首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria in plant cells undergo fusion and fission frequently. Although the mechanisms and proteins of mitochondrial fusion are well known in yeast and mammalian cells, they remain poorly understood in plant cells. To clarify the physiological requirements for plant mitochondrial fusion, we investigated the fusion frequency of mitochondria in tobacco cultured cells using the photoconvertible fluorescent protein Kaede and some physiological inhibitors. The latter included two uncouplers, 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), an inhibitor of mitochondrial ATP synthase, oligomycin, and an actin polymerization inhibitor, latrunculin B (Lat B). The frequency of mitochondrial fusion was clearly reduced by DNP, CCCP and oligomycin, but not by Lat B, although Lat B severely inhibited mitochondrial movement. Moreover, DNP, CCCP and oligomycin evidently lowered the cellular ATP levels. These results indicate that plant mitochondrial fusion depends on the cellular ATP level, but not on actin polymerization.  相似文献   

2.
Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis   总被引:1,自引:0,他引:1  
Mitochondrial morphology and physiology are regulated by the processes of fusion and fission. Some forms of apoptosis are reported to be associated with mitochondrial fragmentation. We showed that overexpression of Fzo1A/B (rat) proteins involved in mitochondrial fusion, or silencing of Dnm1 (rat)/Drp1 (human) (a mitochondrial fission protein), increased elongated mitochondria in healthy cells. After apoptotic stimulation, these interventions inhibited mitochondrial fragmentation and cell death, suggesting that a process involved in mitochondrial fusion/fission might play a role in the regulation of apoptosis. Consistently, silencing of Fzo1A/B or Mfn1/2 (a human homolog of Fzo1A/B) led to an increase of shorter mitochondria and enhanced apoptotic death. Overexpression of Fzo1 inhibited cytochrome c release and activation of Bax/Bak, as assessed from conformational changes and oligomerization. Silencing of Mfn or Drp1 caused an increase or decrease of mitochondrial sensitivity to apoptotic stimulation, respectively. These results indicate that some of the proteins involved in mitochondrial fusion/fission modulate apoptotic cell death at the mitochondrial level.  相似文献   

3.
Over the past 5 yr. research in mitochondrial morphology has advanced rapidly, mainly as a result of the identification of protein factors involved in mitochondrial fission and fusion. The pathological relevance of these processes becomes clear as apoptotic cell death evidently involves mitochondrial fission and fusion machinery. Although the mechanisms by which cells maintain mitochondrial morphology are now beginning to be understood, interrelation between mitochondrial function and morphology is still not clear. This review describes the recent progress made in mitochondrial fission studies and ventures to seek an intricate link between morphology and function of mitochondria.  相似文献   

4.
Sharpening the scissors: mitochondrial fission with aid   总被引:3,自引:0,他引:3  
Over the past 5 yr, research in mitochondrial morphology has advanced rapidly, mainly as a result of the identification of protein factors involved in mitochondrial fission and fusion. The pathological relevance of these processes becomes clear as apoptotic cell death evidently involves mitochondrial fission and fusion machinery. Although the mechanisms by which cells maintain mitochondrial morphology are now beginning to be understood, interrelation between mitochondrial function and morphology is still not clear. This review describes the recent progress made in mitochondrial fission studies and ventures to seek an intricate link between morphology and function of mitochondria.  相似文献   

5.

Background

Mitochondria, the main suppliers of cellular energy, are dynamic organelles that fuse and divide frequently. Constraining these processes impairs mitochondrial is closely linked to certain neurodegenerative diseases. It is proposed that functional mitochondrial dynamics allows the exchange of compounds thereby providing a rescue mechanism.

Methodology/Principal Findings

The question discussed in this paper is whether fusion and fission of mitochondria in different cell lines result in re-localization of respiratory chain (RC) complexes and of the ATP synthase. This was addressed by fusing cells containing mitochondria with respiratory complexes labelled with different fluorescent proteins and resolving their time dependent re-localization in living cells. We found a complete reshuffling of RC complexes throughout the entire chondriome in single HeLa cells within 2–3 h by organelle fusion and fission. Polykaryons of fused cells completely re-mixed their RC complexes in 10–24 h in a progressive way. In contrast to the recently described homogeneous mixing of matrix-targeted proteins or outer membrane proteins, the distribution of RC complexes and ATP synthase in fused hybrid mitochondria, however, was not homogeneous but patterned. Thus, complete equilibration of respiratory chain complexes as integral inner mitochondrial membrane complexes is a slow process compared with matrix proteins probably limited by complete fusion. In co-expressing cells, complex II is more homogenously distributed than complex I and V, resp. Indeed, this result argues for higher mobility and less integration in supercomplexes.

Conclusion/Significance

Our results clearly demonstrate that mitochondrial fusion and fission dynamics favours the re-mixing of all RC complexes within the chondriome. This permanent mixing avoids a static situation with a fixed composition of RC complexes per mitochondrion.  相似文献   

6.
The mitochondrion is a unique organelle that serves as the main site of ATP generation needed for energy in the cell. However, mitochondria also play essential roles in cell death through apoptosis and necrosis, as well as a variety of crucial functions related to stress regulation, autophagy, lipid synthesis and calcium storage. There is a growing appreciation that mitochondrial function is regulated by the dynamics of its membrane fusion and fission; longer, fused mitochondria are optimal for ATP generation, whereas fission of mitochondria facilitates mitophagy and cell division. Despite the significance of mitochondrial homeostasis for such crucial cellular events, the intricate regulation of mitochondrial fusion and fission is only partially understood. Until very recently, only a single mitochondrial fission protein had been identified. Moreover, only now have researchers turned to address the upstream machinery that regulates mitochondrial fusion and fission proteins. Herein, we review the known GTPases involved in mitochondrial fusion and fission, but also highlight recent studies that address the mechanisms by which these GTPases are regulated. In particular, we draw attention to a substantial new body of literature linking endocytic regulatory proteins, such as the retromer VPS35 cargo selection complex subunit, to mitochondrial homeostasis. These recent studies suggest that relationships and cross‐regulation between endocytic and mitochondrial pathways may be more widespread than previously assumed.   相似文献   

7.
A plethora of cellular processes, including apoptosis, depend on regulated changes in mitochondrial shape and ultrastructure. The role of mitochondria and of their morphology during autophagy, a bulk degradation and recycling process of eukaryotic cells' constituents, is not well understood. Here we show that mitochondrial morphology determines the cellular response to macroautophagy. When autophagy is triggered, mitochondria elongate in vitro and in vivo. During starvation, cellular cyclic AMP levels increase and protein kinase A (PKA) is activated. PKA in turn phosphorylates the pro-fission dynamin-related protein 1 (DRP1), which is therefore retained in the cytoplasm, leading to unopposed mitochondrial fusion. Elongated mitochondria are spared from autophagic degradation, possess more cristae, increased levels of dimerization and activity of ATP synthase, and maintain ATP production. Conversely, when elongation is genetically or pharmacologically blocked, mitochondria consume ATP, precipitating starvation-induced death. Thus, regulated changes in mitochondrial morphology determine the fate of the cell during autophagy.  相似文献   

8.
The mitochondrial life cycle consists of frequent fusion and fission events. Ample experimental and clinical data demonstrate that inhibition of either fusion or fission results in deterioration of mitochondrial bioenergetics. While fusion may benefit mitochondrial function by allowing the spreading of metabolites, protein and DNA throughout the network, the functional benefit of fission is not as intuitive. Remarkably, studies that track individual mitochondria through fusion and fission found that the two events are paired and that fusion triggers fission. On average each mitochondrion would go though ~5 fusion:fission cycles every hour. Measurement of Deltapsi(m) during single fusion and fission events demonstrates that fission may yield uneven daughter mitochondria where the depolarized daughter is less likely to become involved in a subsequent fusion and is more likely to be targeted by autophagy. Based on these observations we propose a mechanism by which the integration of mitochondrial fusion, fission and autophagy forms a quality maintenance mechanism. According to this hypothesis pairs of fusion and fission allow for the reorganization and sequestration of damaged mitochondrial components into daughter mitochondria that are segregated from the networking pool and then becoming eliminated by autophagy.  相似文献   

9.
Jeong SY  Seol DW 《BMB reports》2008,41(1):11-22
Apoptosis (programmed cell death) is a cellular self-destruction mechanism that is essential for a variety of biological events, such as developmental sculpturing, tissue homeostasis, and the removal of unwanted cells. Mitochondria play a crucial role in regulating cell death. Ca2+ has long been recognized as a participant in apoptotic pathways. Mitochondria are known to modulate and synchronize Ca2+ signaling. Massive accumulation of Ca2+ in the mitochondria leads to apoptosis. The Ca2+ dynamics of ER and mitochondria appear to be modulated by the Bcl-2 family proteins, key factors involved in apoptosis. The number and morphology of mitochondria are precisely controlled through mitochondrial fusion and fission process by numerous mitochondria-shaping proteins. Mitochondrial fission accompanies apoptotic cell death and appears to be important for progression of the apoptotic pathway. Here, we highlight and discuss the role of mitochondrial calcium handling and mitochondrial fusion and fission machinery in apoptosis.  相似文献   

10.
Mitochondria display a variety of shapes, ranging from small and spherical or the classical tubular shape to extended networks. Shape transitions occur frequently and include fusion, fission, and branching. It was reported that some mitochondrial shape transitions are developmentally regulated, whereas others were linked to disease or apoptosis. However, if and how mitochondrial function controls mitochondrial shape through regulation of mitochondrial fission and fusion is unclear. Here, we show that inhibitors of electron transport, ATP synthase, or the permeability transition pore (mtPTP) induced reversible mitochondrial fission. Mitochondrial fission depended on dynamin-related protein 1 (DRP1) and F-actin: Disruption of F-actin attenuated fission and recruitment of DRP1 to mitochondria. In contrast, uncoupling of electron transport and oxidative phosphorylation caused mitochondria to adopt a distinct disk shape. This shape change was independent of the cytoskeleton and DRP1 and was most likely caused by swelling. Thus, disruption of mitochondrial function rapidly and reversibly altered mitochondrial shape either by activation of DRP1-dependent fission or by swelling, indicating a close relationship between mitochondrial fission, shape, and function. Furthermore, our results suggest that the actin cytoskeleton is involved in mitochondrial fission by facilitating mitochondrial recruitment of DRP1.  相似文献   

11.
Gilad Twig 《BBA》2008,1777(9):1092-1097
The mitochondrial life cycle consists of frequent fusion and fission events. Ample experimental and clinical data demonstrate that inhibition of either fusion or fission results in deterioration of mitochondrial bioenergetics. While fusion may benefit mitochondrial function by allowing the spreading of metabolites, protein and DNA throughout the network, the functional benefit of fission is not as intuitive. Remarkably, studies that track individual mitochondria through fusion and fission found that the two events are paired and that fusion triggers fission. On average each mitochondrion would go though ~ 5 fusion:fission cycles every hour. Measurement of Δψm during single fusion and fission events demonstrates that fission may yield uneven daughter mitochondria where the depolarized daughter is less likely to become involved in a subsequent fusion and is more likely to be targeted by autophagy. Based on these observations we propose a mechanism by which the integration of mitochondrial fusion, fission and autophagy forms a quality maintenance mechanism. According to this hypothesis pairs of fusion and fission allow for the reorganization and sequestration of damaged mitochondrial components into daughter mitochondria that are segregated from the networking pool and then becoming eliminated by autophagy.  相似文献   

12.
Mitochondrial impairment is hypothesized to contribute to cell injury during cold stress. Mitochondria fission and fusion are closely related in the function of the mitochondria, but the precise mechanisms whereby these processes regulate cell injury during cold stress remain to be determined. HEK293 cells were cultured in a cold environment (4.0 ± 0.1 °C) for 2, 4, 8, or 12 h. Western blot analyses showed that these cells expressed decreased fission-related protein Drp1 and increased fusion-related protein Mfn2 at 4 h; meanwhile, electron microscopy analysis revealed large and long mitochondrial morphology within these cells, indicating increased mitochondrial fusion. With silencing of Mfn2 but not of Mfn1 by siRNA promoted cold-stress-induced cell death with decreased ATP production in HEK293 cells. Our results show that increased expression of Mfn2 and mitochondrial fusion are important for mitochondrial function as well as cell survival during cold stress. These findings have important implications for understanding the mechanisms of mitochondrial fusion and fission in cold-stress-induced cell injury.  相似文献   

13.
Mitochondrial morphology, which is associated with changes in metabolism, cell cycle, cell development and cell death, is tightly regulated by the balance between fusion and fission. In this study, we found that S6 kinase 1 (S6K1) contributes to mitochondrial dynamics, homeostasis and function. Mouse embryo fibroblasts lacking S6K1 (S6K1-KO MEFs) exhibited more fragmented mitochondria and a higher level of Dynamin related protein 1 (Drp1) and active Drp1 (pS616) in both whole cell extracts and mitochondrial fraction. In addition, there was no evidence for autophagy and mitophagy induction in S6K1 depleted cells. Glycolysis and mitochondrial respiratory activity was higher in S6K1-KO MEFs, whereas OxPhos ATP production was not altered. However, inhibition of Drp1 by Mdivi1 (Drp1 inhibitor) resulted in higher OxPhos ATP production and lower mitochondrial membrane potential. Taken together the depletion of S6K1 increased Drp1-mediated fission, leading to the enhancement of glycolysis. The fission form of mitochondria resulted in lower yield for OxPhos ATP production as well as in higher mitochondrial membrane potential. Thus, these results have suggested a potential role of S6K1 in energy metabolism by modulating mitochondrial respiratory capacity and mitochondrial morphology.  相似文献   

14.
Mitochondria continuously undergo fusion and fission, the relative rates of which define their morphology. Large mitochondria produce energy more efficiently, whereas small mitochondria translocate better to subcellular sites where local production of ATP is acutely required. Mitochondrial fusion is currently assayed by fusing together cells expressing GFP or RFP in their mitochondria and then scoring the frequency of cells with yellow mitochondria (representing fused green and red mitochondria). However, this assay is labor-intensive and only semi-quantitative. We describe here a reporter system consisting of split fragments of Renilla luciferase and YFP fused to mitochondrial matrix-targeting sequences and to leucine zippers to trigger dimerization. The assay enables fusion to be quantitated both visually for individual cells and on a population level using chemiluminescence, laying the foundation for high throughput small molecule and RNAi screens for modulators of mitochondrial fusion. We use the assay to examine cytoskeletal roles in fusion progression.  相似文献   

15.
Although various stimuli-inducing cell demise are known to alter mitochondrial morphology, it is currently debated whether alteration of mitochondrial morphology is per se responsible for apoptosis execution or prevention. This study was undertaken to examine the effect of histone deacetylase (HDAC) inhibitors on mitochondrial fusion-fission equilibrium. The mechanism underlying HDAC inhibitor-induced alteration of mitochondrial morphology was examined in various cells including primary cultured cells and untransformed and cancer cell lines treated with seven different HDAC inhibitors. Suberoylanilide hydroxamic acid (SAHA)-induced mitochondrial elongation in both Hep3B and Bcl-2-overexpressing Hep3B cells, apart from its apoptosis induction function. SAHA significantly decreased the expression of mitochondrial fission protein Fis1 and reduced the translocation of Drp1 to the mitochondria. Fis1 overexpression attenuated SAHA-induced mitochondrial elongation. In addition, depletion of mitochondrial fusion proteins, Mfn1 or Opa1, by RNA interference also attenuated SAHA-induced mitochondrial elongation. All of the HDAC inhibitors we examined induced mitochondrial elongation in all the cell types tested at both subtoxic and toxic concentrations. These results indicate that HDAC inhibitors induce mitochondrial elongation, irrespective of the induction of apoptosis, which may be linked to alterations of mitochondrial dynamics regulated by mitochondrial morphology-regulating proteins. Since mitochondria have recently emerged as attractive targets for cancer therapy, our findings that HDAC inhibitors altered mitochondrial morphology may support the rationale for these agents as novel therapeutic approaches against cancer. Further, the present study may provide insight into a valuable experimental strategy for simple manipulation of mitochondrial morphology.  相似文献   

16.
Mitochondria exist in networks that are continuously remodeled through fusion and fission. Why do individual mitochondria in living cells fuse and divide continuously? Protein machinery and molecular mechanism for the dynamic nature of mitochondria have been almost clarified. However, the biological significance of the mitochondrial fusion and fission events has been poorly understood, although there is a possibility that mitochondrial fusion and fission are concerned with quality controls of mitochondria. trans-mitochondrial cell and mouse models possessing heteroplasmic populations of mitochondrial DNA (mtDNA) haplotypes are quite efficient for answering this question, and one of the answers is “mitochondrial functional complementation” that is able to regulate respiratory function of individual mitochondria according to “one for all, all for one” principle. In this review, we summarize the observations about mitochondrial functional complementation in mammals and discuss its biological significance in pathogeneses of mtDNA-based diseases.  相似文献   

17.
Mitochondria are dynamic organelles that undergo constant remodeling through the regulation of two opposing processes, mitochondrial fission and fusion. Although several key regulators and physiological stimuli have been identified to control mitochondrial fission and fusion, the role of mitochondrial morphology in the two processes remains to be determined. To address this knowledge gap, we investigated whether morphological features extracted from time-lapse live-cell images of mitochondria could be used to predict mitochondrial fate. That is, we asked if we could predict whether a mitochondrion is likely to participate in a fission or fusion event based on its current shape and local environment. Using live-cell microscopy, image analysis software, and supervised machine learning, we characterized mitochondrial dynamics with single-organelle resolution to identify features of mitochondria that are predictive of fission and fusion events. A random forest (RF) model was trained to correctly classify mitochondria poised for either fission or fusion based on a series of morphological and positional features for each organelle. Of the features we evaluated, mitochondrial perimeter positively correlated with mitochondria about to undergo a fission event. Similarly mitochondrial solidity (compact shape) positively correlated with mitochondria about to undergo a fusion event. Our results indicate that fission and fusion are positively correlated with mitochondrial morphological features; and therefore, mitochondrial fission and fusion may be influenced by the mechanical properties of mitochondrial membranes.  相似文献   

18.
Highly dynamic mitochondrial morphology is a prerequisite for fusion and fission. Mitochondrial fusion may represent a rescue mechanism for impaired mitochondria by exchanging constituents (proteins, lipids and mitochondrial DNA) and thus maintaining functionality. Here we followed for the first time the dynamics of a protein complex of the respiratory chain during fusion and fission. HeLa cells with differently labelled respiratory Complex I were fused and the dynamics of Complex I were investigated. The mitochondrial proteins spread throughout the whole mitochondrial population within 3 to 6 h after induction of cell fusion. Mitochondria of fused cells displayed a patchy substructure where the differently labelled proteins occupied separate and distinct spaces. This patchy appearance was already – although less pronounced – observed within single mitochondria before fusion, indicating a specific localization of Complex I with restricted diffusion within the inner membrane. These findings substantiate the view of a homogenous mitochondrial population due to constantly rearranging mitochondria, but also indicate the existence of distinct inner mitochondrial sub-compartments for respiratory chain complexes.  相似文献   

19.
Fission and fusion of mitochondrial tubules are the major processes regulating mitochondrial morphology. However, the physiological significance of mitochondrial shape change is poorly understood. Glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells requires mitochondrial ATP production which evokes Ca2+ influx through plasma membrane depolarization, triggering insulin vesicle exocytosis. Therefore, GSIS reflects mitochondrial function and can be used for evaluating functional changes associated with morphological alterations of mitochondria. Using the insulin-secreting cell line INS-1E, we found that glucose stimulation induced rapid mitochondrial shortening and recovery. Inhibition of mitochondrial fission through expression of the dominant-negative mutant DLP1-K38A eliminated this dynamic mitochondrial shape change and, importantly, blocked GSIS. We found that abolishing mitochondrial morphology change in glucose stimulation increased the mitochondrial inner membrane proton leak, and thus significantly diminished the mitochondrial ATP producing capacity in response to glucose stimulation. These results demonstrate that dynamic change of mitochondrial morphology is a previously unrecognized component for metabolism-secretion coupling of pancreatic β-cells by participating in efficient ATP production in response to elevated glucose levels.  相似文献   

20.
Highly dynamic mitochondrial morphology is a prerequisite for fusion and fission. Mitochondrial fusion may represent a rescue mechanism for impaired mitochondria by exchanging constituents (proteins, lipids and mitochondrial DNA) and thus maintaining functionality. Here we followed for the first time the dynamics of a protein complex of the respiratory chain during fusion and fission. HeLa cells with differently labelled respiratory Complex I were fused and the dynamics of Complex I were investigated. The mitochondrial proteins spread throughout the whole mitochondrial population within 3 to 6 h after induction of cell fusion. Mitochondria of fused cells displayed a patchy substructure where the differently labelled proteins occupied separate and distinct spaces. This patchy appearance was already--although less pronounced--observed within single mitochondria before fusion, indicating a specific localization of Complex I with restricted diffusion within the inner membrane. These findings substantiate the view of a homogenous mitochondrial population due to constantly rearranging mitochondria, but also indicate the existence of distinct inner mitochondrial sub-compartments for respiratory chain complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号