首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Pseudomonas aeruginosa gene anr, which encodes a structural and functional analog of the anaerobic regulator Fnr in Escherichia coli, was mapped to the SpeI fragment R, which is at about 59 min on the genomic map of P. aeruginosa PAO1. Wild-type P. aeruginosa PAO1 grew under anaerobic conditions with nitrate, nitrite, and nitrous oxide as alternative electron acceptors. An anr deletion mutant, PAO6261, was constructed. It was unable to grow with these alternative electron acceptors; however, its ability to denitrify was restored upon the introduction of the wild-type anr gene. In addition, the activities of two enzymes in the denitrification pathway, nitrite reductase and nitric oxide reductase, were not detectable under oxygen-limiting conditions in strain PAO6261 but were restored when complemented with the anr+ gene. These results indicate that the anr gene product plays a key role in anaerobically activating the entire denitrification pathway.  相似文献   

3.
4.
5.
白刃  贺纪正  沈菊培  陈新  张丽梅 《生态学报》2016,36(13):3871-3881
厌氧铵氧化是由微生物介导的氮素循环过程中的重要途径之一。近20年来,通过对厌氧铵氧化细菌生态学、基因组学和生理代谢特性的探索,人们对其微生物学机制已经有了较多的认识:厌氧铵氧化细菌通过亚硝酸盐还原酶将亚硝酸根离子还原为一氧化氮,进而与铵离子结合在联氨合成酶的作用下生成联氨,最后通过联氨氧化酶的催化产生终产物氮气。同时,对参与这些过程的关键酶及其功能基因的认识有助于选择新的分子标记,从而为研究厌氧铵氧化细菌的多样性和分子生态学特征提供新的工具,以弥补16S rRNA基因特异性相对较低且难以与生态功能关联等方面的不足。对目前已知的参与厌氧铵氧化过程的3种关键酶的研究历程和现状进行了评述,并总结了利用3种功能基因进行厌氧铵氧化细菌生态学研究的最新进展。  相似文献   

6.
In enterohaemorrhagic Escherichia coli (EHEC) O157, there are two types of anaerobic nitric oxide (NO) reductase genes, an intact gene (norV) and a 204 bp deletion gene (norVs). Epidemiological analysis has revealed that norV-type EHEC are more virulent than norVs-type EHEC. Thus, to reveal the role of NO reductase during EHEC infection, we constructed isogenic norV-type and norVs-type EHEC mutant strains. Under anaerobic conditions, the norV-type EHEC was protected from NO-mediated growth inhibition, while the norVs-type EHEC mutant strain was not, suggesting that NorV of EHEC was effective in the anaerobic detoxification. We then investigated the role of NO reductase within macrophages. The norV-type EHEC produced a lower NO level within macrophages compared with the norVs-type EHEC. Moreover, the norV-type EHEC resulted in higher levels of Shiga toxin 2 (Stx2) within macrophages compared with the norVs-type EHEC. Finally, the norV-type EHEC showed a better level of survival than the norVs-type EHEC. These data suggest that the intact norV gene plays an important role for the survival of EHEC within macrophages, and is a direct virulence determinant of EHEC.  相似文献   

7.
8.
9.
A few members of a widespread class of bacterial and archaeal flavo-diiron proteins, dubbed FprAs, have been shown to function as either oxidases (dioxygen reductases) or scavenging nitric oxide reductases, but the questions of which of these functions dominates in vivo for a given FprA and whether all FprAs function as oxidases or nitric oxide reductases remain to be clarified. To address these questions, an FprA has been characterized from the anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris. The gene encoding this D. vulgaris FprA lies downstream of an operon encoding superoxide reductase and rubredoxin, consistent with an O(2)-scavenging oxidase function for this FprA. The recombinant D. vulgaris FprA can indeed serve as the terminal component of an NADH oxidase. However, this oxidase turnover results in irreversible inactivation of the enzyme. On the other hand, the recombinant D. vulgaris FprA shows robust anaerobic nitric oxide reductase activity in vitro and also protects a nitric oxide-sensitive Escherichia coli strain against exposure to exogenous nitric oxide. It is, therefore, proposed that this D. vulgaris FprA functions as a scavenging nitric oxide reductase in vivo and that this activity protects D. vulgaris against anaerobic exposure to nitric oxide. The location of a gene encoding a second FprA homologue in the D. vulgaris genome also suggests its involvement in nitrogen oxide metabolism.  相似文献   

10.
11.
Physiology and biochemistry of waterlogging tolerance in plants   总被引:7,自引:2,他引:5  
Waterlogging is a serious problem, which affects crop growth and yield in low lying rainfed areas. The main cause of damage under waterlogging is oxygen deprivation, which affect nutrient and water uptake, so the plants show wilting even when surrounded by excess of water. Lack of oxygen shift the energy metabolism from aerobic mode to anaerobic mode. Plants adapted to waterlogged conditions, have mechanisms to cope with this stress such as aerenchyma formation, increased availability of soluble sugars, greater activity of glycolytic pathway and fermentation enzymes and involvement of antioxidant defence mechanism to cope with the post hypoxia/anoxia oxidative stress. Gaseous plant hormone ethylene plays an important role in modifying plant response to oxygen deficiency. It has been reported to induce genes of enzymes associated with aerenchyma formation, glycolysis and fermentation pathway. Besides, nonsymbiotic-haemoglobins and nitric oxide have also been suggested as an alternative to fermentation for maintaining lower redox potential (low NADH/NAD ratio), and thereby playing an important role in anaerobic stress tolerance and signaling.  相似文献   

12.
13.
Two genes, norB and norZ, encoding two independent nitric oxide reductases have been identified in Alcaligenes eutrophus H16. norB and norZ predict polypeptides of 84.5 kDa with amino acid sequence identity of 90%. While norB resides on the megaplasmid pHG1, the norZ gene is located on a chromosomal DNA fragment. Amino acid sequence analysis suggests that norB and norZ encode integral membrane proteins composed of 14 membrane-spanning helices. The region encompassing helices 3 to 14 shows similarity to the NorB subunit of common bacterial nitric oxide reductases, including the positions of six strictly conserved histidine residues. Unlike the Nor enzymes characterized so far from denitrifying bacteria, NorB and NorZ of A. eutrophus contain an amino-terminal extension which may form two additional helices connected by a hydrophilic loop of 203 amino acids. The presence of a NorB/NorZ-like protein was predicted from the genome sequence of the cyanobacterium Synechocystis sp. strain PCC6803. While the common NorB of denitrifying bacteria is associated with a second cytochrome c subunit, encoded by the neighboring gene norC, the nor loci of A. eutrophus and Synechocystis lack adjacent norC homologs. The physiological roles of norB and norZ in A. eutrophus were investigated with mutants disrupted in the two genes. Mutants bearing single-site deletions in norB or norZ were affected neither in aerobic nor in anaerobic growth with nitrate or nitrite as the terminal electron acceptor. Inactivation of both norB and norZ was lethal to the cells under anaerobic growth conditions. Anaerobic growth was restored in the double mutant by introducing either norB or norZ on a broad-host-range plasmid. These results show that the norB and norZ gene products are isofunctional and instrumental in denitrification.  相似文献   

14.
15.
Nitric oxide is a key element in host defense against invasive pathogens. The periplasmic cytochrome c nitrite reductase (NrfA) of Escherichia coli catalyzes the respiratory reduction of nitrite, but in vitro studies have shown that it can also reduce nitric oxide. The physiological significance of the latter reaction in vivo has never been assessed. In this study the reduction of nitric oxide by Escherichia coli was measured in strains active or deficient in periplasmic nitrite reduction. Nrf(+) cells, harvested from cultures grown anaerobically, possessed a nitric-oxide reductase activity with physiological electron donation of 60 nmol min(-1) x mg dry wt(-1), and an in vivo turnover number of NrfA of 390 NO* s(-1) was calculated. Nitric-oxide reductase activity could not be detected in Nrf(-) strains. Comparison of the anaerobic growth of Nrf(+) and Nrf(-) strains revealed a higher sensitivity to nitric oxide in the NrfA(-) strains. A higher sensitivity to the nitrosating agent S-nitroso-N-acetyl penicillamine (SNAP) was also observed in agar plate disk-diffusion assays. Oxygen respiration by E. coli was also more sensitive to nitric oxide in the Nrf(-) strains compared with the Nrf(+) parent strain. The results demonstrate that active periplasmic cytochrome c nitrite reductase can confer the capacity for nitric oxide reduction and detoxification on E. coli. Genomic analysis of many pathogenic enteric bacteria reveals the presence of nrf genes. The present study raises the possibility that this reflects an important role for the cytochrome c nitrite reductase in nitric oxide management in oxygen-limited environments.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号