolysis, and G-actin could not be cross-linked to antipeptide.S1 by 1-ethyl-3[-3-(dimethylamino)propyl]carbodiimide. In contrast, similar experiments showed that antipeptide.S1 was able to interact with nascent F-actin and with F-actin. Thus, blocking the stretch 633-642 of S1 heavy chain by the antipeptide strongly inhibits G-actin-S1 interaction but only slightly alters F-actin-S1 contact. We, therefore postulate that this stretch of skeletal S1 heavy chain is essential for G-actin-S1 interaction and that the G-F transformation generates new S1 binding site(s) on the actin molecule.  相似文献   

19.
Polarized fluorimetry technique and ghost muscle fibers containing tropomyosin were used to study effects of caldesmon (CaD) and recombinant peptides CaDH1 (residues 506-793), CaDH2 (residues 683-767), CaDH12 (residues 506-708) and 658C (residues 658-793) on the orientation and mobility of fluorescent label 1.5-IAEDANS specifically bound to Cys-707 of myosin subfragment-1 (S1) in the absence of nucleotide, and in the presence of MgADP, MgAMP-PNP, MgATPgammaS or MgATP. It was shown that at modelling different intermediates of actomyosin ATPase, the orientation and mobility of dye dipoles changed discretely, suggesting a multi-step changing of the myosin head structural state in ATP hydrolysis cycle. The maximum difference in orientation and mobility of the oscillator (4 degrees and 30%, respectively) was observed between actomyosin in the presence of MgATP, and actomyosin in the presence of MgADP. Caldesmon actin-binding sites C and B' inhibit formation of actomyosin strong binding states, while site B activates it. It is suggested that actin-myosin interaction in ATP hydrolysis cycle initiates nucleotide-dependent rotation of myosin motor domain, or that of its site for dye binding as well as the change in myosin head mobility. Caldesmon drives ATP hydrolysis cycle by shifting the equilibrium between strong and weak forms of actin-myosin binding.  相似文献   

20.
Fluorescently labeled myosin heads (S1) were added to muscle fibers and myofibrils at various concentrations. The orientation of the absorption dipole of the dye with respect to the axis of F-actin was calculated from polarization of fluorescence which was measured by a novel method from video images of muscle. In this method light emitted from muscle was split by a birefringent crystal into two nonoverlapping images: the first image was created with light polarized in the direction parallel to muscle axis, and the second image was created with light polarized in the direction perpendicular to muscle axis. Images were recorded by high-sensitivity video camera and polarization was calculated from the relative intensity of both images. The method allows measurement of the fluorescence polarization from single myofibril irrigated with low concentrations of S1 labeled with dye. Orientation was also measured by fluorescence-detected linear dichroism. The orientation was different when muscle was irrigated with high concentration of S1 (molar ratio S1:actin in the I bands equal to 1) then when it was irrigated with low concentration of S1 (molar ratio S1:actin in the I bands equal to 0.32). The results support our earlier proposal that S1 could form two different rigor complexes with F-actin depending on the molar ratio of S1:actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号