首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study determined which knee joint motions lead to anterior cruciate ligament (ACL) rupture with the knee at 25° of flexion. The knee was subjected to internal and external rotations, as well as varus and valgus motions. A failure locus representing the relationship between these motions and ACL rupture was established using finite element simulations. This study also considered possible concomitant injuries to the tibial articular cartilage prior to ACL injury. The posterolateral bundle of the ACL demonstrated higher rupture susceptibility than the anteromedial bundle. The average varus angular displacement required for ACL failure was 46.6% lower compared to the average valgus angular displacement. Femoral external rotation decreased the frontal plane angle required for ACL failure by 27.5% compared to internal rotation. Tibial articular cartilage damage initiated prior to ACL failure in all valgus simulations. The results from this investigation agreed well with other experimental and analytical investigations. This study provides a greater understanding of the various knee joint motion combinations leading to ACL injury and articular cartilage damage.  相似文献   

2.
When using continuous passive motion (CPM) devices, appropriate setting of the device and positioning of the patient are necessary to obtain maximum range of motion (ROM). In this study, the ROMs in both the knee joint and CPM device during CPM treatment were measured using a motion analysis system for three different CPM devices. Additionally, the trajectories of the angles at the knee for hip joint misalignments were evaluated using kinematic models of the three CPM devices. The results showed that discrepancies in ROM between the knee joints and the CPM device settings during CPM treatment were revealed regardless of the CPM device and that the effect of misalignment is dependent on the design of the CPM device. The present technology could be applied for the development of a better design configuration for the CPM device to reduce the discrepancy in ROM at the knee joint.  相似文献   

3.
When using continuous passive motion (CPM) devices, appropriate setting of the device and positioning of the patient are necessary to obtain maximum range of motion (ROM). In this study, the ROMs in both the knee joint and CPM device during CPM treatment were measured using a motion analysis system for three different CPM devices. Additionally, the trajectories of the angles at the knee for hip joint misalignments were evaluated using kinematic models of the three CPM devices. The results showed that discrepancies in ROM between the knee joints and the CPM device settings during CPM treatment were revealed regardless of the CPM device and that the effect of misalignment is dependent on the design of the CPM device. The present technology could be applied for the development of a better design configuration for the CPM device to reduce the discrepancy in ROM at the knee joint.  相似文献   

4.
The knee ligaments and patellar tendon function in concert with each other and other joint tissues, and are adapted to their specific physiological function via geometry and material properties. However, it is not well known how the viscoelastic and quasi-static material properties compare between the ligaments. The purpose of this study was to characterize and compare these material properties between the knee ligaments and patellar tendon.Dumbbell-shaped tensile test samples were cut from bovine knee ligaments (ACL, LCL, MCL, PCL) and patellar tendon (PT) and subjected to tensile testing (n = 10 per ligament type). A sinusoidal loading test was performed at 8% strain with 0.5% strain amplitude using 0.1, 0.5 and 1 Hz frequencies. Subsequently, an ultimate tensile test was performed to investigate the stress-strain characteristics.At 0.1 Hz, the phase difference between stress and strain was higher in LCL compared with ACL, PCL and PT (p < 0.05), and at 0.5 Hz that was higher in LCL compared with all other ligaments and PT (p < 0.05). PT had the longest toe-region strain (p < 0.05 compared with PCL and MCL) and MCL had the highest linear and strain-dependent modulus, and toughness (p < 0.05 compared with ACL, LCL and PT).The results indicate that LCL is more viscous than other ligaments at low-frequency loads. MCL was the stiffest and toughest, and its modulus increased most steeply at the toe-region, possibly implying a greater amount of collagen. This study improves the knowledge about elastic, viscoelastic and failure properties of the knee ligaments and PT.  相似文献   

5.
A golf-related ACL injury can be linked with excessive golf play or practice because such over-use by repetitive golf swing motions can increase damage accumulation to the ACL bundles. In this study, joint angular rotations, forces, and moments, as well as the forces and strains on the ACL of the target-side knee joint, were investigated for ten professional golfers using the multi-body lower extremity model. The fatigue life of the ACL was also predicted by assuming the estimated ACL force as a cyclic load. The ACL force and strain reached their maximum values within a short time just after ball-impact in the follow-through phase. The smaller knee flexion, higher internal tibial rotation, increase of the joint compressive force and knee abduction moment in the follow-through phase were shown as to lead an increased ACL loading. The number of cycles to fatigue failure (fatigue life) in the ACL might be several thousands. It is suggested that the excessive training or practice of swing motion without enough rest may be one of factors to lead to damage or injury in the ACL by the fatigue failure. The present technology can provide fundamental information to understand and prevent the ACL injury for golf players.  相似文献   

6.
The aim of this study was to examine the influence of restricted knee motion during the serve in tennis players of different performance levels. Thirty subjects distributed in 3 groups (beginner, B; intermediate, I; elite, E) performed 15 flat first serves with normal (normal serve, S(N)) and restricted (restricted serve, S(R)) knee motion. In S(R), the legs were kept outstretched by splints with a knee joint angle fixed at 10 degrees (0 degrees fully extended) to prevent any knee flexion/ extension. Vertical maximum ground reaction forces (Fz(max)), ball impact location (L(impact)), and ball speed (S(ball)) were measured with force platform, video analysis, and radar, respectively. Fz(max), L(impact,) and S(ball) were higher (p < 0.001) in S(N) than in S(R). S(ball) was significantly (p < 0.001) dependent on performance level, with higher values recorded in E than in B or I. From S(R) to S(N), increase in L(impact) was greater (p < 0.01) in E than in other groups and increases in Fz(max) and S(ball) were correlated (r = 0.69, p < 0.01) in E only. Knee motion is a significant contributor to serving effectiveness whatever the performance level. Skilled players perform faster serves than their less skilled counterparts, and this is partly related to a more forceful lower limb drive.  相似文献   

7.
The effects of proprioceptive neuromuscular facilitation (PNF) stretch techniques on older adults are unknown and the physiological changes associated with aging may lead to differential responses to PNF stretching. Therefore, the purpose of this experiment was to examine the effects of PNF stretch techniques and EMG activity in older adults. Three PNF stretch techniques: static stretch (SS), contract-relax (CR), and agonist contract-relax (ACR) were applied to 24 older adults aged 50-75 years. The subjects were tested for knee extension range of motion (ROM) and knee flexor muscle EMG activity. The results indicated that ACR produced 29-34% more ROM and 65-119% more EMG activity than CR and SS, respectively. It was concluded that PNF stretch techniques can increase ROM in older adults. However, a paradoxical effect was observed in that PNF stretching may not induce muscular relaxation even though ROM about a joint increases. Care should be taken when applying PNF stretch techniques to older adults due to age-related alterations in muscle elasticity.  相似文献   

8.
Isokinetic exercise has been commonly used in knee rehabilitation, conditioning and research in the past two decades. Although many investigators have used various experimental and theoretical approaches to study the muscle and joint force involved in isokinetic knee extension and flexion exercises, only a few of these studies have actually distinguished between the tibiofemoral joint forces and muscle forces. Therefore, the objective of this study was to specify, via an eletromyography(EMG)-driven muscle force model of the knee, the magnitude of the tibiofemoral joint and muscle forces acting during isokinetic knee extension and flexion exercises. Fifteen subjects ranging from 21 to 36 years of age volunteered to participate in this study. A Kin Com exercise machine (Chattecx Corporation, Chattanooga, TN, U.S.A.) was used as the loading device. An EMG-driven muscle force model was used to predict muscle forces, and a biomechanical model was used to analyze two knee joint constraint forces; compression and shear force. The methods used in this study were shown to be valid and reliable (r > 0.84 andp < 0.05). The effects on the tibiofemoral joint force during knee isokinetic exercises were compared with several functional activities that were investigated by earlier researchers. The muscle forces generated during knee isokinetic exercise were also obtained. Based on the findings obtained in this study, several therapeutic justifications for knee rehabilitation are proposed.  相似文献   

9.
The objectives were to examine knee angle-, and gender-specific knee extensor torque output and quadriceps femoris (QF) muscle recruitment during maximal effort, voluntary contractions. Fourteen young adult men and 15 young adult women performed three isometric maximal voluntary contractions (MVC), in a random order, with the knee at 0 degrees (terminal extension), 10 degrees, 30 degrees, 50 degrees, 70 degrees, and 90 degrees flexion. Knee extensor peak torque (PT), and average torque (AT) were expressed in absolute (N m), relative (N m kg(-1)) and allometric-modeled (N m kg(-n)) units. Vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscle EMG signals were full-wave rectified and integrated over the middle 3 s of each contraction, averaged over the three trials at each knee angle, and normalized to the activity recorded at 0 degrees. Muscle recruitment efficiency was calculated as the ratio of the normalized EMG of each muscle to the allometric-modeled average torque (normalized to the values at 0 degrees flexion), and expressed as a percent. Men generated significantly greater knee extensor PT and AT than women in absolute, relative and allometric-modeled units. Absolute and relative PT and AT were significantly highest at 70 degrees, while allometric-modeled values were observed to increase significantly across knee joint angles 10-90 degrees. VM EMG was significantly greater than the VL and RF muscles across all angles, and followed a similar pattern to absolute knee extensor torque. Recruitment efficiency improved across knee joint angles 10-90 degrees and was highest for the VL muscle. VM recruitment efficiency improved more than the VL and RF muscles across 70-90 degrees flexion. The findings demonstrate angle-, and gender-specific responses of knee extensor torque to maximal-effort contractions, while superficial QF muscle recruitment was most efficient at 90 degrees, and less dependent on gender.  相似文献   

10.
Coactivation of knee flexors during knee extension assists in joint stability by exerting an opposing torque to the anterior tibial displacement induced by the quadriceps. This opposing torque is believed to be generated by eccentric muscle actions that stiffen the knee, thereby attenuating strain to joint ligaments, particularly the anterior cruciate ligament (ACL). However, as the lengths of knee muscles vary with changes in joint position, the magnitude of flexor/extensor muscle force coupling may likewise vary, possibly affecting the capacity for active knee stabilization. The purpose of this study was to assess the effect of changes in movement speed and joint position on eccentric/concentric muscle action relationships in the knees of uninjured (UNI) and post-ACL-surgery (INJ) subjects (n = 14). All subjects were tested for maximum eccentric and concentric torque of the contralateral knee flexors and extensor muscles at four isokinetic speeds (15 degrees-60 degrees x s(-1)) and four joint position intervals (20 degrees-60 degrees of knee flexion). Eccentric flexor torque was normalized to the percentage of concentric flexor torque generated at each joint position interval for each speed tested (flexor E-C ratio). In order to estimate the capacity of the knee flexors to resist active knee extension, the eccentric-flexor/concentric-extensor ratios were also computed for each joint position interval and speed (flexor/extensor E-C ratio). The results revealed that eccentric torque surpassed concentric torque by 3%-144% across movement speeds and joint position intervals. The magnitude of the flexor E-C ratio and flexor/extensor E-C increased significantly with speed in both groups of subjects (P < 0.05) and tended to rise with muscle length as the knee was extended; peak values were generated at the most extended joint position (20 degrees-30 degrees). Although torque development patterns were symmetrical between the contralateral limbs in both groups, between-group comparisons revealed significantly higher flexor/extensor E-C ratios for the INJ group compared to the UNI group (P < 0.05), particularly at the fastest speed tested (60 degrees x s(-1)). The results indicate that joint position and movement speed influence the eccentric/concentric relationships of knee flexors and extensors. The INJ subjects appeared to accommodate to surgery by developing the eccentric function of their ACL and normal knee flexors, particularly at higher speeds and at more extended knee joint positions. This may assist in the dynamic stabilization of the knee at positions where ACL grafts have been reported to be most vulnerable to strain.  相似文献   

11.
The purpose of this study was to examine the acute effects of static versus dynamic stretching on peak torque (PT) and electromyographic (EMG), and mechanomyographic (MMG) amplitude of the biceps femoris muscle (BF) during isometric maximal voluntary contractions of the leg flexors at four different knee joint angles. Fourteen men ((mean +/- SD) age, 25 +/- 4 years) performed two isometric leg flexion maximal voluntary contractions at knee joint angles of 41 degrees , 61 degrees , 81 degrees , and 101 degrees below full leg extension. EMG (muV) and MMG (m x s(-2)) signals were recorded from the BF muscle while PT values (Nm) were sampled from an isokinetic dynamometer. The right hamstrings were stretched with either static (stretching time, 9.2 +/- 0.4 minutes) or dynamic (9.1 +/- 0.3 minutes) stretching exercises. Four repetitions of three static stretching exercises were held for 30 seconds each, whereas four sets of three dynamic stretching exercises were performed (12-15 repetitions) with each set lasting 30 seconds. PT decreased after the static stretching at 81 degrees (p = 0.019) and 101 degrees (p = 0.001) but not at other angles. PT did not change (p > 0.05) after the dynamic stretching. EMG amplitude remained unchanged after the static stretching (p > 0.05) but increased after the dynamic stretching at 101 degrees (p < 0.001) and 81 degrees (p < 0.001). MMG amplitude increased in response to the static stretching at 101 degrees (p = 0.003), whereas the dynamic stretching increased MMG amplitude at all joint angles (p 相似文献   

12.
A three-dimensional mathematical model of the human knee joint was developed to examine the role of single ligaments, such as an anterior cruciate ligament (ACL) graft in ACL reconstruction, on joint motion and tissue forces. The model is linear and valid for small motions about an equilibrium position. The knee joint is modeled as two rigid bodies (the femur and the tibia) interconnected by deformable structures, including the ACL or ACL graft, the cartilage layer, and the remainder of the knee tissues (modeled as a single element). The model was demonstrated for the equilibrium condition of the knee in extension with an anterior tibial force, causing anterior drawer and hyperextension. The knee stiffness matrix for this condition was measured for a human right knee in vitro. Predicted model response was compared with experimental observations. Qualitative agreement was found between model and experiment, validating the model and its assumptions. The model was then used to predict the change in graft and cartilage forces and joint motion of the knee due to an increment of load in the normal joint both after ACL removal and with various altered states simulating ACL reconstructions. Results illustrate the interdependence between loads in the ACL graft, other knee structures, and contact force. Stiffer grafts and smaller maximum unloaded length of the ligament lead to higher graft and contact forces. Changes in cartilage stiffness alter load sharing between ACL graft and other joint tissues.  相似文献   

13.
The purpose of this study was to examine the effect of different muscle contraction modes and intensities on patellar tendon moment arm length (d(PT)). Five men performed isokinetic concentric, eccentric and passive knee extensions at an angular velocity of 60 deg/s and six men performed gradually increasing to maximum effort isometric muscle contractions at 90( composite function) and 20( composite function) of knee flexion. During the tests, lateral X-ray fluoroscopy imaging was used to scan the knee joint. The d(PT) differences between the passive state and the isokinetic concentric and extension were quantified at 15( composite function) intervals of knee joint flexion angle. Furthermore, the changes of the d(PT) as a function of the isometric muscle contraction intensities were determined during the isometric knee extension at 90( composite function) and 20( composite function) of knee joint flexion. Muscle contraction-induced changes in knee joint flexion angle during the isometric muscle contraction were also taken into account for the d(PT) measurements. During the two isometric knee extensions, d(PT) increased from rest to maximum voluntary muscle contraction (MVC) by 14-15%. However, when changes in knee joint flexion angle induced by the muscle contraction were taken into account, d(PT) during MVC increased by 6-26% compared with rest. Moreover, d(PT) increased during concentric and eccentric knee extension by 3-15%, depending on knee flexion angle, compared with passive knee extension. These findings have important implications for estimating musculoskeletal loads using modelling under static and dynamic conditions.  相似文献   

14.
The purpose of this investigation was to compare trunk muscle activity during stability ball and free weight exercises. Nine resistance-trained men participated in one testing session in which squats (SQ) and deadlifts (DL) were completed with loads of approximately 50, 70, 90, and 100% of one-repetition maximum (1RM). Isometric contractions during 3 stability ball exercises (quadruped (QP), pelvic thrust (PT), ball back extension (BE)) were also completed. During all exercises, average integrated electromyography (IEMG) from the rectus abdominus (RA), external oblique (EO), longissimus (L1) and multifidus (L5) was collected and analyzed. Results demonstrate that when expressed relative to 100% DL 1RM, muscle activity was 19.5 +/- 14.8% for L1 and 30.2 +/- 19.3% for L5 during QP, 31.4 +/- 13.4% for L1 and 37.6 +/- 12.4% for L5 during PT, and 44.2 +/- 22.8% for L1 and 45.5 +/- 21.6% for L5 during BE. IEMG of L1 during SQ and DL at 90 and 100% 1RM, and relative muscle activity of L5 during SQ and DL at 100% 1RM was significantly greater (P < or = 0.05) than in the stability ball exercises. Furthermore, relative muscle activity of L1 during DL at 50 and 70% 1RM was significantly greater than in QP and PT. No significant differences were observed in RA and EO during any of the exercises. In conclusion, activity of the trunk muscles during SQs and DLs is greater or equal to that which is produced during the stability ball exercises. It appears that stability ball exercises may not provide a sufficient stimulus for increasing muscular strength or hypertrophy; consequently, the role of stability ball exercises in strength and conditioning programs is questioned. SQs and DLs are recommended for increasing strength and hypertrophy of the back extensors.  相似文献   

15.
Anterior cruciate ligament (ACL) injury is a common injury encountered by sport medicine clinicians. Surgical reconstruction is the recommended treatment of choice for those athletes wishing to return to full-contact sports participation and for sports requiring multi-directional movement patterns. The aim of ACL reconstruction is to restore knee joint mechanical stability such that the athlete can return to sporting participation. However, knowledge regarding the extent to which lower limb kinematic profiles are restored following ACL reconstruction is limited. In the present study the hip and knee joint kinematic profiles of 13 ACL reconstructed (ACL-R) and 16 non-injured control subjects were investigated during the performance of a diagonal jump landing task. The ACL-R group exhibited significantly less peak knee joint flexion (P=0.01). Significant between group differences were noted for time averaged hip joint sagittal plane (P<0.05) and transverse plane (P<0.05) kinematic profiles, as well as knee joint frontal plane (P<0.05) and sagittal plane (P<0.05) kinematic profiles. These results suggest that aberrant hip and knee joint kinematic profiles are present following ACL reconstruction, which could influence future injury risk.  相似文献   

16.
We designed and validated a novel device for applying flexion-extension cycles to a rat knee in an in vivo model of anterior cruciate ligament reconstruction (ACL-R). Our device is intended to simulate rehabilitation motion and exercise post ACL-R to optimize physical rehabilitation treatments for the improved healing of tendon graft ligament reconstructions. The device was validated for repeatability of the knee kinematic motion by measuring the force versus angular rotation response from repeated trials using cadaver rats. The average maximum force required for rotating an ACL reconstructed rat knee through 100 degrees of flexion-extension was 0.4 N with 95% variability for all trials within ±0.1 N.  相似文献   

17.

Objective

The aim of the study was to: 1) evaluate the differences in pre-post operative knee functioning, mechanical stability, isokinetic knee muscle strength in simultaneous arthroscopic patients after having undergone an anterior cruciate ligament (ACL) and the posterior cruciate ligament (PCL) with hamstring tendons reconstruction, 2) compare the results of ACL/PCL patients with the control group.

Design

Controlled Laboratory Study.

Materials and Methods

Results of 11 ACL/PCL patients had been matched with 22 uninjured control participants (CP). Prior to surgery, and minimum 2 years after it, functional assessment (Lysholm and IKDC 2000), mechanical knee joint stability evaluation (Lachman and “drawer” test) and isokinetic tests (bilateral knee muscle examination) had been performed. Different rehabilitation exercises had been used: isometric, passive exercises, exercises increasing the range of motion and proprioception, strength exercises and specific functional exercises.

Results

After arthroscopy no significant differences had been found between the injured and uninjured leg in all isokinetic parameters in ACL/PCL patients. However, ACL/PCL patients had still shown significantly lower values of strength in relative isokinetic knee flexors (p = 0.0065) and extensors (p = 0.0171) compared to the CP. There were no differences between groups regarding absolute isokinetic strength and flexors/extensors ratio. There was statistically significant progress in IKDC 2000 (p = 0.0044) and Lysholm (p = 0.0044) scales prior to (44 and 60 points respectively) and after the reconstruction (61 for IKDC 2000 and 94 points for Lysholm).

Conclusions

Although harvesting tendons of semitendinosus and/or gracilis from the healthy extremity diminishes muscle strength of knee flexors in comparison to the CP, flexor strength had improved. Statistically significant improvement of the knee extensor function may indicate that the recreation of joint mechanical stability is required for restoring normal muscle strength. Without restoring normal muscle function and strength, surgical intervention alone may not be sufficient enough to ensure expected improvement of the articular function.  相似文献   

18.
Fifteen elderly subjects with bilateral medial knee osteoarthritis (OA) and 15 healthy elderly subjects walked and crossed obstacles with heights of 10%, 20%, and 30% of their leg lengths while sagittal angles and angular velocities of each joint were measured and their phase angles () calculated. Continuous relative phase (CRP) were also obtained, i.e., hip−knee and knee−ankle. The standard deviations of the CRP curve points were averaged to obtain deviation phase (DP) values for the stance and swing phases. Significant differences between the OA and control groups were found in several of the peak and crossing angles, and angular velocities at the knee and ankle. Both groups had similar CRP patterns, and the DP values of the hip–knee and knee–ankle CRP curves were not significantly different between the two groups. Despite significant changes in the joint kinematics, knee OA did not significantly change the way the motions of the lower limb joints are coordinated during obstacle-crossing. It appears that the OA groups adopted a particular biomechanical strategy among all possible strategies that can accommodate the OA-induced changes of the knee mechanics using unaltered inter-joint coordination control. This enabled the OA subjects to accommodate reliably the mechanical demands related to bilateral knee OA in the sagittal plane during obstacle-crossing. Maintaining normal and reliable inter-joint coordination may be considered a goal of therapeutic intervention, and the patterns and variability of inter-joint coordination can be used for the evaluation of treatment effects.  相似文献   

19.
The effects of changes in cruciate ligament material and prestrain on knee joint biomechanics following ligament reconstruction surgery by a tendon are not adequately known. A 3D nonlinear finite element model of the entire knee joint was used to investigate the joint response at different flexion angles under a quadriceps force while varying ACL and PCL initial strains or material properties. The ACL and PCL forces as well as tibiofemoral contact forces/areas substantially increased with greater ACL or PCL initial strains or stiffness. The patellofemoral contact force slightly increased whereas the tibial extensor moment slightly decreased with tenser or stiffer ACL. Reverse trends were predicted with slacker ACL. Results confirm the hypotheses that changes in the prestrain of one cruciate ligament substantially influence the force in the other cruciate ligament and the entire joint and that the use of the patellar tendon (PT) as a replacement for cruciate ligaments markedly alters the joint biomechanics with trends similar to those predicted when increasing prestrains. Forces in both ACL and PCL ligaments increased as one of them became tenser or stiffer and diminished as it became slacker. These results have important consequences in joint biomechanics following ligament injuries or replacement and tend to recommend the use of grafts with smaller prestrains (i.e. slacker than intact) when using the PT as the replacement material with stiffness greater than that of replaced ligament itself.  相似文献   

20.
Musculoskeletal models are widely used to investigate joint kinematics and predict muscle force during gait. However, the knee is usually simplified as a one degree of freedom joint and knee ligaments are neglected. The aim of this study was to develop an OpenSim gait model with enhanced knee structures. The knee joint in this study included three rotations and three translations. The three knee rotations and mediolateral translation were independent, with proximodistal and anteroposterior translations occurring as a function of knee flexion/extension. Ten elastic elements described the geometrical and mechanical properties of the anterior and posterior cruciate ligaments (ACL and PCL), and the medial and lateral collateral ligaments (MCL and LCL). The three independent knee rotations were evaluated using OpenSim to observe ligament function. The results showed that the anterior and posterior bundles of ACL and PCL (aACL, pACL and aPCL, pPCL) intersected during knee flexion. The aACL and pACL mainly provided force during knee flexion and adduction, respectively. The aPCL was slack throughout the range of three knee rotations; however, the pPCL was utilised for knee abduction and internal rotation. The LCL was employed for knee adduction and rotation, but was slack beyond 20° of knee flexion. The MCL bundles were mainly used during knee adduction and external rotation. All these results suggest that the functions of knee ligaments in this model approximated the behaviour of the physical knee and the enhanced knee structures can improve the ability to investigate knee joint biomechanics during various gait activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号