首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hummingbirds are perhaps the most exquisite bird species because of their prominent iridescence, created by stacks of melanosomes in the feather barbules. The feather colours crucially depend on the nanoscopic dimensions of the melanosome, and the displayed iridescence can distinctly vary, dependent on the spatial organization of the barbs and barbules. We have taken the genus Coeligena as a model group, with species having feathers that strongly vary in their spatial reflection properties. We studied the feather morphology and the optical characteristics. We found that the coloration of Coeligena hummingbirds depends on both the Venetian-blind-like arrangement of the barbules and the V-shaped, angular arrangement of the barbules at opposite sides of the barbs. Both the nanoscopic and microscopic organization of the hummingbird feather components determine the bird''s macroscopic appearance.  相似文献   

2.
Studies of the patterns of diversification of birds on islands have contributed a great deal to the development of evolutionary theory. In white-winged fairy-wrens, Malurus leucopterus, mainland males develop a striking blue nuptial plumage whereas those on nearby islands develop black nuptial plumage. We explore the proximate basis for this divergence by combining microstructural feather analysis with an investigation of genetic variation at the melanocortin-1 receptor locus (MC1R). Fourier analysis revealed that the medullary keratin matrix (spongy layer) of the feather barbs of blue males was ordered at the appropriate nanoscale to produce the observed blue colour by coherent light scattering. Surprisingly, the feather barbs of black males also contained a spongy layer that could produce a similar blue colour. However, black males had more melanin in their barbs than blue males, and this melanin may effectively mask any structural colour produced by the spongy layer. Moreover, the presence of this spongy layer suggests that black island males evolved from a blue-plumaged ancestor. We also document concordant patterns of variation at the MC1R locus, as five amino acid substitutions were perfectly associated with the divergent blue and black plumage phenotypes. Thus, with the possible involvement of a melanocortin receptor locus, increased melanin density may mask the blue-producing microstructure in black island males, resulting in the divergence of plumage coloration between mainland and island white-winged fairy-wrens. Such mechanisms may also be responsible for plumage colour diversity across broader geographical and evolutionary scales.  相似文献   

3.
Colours in feathers are produced by pigments or by nanostructurally organized tissues that interact with light. One of the simplest nanostructures is a single layer of keratin overlying a linearly organized layer of melanosomes that create iridescent colours of feather barbules through thin-film interference. Recently, it has been hypothesized that glossy (i.e. high specular reflectance) black feathers may be evolutionarily intermediate between matte black and iridescent feathers, and thus have a smooth keratin layer that produces gloss, but not the layered organization of melanosomes needed for iridescence. However, the morphological bases of glossiness remain unknown. Here, we use a theoretical approach to generate predictions about morphological differences between matte and glossy feathers that we then empirically test. Thin-film models predicted that glossy spectra would result from a keratin layer 110-180 nm thick and a melanin layer greater than 115 nm thick. Transmission electron microscopy data show that nanostructure of glossy barbules falls well within that range, but that of matte barbules does not. Further, glossy barbules had a thinner and more regular keratin cortex, as well as a more continuous underlying melanin layer, than matte barbules. Thus, their quasi-ordered nanostructures are morphologically intermediate between matte black and iridescent feathers, and perceived gloss may be a form of weakly chromatic iridescence.  相似文献   

4.
We report for the first time the existence of a structural mechanism of feathers different from iridescence that makes plumage conspicuous. By using electron and light microscopy, we show that the mechanism consists of special lengthened and twisted distal barbules that are very susceptible to damage. The dorsal side of these barbules is translucent, which creates a distinctive sheen colouration to feathers that otherwise would be dark. When distal sheen barbules are broken, the black proximal barbules are exposed, thus generating a conspicuous difference between abraded and non-abraded areas. Total and ultraviolet reflectance of sheen (non-abraded) areas are strikingly higher than in abraded areas. We propose that this mechanism represents a case of convergent evolution in species that are limited in developing colourful plumage patches. Future studies should explore the potential of this colour mechanism to act as a signal of individual quality or identity.  相似文献   

5.
The most prominent colors observed in insects are black or brown, whose production is attributed to the melanin pathway. At present, though, the contribution of this pathway to overall body pigmentation throughout ontogenesis is still lacking. To address this question we examined the roles of 2 key melanin genes (TH and DDC), in embryonic and postembryonic development of the American cockroach, Periplaneta americana. Our results show that the melanin pathway does not contribute to the light brown coloration observed in the first nymphs. However, the dark brown coloration in mid nymphs and adults is produced solely from the melanin pathway. In addition, the DDC RNAi results reveal that it is dopamine melanin, not DOPA melanin, acts as the main contributor in this process. Overall, present study provides a new insight into insect pigmentation suggesting that genetic mechanisms of coloration can change during ontogenesis. Future studies of additional basal insect lineages will be required to assess in more details the generality of this phenomenon.  相似文献   

6.
Although many animals use carotenoids to produce bright yellow, orange, and red colors, an increasing number of studies have found that other pigments, such as melanins, may also be used to produce bright colors. Yet, almost nothing is known about the evolutionary history of this colorful melanin use. We used reflectance spectrometry to determine whether colors in New World orioles were predominantly due to carotenoids, colorful melanins, or a mixture of both. We then used ancestral state reconstruction to infer the directionality of any pigment changes and to test for phylogenetic signal. We found that three oriole taxa likely switched from carotenoid- to melanin-based colors. Several other oriole taxa apparently gained localized melanin coloration, or had coloration that seemed to be produced by a mixture of carotenoids and melanins. We also found little phylogenetic signal on the use of carotenoids or melanins to produce color. However, all pigment changes occurred within one of three major clades of the oriole genus, suggesting there may be signal at deeper phylogenetic levels. These repeated independent switches between carotenoid and melanin colors are surprising in light of the important signaling role that color pigments (especially carotenoids) are thought to play across a wide range of taxa.  相似文献   

7.
The fundamental dichotomy between incoherent (phase independent) and coherent (phase dependent) light scattering provides the best criterion for a classification of biological structural color production mechanisms. Incoherent scattering includes Rayleigh, Tyndall, and Mie scattering. Coherent scattering encompasses interference, reinforcement, thin-film reflection, and diffraction. There are three main classes of coherently scattering nanostructures-laminar, crystal-like, and quasi-ordered. Laminar and crystal-like nanostructures commonly produce iridescence, which is absent or less conspicuous in quasi-ordered nanostructures. Laminar and crystal-like arrays have been analyzed with methods from thin-film optics and Bragg's Law, respectively, but no traditional methods were available for the analysis of color production by quasi-ordered arrays. We have developed a tool using two-dimensional (2D) Fourier analysis of transmission electron micrographs (TEMs) that analyzes the spatial variation in refractive index (available from the authors). This Fourier tool can examine whether light scatterers are spatially independent, and test whether light scattering can be characterized as predominantly incoherent or coherent. The tool also provides a coherent scattering prediction of the back scattering reflectance spectrum of a biological nanostructure. Our applications of the Fourier tool have falsified the century old hypothesis that the non-iridescent structural colors of avian feather barbs and skin are produced by incoherent Rayleigh or Tyndall scattering. 2D Fourier analysis of these quasi-ordered arrays in bird feathers and skin demonstrate that these non-iridescent colors are produced by coherent scattering. No other previous examples of biological structural color production by incoherent scattering have been tested critically with either analysis of scatterer spatial independence or spectrophotometry. The Fourier tool is applied here for the first time to coherent scattering by a laminar array from iridescent bird feather barbules (Nectarinia) to demonstrate the efficacy of the technique on thin films. Unlike previous physical methods, the Fourier tool provides a single method for the analysis of coherent scattering by a diversity of nanostructural classes. This advance will facilitate the study of the evolution of nanostructural classes from one another and the evolution of nanostructure itself. The article concludes with comments on the emerging role of photonics in research on biological structural colors, and the future directions in development of the tool.  相似文献   

8.
Light interacts with an organism''s integument on a variety of spatial scales. For example in an iridescent bird: nano-scale structures produce color; the milli-scale structure of barbs and barbules largely determines the directional pattern of reflected light; and through the macro-scale spatial structure of overlapping, curved feathers, these directional effects create the visual texture. Milli-scale and macro-scale effects determine where on the organism''s body, and from what viewpoints and under what illumination, the iridescent colors are seen. Thus, the highly directional flash of brilliant color from the iridescent throat of a hummingbird is inadequately explained by its nano-scale structure alone and questions remain. From a given observation point, which milli-scale elements of the feather are oriented to reflect strongly? Do some species produce broader "windows" for observation of iridescence than others? These and similar questions may be asked about any organisms that have evolved a particular surface appearance for signaling, camouflage, or other reasons.In order to study the directional patterns of light scattering from feathers, and their relationship to the bird''s milli-scale morphology, we developed a protocol for measuring light scattered from biological materials using many high-resolution photographs taken with varying illumination and viewing directions. Since we measure scattered light as a function of direction, we can observe the characteristic features in the directional distribution of light scattered from that particular feather, and because barbs and barbules are resolved in our images, we can clearly attribute the directional features to these different milli-scale structures. Keeping the specimen intact preserves the gross-scale scattering behavior seen in nature. The method described here presents a generalized protocol for analyzing spatially- and directionally-varying light scattering from complex biological materials at multiple structural scales.  相似文献   

9.
Melanin pigments contained in organelles (melanosomes) impart earthy colors to feathers. Such melanin‐based colors are distributed across birds and thought to be the ancestral color‐producing mechanism in birds. However, we have had limited data on melanin‐based color and melanosome diversity in Palaeognathae, which includes the flighted tinamous and large‐bodied, flightless ratites and is the sister taxon to all other extant birds. Here, we use scanning electron microscopy and spectrophotometry to assess melanosome morphology and quantify reflected color for 19 species within this clade. We find that brown colors in ratites are uniquely associated with elongated melanosomes nearly identical in shape to those associated with black colors. Melanosome and color diversity in large‐bodied ratites is limited relative to other birds (including flightless penguins) and smaller bodied basal maniraptoran dinosaur outgroups of Aves, whereas tinamous show a wider range of melanosome forms similar to neognaths. The repeated occurrence of novel melanosome forms in the nonmonophyletic ratites suggests that melanin‐based color tracks changes in body size, physiology, or other life history traits associated with flight loss, but not feather morphology. We further anticipate these findings will be useful for future color reconstructions in extinct species, as variation in melanosome shape may potentially be linked to a more nuanced palette of melanin‐based colors.  相似文献   

10.
Carotenoids produce the brilliant red, orange, and yellow colors of many animals. However, melanin pigments can also confer some of these same hues. Because carotenoid and melanin colors are produced in different ways and may serve different signaling functions, either within or between species, it is important to establish whether one or both types of pigment are responsible for coloration. We have discovered what appears to be an evolutionary switch from carotenoid- to melanin-based color in two sexually dichromatic New World orioles. Using a combination of reflectance spectrometry and chromatographic analyses of plumage pigments, we found that the chestnut plumage of adult male orchard orioles Icterus spurius is produced predominantly by phaeomelanins. Orchard oriole feathers also contain carotenoids, which appear to be masked by the high concentration of phaeomelanins. In contrast, both carotenoids and phaeomelanins appear to contribute to color in adult male Fuertes's orioles I. fuertesi . Moreover, yellow yearling male and female plumage in both species is produced by carotenoids alone. The masking of carotenoids with phaeomelanins in orchard orioles is interesting in light of the signaling roles that carotenoids are thought to play. In addition, these plumage differences produce a unique case of age and sexual pigment dimorphism in orchard and Fuertes's orioles.  相似文献   

11.
Many animals develop bold patches of black or brown colorationthat are derived from melanin pigments and serve as sexual orsocial signals. At present, there is much debate among behavioralecologists over whether melanin-based color signals are costlyto produce. Studies that have manipulated crude aspects of nutrition(i.e., total food intake) or health have generally found melanin-basedplumage ornaments to be less responsive to such factors thanother types of extravagant color (e.g., carotenoid or structuralbased). However, a recently advanced hypothesis argues thatlimited minerals in the diet, such as calcium (Ca), zinc (Zn),and iron (Fe), may serve to increase melanin pigment productionand maintain signal honesty. Here, I experimentally tested whethervariation in the calcium content of the diet affects the colorand extent of melanin-based plumage in male zebra finches (Taeniopygiaguttata). Calcium supplementation increased the size, but notdarkness, of the black breast plumage patch in fledgling andadult males; however, sexually selected, carotenoid-based redbeak coloration was not affected by the diet manipulation. Theseresults are the first to support the idea that acquisition ofminerals from the diet is a unique, limiting factor for theexpression of ornamental melanin coloration in animals.  相似文献   

12.
Colors of living organisms are produced by selective light absorption from pigments and/or by light scattering from highly ordered nanostructures (i.e., structural color). While the physical bases of metallic colors of arthropods and fish are fairly well‐known, those of birds are not. Here we examine structurally based silver color and its production in feathers of the waterbird species Anhinga. This achromatic color is distinguished from grey by high specular reflectance, from white by low diffuse reflectance, and from both by high gloss. Light and electron microscopy revealed three modifications of feathers likely leading to silver color. First, proximal barbules were highly elongated and contained glossy black color at their base and white color at their pennulum. Second, this glossy black portion contained a single outer layer of keratin weakly bounded by melanosomes. Finally, the white portion contained a disordered amorphous matrix of keratin and air. Optical analyzes suggest that these structures produce, respectively, glossy black color through thin‐film interference and white color through incoherent light scattering. Silver color likely results from the combined reflectance of these adjacent structures. This represents a distinct mechanism for attaining silver colors that may have been partially derived through selection for display, thermoregulation or decreased hydrophobicity. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

13.
The racket-tipped tail of the motmots is uniquely shaped and its formation has attracted much attention. Barbs that grow along the wire of the motmot's two central tail feathers are weakly attached and shed soon after development. The cause of the weak attachment of these barbs is unclear. I induced feather growth by plucking the central tail feathers from seven turquoise-browed motmots Eumomota superciliosa and then collected the regrown feathers before the barbs along the wire had fully shed. I compared the barb-rachis junction (petiole of the ramus) along the distal flag (the racket-tip of the tail) where barbs are not shed, to the barb-rachis junction along the wire where barbs would later be shed. In these two regions, I examined the size and structure of the attachment of the barb to the rachis with a scanning electron microscope (SEM). I also used a light microscope to score the grayness of the proximal rami of these two regions to estimate the amount of melanized keratin. SEM imaging showed that the barbs are attached to the rachis with a larger supporting flange along the distal flag compared to along the wire. Images from a light microscope showed that the rami along the distal flag were black, whereas rami along the wire were translucent or gray. The lower gray-scale color score of the rami along the wire is likely due to reduced melanized keratin. These data suggest that that the barbs along the wire are weakly attached due to a combination of a reduced structural attachment and a lack of structurally enhancing melanin.  相似文献   

14.
The evolutionary distances of the 16S rDNA sequences in cellulolytic myxobacteria are less than 3%, which units all the strains into a single genus, Sorangium. The size of myxospores and the shape of sporangioles, rather than fruiting body colors or swarm morphologies are consistent with the changes of the 16S rDNA sequences. It is suggested that there are at least two species in the genus Sorangium: one includes strains with small myxospores and spherical sporangioles, and the color of the fruiting bodies is normally orange or brown, though sometimes yellow or black. The second species has large myxospores, polyhedral sporangioles with many inter-cystic substrates, and normally deep brown to black color.  相似文献   

15.
Local adaptation seems to be one of the causes of variation in melanin‐based colors in bird plumages, related mainly to the heterogeneity of the environmental conditions along the distribution of a species. Based on comparisons of genetic (mtDNA sequences), ecological (niche models), and quantitative colorimetric data, we explored variation in plumage coloration of the white‐throated thrush Turdus assimilis, a Mesoamerican species whose dorsal color varies from brown (northern and central Mexico) to dark gray (southern Mexico and Central America). Our results suggest the existence of two major patterns of coloration in this bird, which are congruent with the genetic structure, and comparisons of ecological niche models showed that population's niches were more similar than expected by chance, suggesting that color variation in plumage of T. assimilis is not consequence of local adaptation to different environmental conditions. Our results also showed that a greater geographic distance between populations is correlated with greater colorimetric differences, suggesting that color variation in T. assimilis may be consequence of historical isolation.  相似文献   

16.
K. C. Burns  J. L. Dalen 《Oikos》2002,96(3):463-469
The color of vertebrate-dispersed fruits has been a source of inquiry for over 150 years, yet the ecological and evolutionary processes responsible for fruit color diversity remain elusive. We tested the hypothesis that fruit color varies temporally, to maximize conspicuousness against seasonal changes in foliage coloration, in a bird-dispersed plant community in western North America. Field observations showed that while red fruits predominate during summer periods of green foliage coloration, black fruits are produced during flushes of red-orange foliage coloration in autumn. Although two species did not conform to this pattern, one produced its own contrasting background color, via colored bracts. We conducted experimental manipulations of both fruit color and the color of artificial backgrounds to test whether both factors had a synergistic effect on fruit removal rates. Interactions between fruit and background color explained most of the variation in experimental fruit removal rates. Although red fruits were removed rapidly on green backgrounds, preference for black fruits on red-orange backgrounds was less pronounced. Consequently, the temporal pattern in fruit color appears to result from elevated fruit conspicuousness against seasonal changes in foliage coloration. Support for this hypothesis suggests a temporal connection between fruit color diversity, foliage color contrasts and avian color preferences.  相似文献   

17.
Melanin‐ and carotenoid‐based ornaments often signal different aspects of individual quality or similar components of quality under different environmental conditions and, thus, they may become evolutionarily integrated into a composite sexual trait. On the other hand, functionally and developmentally different characters (e.g. coloration characters of different developmental origin) are more likely to evolve independently from each other than more similar traits. Here, we examined evolutionary correlations between the occurrence of a conspicuous melanin‐based ornament (hood) and carotenoid‐based bare‐part ornaments within gull family. We also aimed to identify major ecological, life‐history and biogeographical predictors of hood occurrence and reconstruct evolutionary history of this ornament. We found that hood occurrence was associated with red or dark coloration of unfeathered traits (bill and legs), whereas combinations of hood with yellow carotenoid‐based coloration of integument were evolutionarily avoided. Also, hood occurrence correlated negatively with the occurrence of other melanin‐based plumage character (mantle). Breeding latitude and habitat were identified as major predictors of hood occurrence in gulls, as hoods were recorded more frequently in low‐latitude and inland (rather than marine) species. Finally, our analysis provided support for evolutionary lability in hood occurrence, with a dominance of transitions towards hood loss in the evolutionary history of gulls. The results of our study provide one of the first evidence for a correlated evolution of melanin‐ and carotenoid‐based ornaments in an avian lineage, which supports evolutionary modularity of developmentally and functionally different coloration traits.  相似文献   

18.
Insects usually have cryptic colors to avoid detection by visually hunting predators. However, if the insects acquire toxic or repellent substances against predators, some of them develop conspicuous coloration to exhibit their unpalatability. Such warning colors allow insects to survive. In the nine-spotted diurnal moths (Erebidae: Arctiinae: Syntomini), we found the above-ground pupating species to have conspicuous colored pupae, but the ground-surface pupating species to have cryptic colored pupae. In this study, the relationships between unpalatability and coloration of these pupae are examined among three species of Amata and one species of Syntomoides. Pupae of the two species (A. germana and A. flava) are conspicuous in their color pattern with seven black dotted lines longitudinally on their pale-yellow bodies. These pupae are exposed to the aerial predators in a coarse silk mesh hanging from leaves and/or branches. The other two species (A. fortunei and S. imaon) pupate in spaces under stones, fallen twigs and leaves on the ground surface, and the pupae in a coarse silk cocoon is cryptic dark brown. Their pupation site selections are reproduced in the rearing glass vessels. Palatability assessment using lizards as a potential predator suggests that pupae of A. germana, A. flava and A. fortunei are unpalatable and the lizard's feeding response decreases with experience. However, pupae of S. imaon are all eaten (palatable). Finally, the possible evolutionary scenario of pupal colors of these four species is discussed in relation to pupation site selection and palatability.  相似文献   

19.
20.
Some of the most varied colors in the natural world are created by iridescent nanostructures in bird feathers, formed by layers of melanin‐containing melanosomes. The morphology of melanosomes in iridescent feathers is known to vary, but the extent of this diversity, and when it evolved, is unknown. We use scanning electron microscopy to quantify the diversity of melanosome morphology in iridescent feathers from 97 extant bird species, covering 11 orders. In addition, we assess melanosome morphology in two Eocene birds, which are the stem lineages of groups that respectively exhibit hollow and flat melanosomes today. We find that iridescent feathers contain the most varied melanosome morphologies of all types of bird coloration sampled to date. Using our extended dataset, we predict iridescence in an early Eocene trogon (cf. Primotrogon) but not in the early Eocene swift Scaniacypselus, and neither exhibit the derived melanosome morphologies seen in their modern relatives. Our findings confirm that iridescence is a labile trait that has evolved convergently in several lineages extending down to paravian theropods. The dataset provides a framework to detect iridescence with more confidence in fossil taxa based on melanosome morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号