共查询到20条相似文献,搜索用时 15 毫秒
1.
Circulatory factors limiting maximal aerobic exercise capacity 总被引:2,自引:0,他引:2
2.
Observation of the physiological responses during exercise in a hot environment and measurement of maximal work capacity were made on eight young male subjects, ages 20--22. Exercise was performed on a bicycle ergometer at a constant work load of 450 kg . m/min at a cycling rate of 50 rpm for 30 min in a climatic chamber at 30 degree C with 70% relative humidity. The maximum work capacity was measured by bicycle ergometer exercise. Heat tolerance during exercise was assessed by the magnitude of physiological strain expressed by the combination of relative rise in rectal temperature, relative water loss and relative salt loss. Heat load during exercise was calculated using metabolic rates at rest and during exercise, assuming heat loss through the respiratory tract to be 10 percent of metabolic rate. Fairly good correlations were found between the ratio of work done to maximum work capacity and rise in rectal temperature, ratio of body weight loss to body weight and heat tolerance during exercise. Close correlations were found among relative heat load during exercise and rise in rectal temperature, relative body weight loss and heat tolerance. Heat tolerance during exercise in a hot environment correlated well to capacity of heat dissipation and maximum work capacity. 相似文献
3.
We examined the effects of weight loss induced by diet-orlistat (DO) and diet-orlistat combined with exercise (DOE) on maximal work rate production (Wmax) capacity in obese patients. Total of 24 obese patients were involved in this study. Twelve of them were subjected to DO therapy only and the remaining 12 patients participated in a regular aerobic exercise-training program in addition to DO therapy (DOE). Each patient performed two incremental ramp exercise tests up to exhaustion using an electromagnetically-braked cycle ergometer: one at the onset and one at the end of the 4th week. DOE therapy caused a significant decrease in total body weight: 101.5+/-17.4 kg (basal) vs 96.3+/-17.3 kg (4 wk) associated with a significant decrease in body fat mass: 45.0+/-10.5 kg (basal) vs 40.9+/-9.8 kg (4 wk). DO therapy also resulted in a significant decrease of total body weight 94.9+/-14.9 kg (basal) vs 91.6+/-13.5 kg (4 wk) associated with small but significant decreases in body fat mass: 37.7+/-5.6 kg (basal) to 36.0+/-6.2 kg (4 wk). Weight reduction achieved during DO therapy was not associated with increased Wmax capacity: 106+/-32 W (basal) vs 106+/-33 W (4 wk), while DOE therapy resulted in a markedly increased Wmax capacity: 109+/-39 W (basal) vs 138+/-30 W (4 wk). DO therapy combined with aerobic exercise training resulted in a significant reduction of fat mass tissue and markedly improved the aerobic fitness and Wmax capacities of obese patients. Considering this improvement within such a short period, physicians should consider applying an aerobic exercise-training program to sedentary obese patients for improving their physical fitness and thereby reduce the negative outcomes of obesity. 相似文献
4.
M N Sawka M E Foley N A Pimental M M Toner K B Pandolf 《Journal of applied physiology (Bethesda, Md. : 1985)》1983,54(1):113-117
The purpose of this investigation was to evaluate four protocols for their effectiveness in eliciting maximal aerobic power (peak VO2) during arm-crank exercise. Comparisons were made 1) between a continuous (CON) and an intermittent (INT) protocol (both employed a crank rate of 50 rpm) and 2) among the CON protocols employing crank rates of 30, 50, or 70 rpm. For the first group of experiments no significant (P greater than 0.05) differences were found between the CON and INT protocols for peak VO2, maximal pulmonary ventilation (VEmax), maximal heart rate (HRmax), or maximal blood lactate (LAmax) responses. For the second group of experiments, the CON-50 was compared with the CON-30 and CON-70 protocols. In comparison to the CON-50, significantly higher peak VO2 (+10%) and VEmax (+14%) responses were elicited by the CON-70 protocol, whereas significantly lower peak VO2 (-11%), VEmax (-23%), HRmax (-8%), and LAmax (-29%) responses were elicited by the CON-30 protocol. Of the arm-crank protocols examined the combination of a continuous design and a crank rate of 70 rpm provided the most effective protocol to elicit peak VO2 values. 相似文献
5.
Sawka M. N.; Foley M. E.; Pimental N. A.; Toner M. M.; Pandolf K. B. 《Journal of applied physiology》1983,54(1):113-117
6.
Effects of respiratory muscle work on cardiac output and its distribution during maximal exercise 总被引:9,自引:0,他引:9
Harms Craig A.; Wetter Thomas J.; McClaran Steven R.; Pegelow David F.; Nickele Glenn A.; Nelson William B.; Hanson Peter; Dempsey Jerome A. 《Journal of applied physiology》1998,85(2):609-618
We have recently demonstrated that changes inthe work of breathing during maximal exercise affect leg blood flow andleg vascular conductance (C. A. Harms, M. A. Babcock, S. R. McClaran, D. F. Pegelow, G. A. Nickele, W. B. Nelson, and J. A. Dempsey. J. Appl. Physiol. 82: 1573-1583,1997). Our present study examined the effects of changesin the work of breathing on cardiac output (CO) during maximalexercise. Eight male cyclists [maximalO2 consumption(O2 max):62 ± 5 ml · kg1 · min1]performed repeated 2.5-min bouts of cycle exercise atO2 max. Inspiratorymuscle work was either 1) at controllevels [inspiratory esophageal pressure (Pes): 27.8 ± 0.6 cmH2O],2) reduced via a proportional-assistventilator (Pes: 16.3 ± 0.5 cmH2O), or 3) increased via resistive loads(Pes: 35.6 ± 0.8 cmH2O).O2 contents measured in arterialand mixed venous blood were used to calculate CO via the direct Fickmethod. Stroke volume, CO, and pulmonaryO2 consumption(O2) were not different(P > 0.05) between control andloaded trials atO2 max but were lower(8, 9, and 7%, respectively) than control withinspiratory muscle unloading atO2 max. Thearterial-mixed venous O2difference was unchanged with unloading or loading. We combined thesefindings with our recent study to show that the respiratory muscle work normally expended during maximal exercise has two significant effectson the cardiovascular system: 1) upto 14-16% of the CO is directed to the respiratory muscles; and2) local reflex vasoconstriction significantly compromises blood flow to leg locomotor muscles. 相似文献
7.
We examined the effects of dead space (VD) loading on breathing pattern during maximal incremental exercise in eight normal subjects. Addition of external VD was associated with a significant increase in tidal volume (VT) and decrease in respiratory frequency (f) at moderate and high levels of ventilation (VI); at a VI of 120 l/min, VT and f with added VD were 3.31 +/- 0.33 liters and 36.7 +/- 6.7 breaths/min, respectively, compared with 2.90 +/- 0.29 liters and 41.8 +/- 7.3 breaths/min without added VD. Because breathing pattern does not change with CO2 inhalation during heavy exercise (Gallagher et al. J. Appl. Physiol. 63: 238-244, 1987), the breathing pattern response to added VD is probably a consequence of alteration in the PCO2 time profile, possibly sensed by the carotid body and/or airway-pulmonary chemoreceptors. The increase in VT during heavy exercise with VD loading indicates that the tachypneic breathing pattern of heavy exercise is not due to mechanical limitation of maximum ventilatory capacity at high levels of VT. 相似文献
8.
9.
10.
Joshi P Bryan C Howat H 《Journal of strength and conditioning research / National Strength & Conditioning Association》2012,26(4):1006-1014
Childhood obesity is an epidemic in the U.S.A., and understanding aspects of fitness is critical in implementing effective interventions. The purpose of this study was to analyze the relationship of obesity levels with the fitness levels of public school children in Louisiana. Over 7,000 school children participated in body mass index (BMI) and Fitnessgram? subtests including the Progressive Aerobic Cardiovascular Endurance Run (aerobic capacity), curl-ups, trunk lifts, push-ups (strength and endurance), and shoulder stretches (flexibility). The fitness measures and BMI were analyzed using chi-square and logistic regression to test for any significant relationships. The results indicated that the participants with healthy BMIs have the highest levels of physical fitness. The differences between the fitness levels of obese and healthy children were statistically significant. This study demonstrated a direct relationship between BMI status and fitness levels as measured by the Fitnessgram? among study participants. This finding is not exceedingly surprising, as common sense tells us that the heavier a person is, the less likely he or she is to be physically fit. However, this study is an important first step in understanding weight issues in children. This information can be used to develop data-driven interventions to assist children in becoming healthier and more physically fit. 相似文献
11.
12.
13.
S. Shinkai S. Watanabe Y. Kurokawa J. Torii H. Asai R. J. Shephard 《European journal of applied physiology and occupational physiology》1994,68(3):258-265
This study investigated the effects of 12 weeks of aerobic exercise plus voluntary food restriction on the body composition, resting metabolic rate (RMR) and aerobic fitness of mildly obese middle-aged women. The subjects were randomly assigned to exercise/diet (n = 17) or control (n = 15) groups. The exercise/diet group participated in an aerobic training programme, 45–60 min · day –1 at 50%–60% of maximal oxygen uptake (VO2max), 3–4 days · week–1, and also adopted a self-regulated energy deficit relative to predicted energy requirements (–1.05 MJ · day –1 to –1.14 MJ · day –1 ). After the regimen had been followed for 12 weeks, the body mass of the subjects had decreased by an average of 4.5 kg, due mainly to fat loss, with little change of fat free mass (m
ff). The absolute RMR did not change, but the experimental group showed significant increases in the RMR per unit of body mass (10%) and the RMR per unit of m
ff (4%). The increase in RMR/m
ff was not correlated with any increase in VO2max/m
ff. The resting heat production per unit of essential body mass increased by an average of 21%, but the resting heat production rate per unit of fat tissue mass remained unchanged. We concluded that aerobic exercise enhances the effect of moderate dietary restriction by augmenting the metabolic activity of lean tissue. 相似文献
14.
Subudhi AW Lorenz MC Fulco CS Roach RC 《American journal of physiology. Heart and circulatory physiology》2008,294(1):H164-H171
We sought to describe cerebrovascular responses to incremental exercise and test the hypothesis that changes in cerebral oxygenation influence maximal performance. Eleven men cycled in three conditions: 1) sea level (SL); 2) acute hypoxia [AH; hypobaric chamber, inspired Po(2) (Pi(O(2))) 86 Torr]; and 3) chronic hypoxia [CH; 4,300 m, Pi(O(2)) 86 Torr]. At maximal work rate (W(max)), fraction of inspired oxygen (Fi(O(2))) was surreptitiously increased to 0.60, while subjects were encouraged to continue pedaling. Changes in cerebral (frontal lobe) (C(OX)) and muscle (vastus lateralis) oxygenation (M(OX)) (near infrared spectroscopy), middle cerebral artery blood flow velocity (MCA V(mean); transcranial Doppler), and end-tidal Pco(2) (Pet(CO(2))) were analyzed across %W(max) (significance at P < 0.05). At SL, Pet(CO(2)), MCA V(mean), and C(OX) fell as work rate rose from 75 to 100% W(max). During AH, Pet(CO(2)) and MCA V(mean) declined from 50 to 100% W(max), while C(OX) fell from rest. With CH, Pet(CO(2)) and C(OX) dropped throughout exercise, while MCA V(mean) fell only from 75 to 100% W(max). M(OX) fell from rest to 75% W(max) at SL and AH and throughout exercise in CH. The magnitude of fall in C(OX), but not M(OX), was different between conditions (CH > AH > SL). Fi(O(2)) 0.60 at W(max) did not prolong exercise at SL, yet allowed subjects to continue for 96 +/- 61 s in AH and 162 +/- 90 s in CH. During Fi(O(2)) 0.60, C(OX) rose and M(OX) remained constant as work rate increased. Thus cerebral hypoxia appeared to impose a limit to maximal exercise during hypobaric hypoxia (Pi(O(2)) 86 Torr), since its reversal was associated with improved performance. 相似文献
15.
Harms Craig A.; Babcock Mark A.; McClaran Steven R.; Pegelow David F.; Nickele Glenn A.; Nelson William B.; Dempsey Jerome A. 《Journal of applied physiology》1997,82(5):1573-1583
Harms, Craig A., Mark A. Babcock, Steven R. McClaran, DavidF. Pegelow, Glenn A. Nickele, William B. Nelson, and Jerome A. Dempsey.Respiratory muscle work compromises leg blood flow during maximalexercise. J. Appl. Physiol.82(5): 1573-1583, 1997.We hypothesized that duringexercise at maximal O2 consumption (O2 max),high demand for respiratory muscle blood flow() would elicit locomotor muscle vasoconstrictionand compromise limb . Seven male cyclists(O2 max 64 ± 6 ml · kg1 · min1)each completed 14 exercise bouts of 2.5-min duration atO2 max on a cycleergometer during two testing sessions. Inspiratory muscle work waseither 1) reduced via aproportional-assist ventilator, 2)increased via graded resistive loads, or3) was not manipulated (control).Arterial (brachial) and venous (femoral) blood samples, arterial bloodpressure, leg (legs;thermodilution), esophageal pressure, andO2 consumption(O2) weremeasured. Within each subject and across all subjects, at constantmaximal work rate, significant correlations existed(r = 0.74-0.90;P < 0.05) between work of breathing(Wb) and legs (inverse), leg vascular resistance (LVR), and leg O2(O2 legs;inverse), and between LVR and norepinephrine spillover. Mean arterialpressure did not change with changes in Wb nor did tidal volume orminute ventilation. For a ±50% change from control in Wb,legs changed 2 l/min or 11% of control, LVRchanged 13% of control, and O2extraction did not change; thusO2 legschanged 0.4 l/min or 10% of control. TotalO2 max was unchangedwith loading but fell 9.3% with unloading; thusO2 legsas a percentage of totalO2 max was 81% incontrol, increased to 89% with respiratory muscle unloading, anddecreased to 71% with respiratory muscle loading. We conclude that Wbnormally incurred during maximal exercise causes vasoconstriction inlocomotor muscles and compromises locomotor muscle perfusion andO2. 相似文献
16.
17.
18.
Anthony L Sgherza Kenneth Axen Randi Fain Robert S Hoffman Christopher C Dunbar Fran?ois Haas 《Journal of applied physiology》2002,93(6):2023-2028
We assessed the effects of naloxone, an opioid antagonist, on exercise capacity in 13 men and 5 women (mean age = 30.1 yr, range = 21-35 yr) during a 25 W/min incremental cycle ergometer test to exhaustion on different days during familiarization trial and then after 30 mg (iv bolus) of naloxone or placebo (Pl) in a double-blind, crossover design. Minute ventilation (Ve), O(2) consumption (Vo(2)), CO(2) production, and heart rate (HR) were monitored. Perceived exertion rating (0-10 scale) and venous samples for lactate were obtained each minute. Lactate and ventilatory thresholds were derived from lactate and gas-exchange data. Blood pressure was obtained before exercise, 5 min postinfusion, at maximum exercise, and 5 min postexercise. There were no control-Pl differences. The naloxone trial demonstrated decreased exercise time (96% Pl; P < 0.01), total cumulative work (96% Pl; P < 0.002), peak Vo(2) (94% Pl; P < 0.02), and HR (96% Pl; P < 0.01). Other variables were unchanged. HR and Ve were the same at the final common workload, but perceived exertion was higher (8.1 +/- 0.5 vs. 7.1 +/- 0.5) after naloxone than Pl (P < 0.01). The threshold for effort perception amplification occurred at approximately 60 +/- 4% of Pl peak Vo(2). Thus we conclude that peak work capacity was limited by perceived exertion, which can be attenuated by endogenous opioids rather than by physiological limits. 相似文献
19.
Effect of induced erythrocythemia on aerobic work capacity 总被引:5,自引:0,他引:5
Buick F. J.; Gledhill N.; Froese A. B.; Spriet L.; Meyers E. C. 《Journal of applied physiology》1980,48(4):636-642
20.
The claim that men prefer women with low waist-to-hip ratios (WHR) has been vigorously disputed. We examine self-report data
from 359 primiparous Polish women (with normal singleton births and healthy infants) and show that WHR correlates with at
least one component of a woman’s biological fitness (her first child’s birth weight, a variable that significantly affects
infant survival rates). However, a woman’s Body Mass Index (BMI) is a better predictor of her child’s neonatal weight in small-bodied
women (<54 kg). The failure to find a preference for low WHR in some traditional populations may thus be a consequence of
the fact that, even in western populations, body mass is a better predictor of fitness in those cases characterized by low
maternal body weight.
Boguslaw Pawłowski Ph.D., D.Sc., is a researcher and lecturer in biological anthropology at the University of Wrocław, Poland.
His research interests focus on mechanisms of human evolution (with special attention to the evolution of subcutaneous fat
tissue distribution) and human mate choice.
Robin Dunbar Ph.D., FBA is British Academy Research Professor of Evolutionary Psychology at the University of Liverpool, England,
and co-Director of the British Academy Centenary Research Project. His research interests focus on the evolutionary and environmental
determinants of social and reproductive strategies, with particular references to humans, nonhuman primates, and ungulates. 相似文献