首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
通过测定环境毒素1-甲基-4-苯基-吡啶盐(MPP )作用于多巴胺能细胞系MES23.5后细胞存活率的变化及细胞线粒体膜电位(△ψM)、活性氧(ROS)、羟自由基、超氧化物岐化酶(SOD)的变化,发现MPP^ 作用于多巴胺能细胞系MES23.5,可导致细胞存活率显著性减少,浓度达到200mol/L以上后,细胞存活率的下降呈时间与MPP^ 浓度依赖;以200μmol/L MPP^ 作用细胞6∽48h后,△ψM逐渐下降、ROS、羟自由基逐渐增加,48h后SOD开始显著性减少。结果表明早期线粒体能量代谢障碍和膜电位变化导致ROS(尤其是羟自由基)含量增加是MPP^ 导致多巴胺能细胞氧化应激的原因,而细胞内自由基的清除机制受损,则最终导致细胞变性死亡。  相似文献   

2.
Phellodendri Cortex (PC) is a traditional herbal medicine, widely used in Korea and China. The effects of the methanol extract of Phellodendri Cortex (PC extract) on 1-methyl-4-phenylpyridinium (MPP+)-induced neuronal apoptosis in PC-12 cells have been investigated. MPP+-induced apoptosis in PC-12 cells was accompanied by an increased bax/bcl-2 ratio, release of cytochrome c to the cytosol and activation of caspase-3. PC extract inhibited the downregulation of bcl-2 and the upregulation of bax, as well as the release of mitochondrial cytochrome c into the cytosol. In addition, PC extract attenuated caspase-3 activation and cleavage of poly (ADP-ribose) polymerase (PARP). These results suggest that the PC extract has protective effects against MPP+-induced neuronal apoptosis in PC-12 cells.  相似文献   

3.
In the present study, we investigated the effects of tetramethylpyrazine (TMP) on hydrogen peroxide (H2O2)-induced apoptosis in PC12 cells. The apoptosis in H2O2-induced PC12 cells was accompanied by a decrease in Bcl-2/Bax protein ratio, release of cytochrome c to cytosol and the activation of caspase-3. TMP not only suppressed the down-regulation of Bcl-2, up-regulation of Bax and the release of mitochondrial cytochrome c to cytosol, but also attenuated caspase-3 activation and eventually protected against H2O2-induced apoptosis. These results indicated that TMP blocked H2O2-induced apoptosis by the regulation of Bcl-2 family members, suppression of cytochrome c release, and caspase cascade activation in PC12 cells.  相似文献   

4.
目的:研究Egr-1对Cathepsin L的调控在鱼藤酮(Rotenone)诱导的多巴胺能神经元PC12凋亡的作用,初步探讨Egr-1与Cathepsin L的关系及机制。方法:常规培养PC12细胞,分别取1μM,2μM的Rotenone处理,用倒置显微镜观察细胞的形态变化;确定敏感性最强的浓度后再在不同的时间点下用Western blotting检测Egr-1、Cathepsin L蛋白表达情况;采用Egr-1si RNA转染PC12细胞,空载体siVector转染PC12细胞,Hoechst染色法检测细胞凋亡,Western blotting检测各处理组中Egr-1、Cathepsin L蛋白的表达情况。结果:Western blotting结果显示,经Rotenone刺激过的PC12细胞在2μM的浓度下最敏感,其Egr-1和Cathepsin L蛋白的表达量显著增加,且Egr-1在15 min就有明显的增加,而Cathepsin L在30 min才明显增加,说明Egr-1的确是出现在Cathepsin L蛋白的上游;Egr-1siRNA转染的PC12细胞的Cathepsin L表达量明显低于于空载体转染PC12细胞。结论:多巴胺能神经元PC12在Rotenone刺激下,细胞内Cathepsin L的表达与细胞内Egr-1蛋白水平有关,并且在抑制Egr-1的表达后,细胞内Cathepsin L的表达也相应的降低。所以我们得出Egr-1对Cathepsin L可能有调控作用,从而来调控多巴胺能神经元的凋亡。  相似文献   

5.
Exposure of cerebellar granule cells (CGCs) to 1-methyl-4-phenylpyridinium (MPP+) results in apoptotic cell death, which is markedly attenuated by co-treatment of CGCs with the radical scavenger vitamin E. Analysis of free radical production and mitochondrial transmembrane potential (DeltaPsim), using specific fluorescent probes, showed that MPP+ mediates early radical oxygen species (ROS) production without a loss of DeltaPsim. Exposure to MPP+ also produces an early increase in Bad dephosphorylation and translocation of Bax to the mitochondria. These events are accompanied by cytochrome c release from mitochondria to cytosol, which is followed by caspase 3 activation. Exposure of the neurons to vitamin E maintains Bad phosphorylation and attenuates Bax translocation, inhibiting cytochrome c release and caspase activation. MPP+-mediated cytochrome c release is also prevented by allopurinol, suggesting the participation of xanthine oxidase in the process. Our results indicate that free radicals play an active role in the MPP+-induced early events that culminate with cell death.  相似文献   

6.
《Free radical research》2013,47(7):835-847
Abstract

Silibinin mostly has been used as hepatoprotectants, but it has other interesting activities, e.g. anti-cancer, cardial protective and brain-protective activities. A previous study demonstrated that silibinin protected amyloid β (Aβ)-induced mouse cognitive disorder by behavioural pharmacological observation. This study assessed the effect of silibinin on sodium nitroprusside (SNP)-treated rat pheochromocytoma PC12 cells. Subsequent morphologic observation, flow cytometric analysis and Western blot analysis indicated that treatment with SNP significantly induced apoptosis in PC12 cells. However, silibinin eliminated the apoptotic effect by reactive oxygen species (ROS) generation, especially hydroxyl free radical. Silibinin-induced autophagy through ROS generation when exerting a protective effect and silibinin-induced autophagy also enhanced the ROS generation since 3-methyladenine (3-MA), a specific autophagy inhibitor, decreased the ROS generation and rapamycin, an autophagy inducer, enhanced the ROS generation. Therefore, there exists a positive feedback loop between autophagy and ROS generation. Autophagy prevented SNP-induced apoptosis, since the addition of 3-MA significantly eliminated the protective effect of silibinin. This protective effect was attributed to the generation of ROS and its two downstream Ras/PI3K/NF-κB and Ras/Raf/MEK/ERK pathways. Both prevented PC12 cells from apoptosis. The PI3K/NF-κB pathway induced autophagy to protect PC12 cells, but the Raf/MEK/ERK pathway directly protected PC12 cells bypassing the autophagic effect.  相似文献   

7.
目的:探讨脑源性神经营养因子(brain derived neurotrophic factor,BDNF)在PC12细胞凋亡中的作用。方法:设计并合成针对BDNF mRNA序列的小片段干扰RNA(siRNA),利用lipofectamine 2000将siRNA转染入PC12细胞中或给与6-OHDA损伤,给与/不给予BDNF蛋白保护,采用定量PCR和免疫荧光法检测BDNF mRNA和蛋白表达水平;采用上清液乳酸脱氢酶(LDH)释放量测定和流式细胞仪法检测siRNA对细胞凋亡的影响。结果:转染siRNA的细胞的BDNF mRNA的表达量比正常组细胞减少73%,而转染作为对照的scrambled siRNA的细胞的BDNF mRNA的表达没有明显变化。BDNF RNA干扰与6-OHDA神经毒性一样可诱导PC12细胞的LDH释放和细胞凋亡。给予BDNF蛋白保护后细胞毒性减轻。结论:BDNF基因下调可以导致PC12细胞的凋亡,BDNF蛋白对PC12细胞有保护作用,为进一步进行动物体内研究奠定了基础。  相似文献   

8.
Green tea, owing to its beneficial effect on health, is becoming more and more popular worldwide. (-)-Epigallocatechin-3-gallate (EGCG), the main ingredient of green tea polyphenols, is a known protective effect on injured neurons in neurodegenerative disease, such as Alzheimer's disease and Parkinson's disease. Paraquat (PQ) is a widely used herbicide that possesses a similar structure to MPP(+) and is toxic to mesencephalic dopaminergic neurons. In the present study, PQ-injured PC12 cells were chosen as an in vitro cell model of Parkinson's disease and the neuroprotective effects of EGCG were investigated. The results showed that EGCG attenuated apoptosis of PC12 cells induced by PQ. The possible mechanism may be associated with maintaining mitochondrial membrane potential, inhibiting caspase-3 activity and downregulating the expression of pro-apoptotic protein Smac in cytosol. The present study supports the notion that EGCG could be used as a neuroprotective agent for treatment of neurodegenerative diseases.  相似文献   

9.
Green tea polyphenols have aroused considerable attention in recent years for preventing oxidative stress related diseases including cancer, cardiovascular disease, and degenerative disease. Neurodegenerative diseases are cellular redox status dysfunction related diseases. The present study investigated the different effects of the five main components of green tea polyphenols on 6-hydroxydopamine (6-OHDA)-induced apoptosis in PC12 cells, the in vitro model of Parkinson's disease (PD). When the cells were treated with five catechins respectively for 30 min before exposure to 6-OHDA, (-)-epigallocatechins gallate (EGCG) and (-)-epicatechin gallate (ECG) in 50-200 microM had obvious concentration-dependent protective effects on cell viability, while (-)-epicatechin (EC), (+)-catechin ((+)-C), and (-)-epigallocatechin (EGC) had almost no protective effects. The five catechins also showed the same pattern described above of the different effects against 6-OHDA-induced cell apoptotic characteristics as analyzed by cell viability, fluorescence microscopy, flow cytometry, and DNA fragment electrophoresis methods. The present results indicated that 200 microM EGCG or ECG led to significant inhibition against typical apoptotic characteristics of PC12 cells, while other catechins had little protective effect against 6-OHDA-induced cell death. Therefore, the classified protective effects of the five catechins were in the order ECG> or = EGCG>EC> or = (+)-C>EGC. The antiapoptotic activities appear to be structurally related to the 3-gallate group of green tea polyphenols. The present data indicate that EGCG and ECG might be potent neuroprotective agents for PD.  相似文献   

10.
CrmA Protects Against Apoptosis and Ceramide Formation in PC12 Cells   总被引:8,自引:0,他引:8  
TNF- activated caspase 8 and caspase 3 in PC12 cells, leading to cell death by apoptosis (DNA fragmentation). TNF- caspase activation and cell killing were blocked by transfection and overexpression of the viral protein CrmA, which specifically inhibits caspase 8. CrmA was also able to block the TNF--induced increase in ceramide formation in PC12 cells. Conversely, if caspase 8 was activated by light-activated Rose Bengal, there was an increase in both ceramide and caspase 3–mediated apoptosis, which was blocked by CrmA overexpression. This suggested that caspase 8 increases ceramide either by increasing its synthesis or by activating sphingomyelinase. Since fumonisin B1 did not block and sphingomyelin decreased when ceramide increased, we concluded that activation of sphingomyelinase is the most likely mechanism. The Rose Bengal activation of caspase 8 and increased ceramide formation was blocked with IETD-CHO, to show that reactive oxygen species (also generated by Rose Bengal) were not responsible for the observed increase in ceramide. Thus in PC12 pheochromocytoma cells, ceramide appears to amplify the death signal and there appears to be a sequence of events: TNF; TRADD, pro-caspase 8, caspase 8, sphingomyelinase, ceramide, caspase 3, apoptosis.  相似文献   

11.
12.
13.
Parkinson disease is associated with decreased activity of the mitochondrial electron transport chain. This defect can be recapitulated in vitro by challenging dopaminergic cells with 1-methyl-4-phenylpyridinium (MPP+), a neurotoxin that inhibits complex I of electron transport chain. Consequently, oxidative phosphorylation is blocked, and cells become dependent on glycolysis for ATP production. Therefore, increasing the rate of glycolysis might help cells to produce more ATP to meet their energy demands. In the present study, we show that microRNA-7, a non-coding RNA that protects dopaminergic neuronal cells against MPP+-induced cell death, promotes glycolysis in dopaminergic SH-SY5Y and differentiated human neural progenitor ReNcell VM cells, as evidenced by increased ATP production, glucose consumption, and lactic acid production. Through a series of experiments, we demonstrate that targeted repression of RelA by microRNA-7, as well as subsequent increase in the neuronal glucose transporter 3 (Glut3), underlies this glycolysis-promoting effect. Consistently, silencing Glut3 expression diminishes the protective effect of microRNA-7 against MPP+. Further, microRNA-7 fails to prevent MPP+-induced cell death when SH-SY5Y cells are cultured in a low glucose medium, as well as when differentiated ReNcell VM cells or primary mouse neurons are treated with the hexokinase inhibitor, 2-deoxy-d-glucose, indicating that a functional glycolytic pathway is required for this protective effect. In conclusion, microRNA-7, by down-regulating RelA, augments Glut3 expression, promotes glycolysis, and subsequently prevents MPP+-induced cell death. This protective effect of microRNA-7 could be exploited to correct the defects in oxidative phosphorylation in Parkinson disease.  相似文献   

14.
High concentrations of the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+) are toxic to the catecholaminergic cell line PC12, derived from rat phenochromocytoma. Prolonged exposure of wild-type PC12 cells to 500 microM MPP+ yields toxin-resistant colonies at a frequency of 2 X 10(-4). These spontaneously arising MPP(+)-resistant cells are morphologically quite distinct from wild-type PC12 cells, and are lacking in most of their characteristic catecholaminergic properties. In contrast, among PC12 cells infected with the murine retrovirus ZIPNEOSV(X), 20% are resistant to the toxin MPP+, a resistance frequency approximately 1,000 times higher than for uninfected cells. The morphology and catecholaminergic phenotype of the virus-infected MPP+ resistant cells are quite similar to those of wild-type PC12 cells. The results presented in this study suggest a unique mechanism of MPP+ resistance in the infected PC12 cells which may be conferred by the presence and/or expression of the retrovirus ZIPNEOSV(X).  相似文献   

15.
16.
This study was conducted to examine the antioxidative and neuroprotective effects of Paeonia lactiflora pall (PLE). Total phenolic content of PLE was 89.65 mg of gallic acid equivalent per gram of PLE. IC50 values for reducing power, hydrogen peroxide scavenging activity, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity were 297.57, 3.33, and 32.74 μg, respectively. The protective effect of PLE against H2O2-induced oxidative damage to PC12 cells was investigated by an 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) reduction assay and lactate dehydrogenase (LDH) release assay. After 2 h of cell exposure to 0.5 mM H2O2, a marked reduction in cell survival was observed. However, this reduction was significantly prevented by 10–100 μg/ml of PLE. H2O2 also induced severe apoptosis of the PC12 cells, which was indicated by a flow cytometric analysis. Interestingly, the H2O2-stressed PC12 cells that had been incubated with PLE had greatly suppressed apoptosis. The results suggest that PLE could be a candidate for a new antioxidant against neuronal diseases.  相似文献   

17.
S-Allylcysteine (SAC), the most abundant organosulfur compound in aged garlic extract, has multifunctional activity via different mechanisms and neuroprotective effects that are exerted probably via its antioxidant or free radical scavenger action. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse has been the most widely used model for assessing neuroprotective agents for Parkinson's disease. 1-Methyl-4-phenylpyridinium (MPP+) is the stable metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and it causes nigrostriatal dopaminergic neurotoxicity. Previous studies suggest that oxidative stress, via free radical production, is involved in MPP+-induced neurotoxicity. Here, we report on the neuroprotective effect of SAC against oxidative stress induced by MPP+ in the striatum of C57BL/6J mice. Mice were pretreated with SAC (125 mg/kg ip) daily for 17 days, followed by administration of MPP+ (0.72 mg/kg icv), and were sacrificed 24 h later to evaluate lipid peroxidation, different antioxidant enzyme activities, spontaneous locomotor activity and dopamine (DA) content. MPP+ administration resulted in a significant decrease in DA levels in the striatum. Mice receiving SAC (125 mg/kg ip) had significantly attenuated MPP+-induced loss of striatal DA levels (32%). The neuroprotective effect of SAC against MPP+ neurotoxicity was associated with blocked (100% of protection) of lipid peroxidation and reduction of superoxide radical production — indicated by an up-regulation of Cu-Zn-superoxide dismutase activity — both of which are indices of oxidative stress. Behavioral analyses showed that SAC improved MPP+-induced impairment of locomotion (35%). These findings suggest that in mice, SAC attenuates MPP+-induced neurotoxicity in the striatum and that an antioxidant effect against oxidative stress may be partly responsible for its observed neuroprotective effects.  相似文献   

18.
The finding that the neurotransmitter dopamine induces apoptosis in neurons implies the existence of a cellular mechanism by which dopaminergic neurons protect themselves from dopamine-induced apoptosis. By profiling the expression of a number of genes in differentiating PC12 cells which exhibit elevated levels of dopamine biosynthesis, we found that expression of glutathione S-transferase class Pi (GSTp) mRNA was selectively up-regulated. Interestingly, dopamine added to the culture medium of PC12 cells also augmented their expression of GSTp mRNA. Suppression of GSTp expression by transfection of its antisense expression vector augmented dopamine-induced apoptosis of PC12 cells. Conversely, overexpression of GSTp made the resultant PC12 transfectants highly resistant to dopamine-induced apoptosis. Transfection of the antisense or sense GSTp expression vectors also resulted in corresponding augmentation or suppression of dopamine-induced activation of cell-associated Jun-N-terminal kinase (JNK), which has been suggested to mediate dopamine-induced apoptosis in neuronal cells. These results indicate that GSTp is a dopamine-inducible suppressor of dopamine-induced apoptosis in PC12 cells, and suggest that this activity is exerted through inhibition of JNK activity.  相似文献   

19.
Control of Thy-1 Glycoprotein Expression in Cultures of PC12 Cells   总被引:6,自引:3,他引:3  
The effects of nerve growth factor (NGF) and cholera toxin on the expression of the Thy-1 glycoprotein were examined in cultures of naive and primed PC12 cells using an enzyme-linked immunoadsorbent assay (ELISA). With primed PC12 cells, NGF induced a rapid increase in Thy-1 expression over a time course similar to that of neurite regeneration, with half-maximal and maximal increases apparent at 0.6 and 6 ng/ml NGF. Cholera toxin and dibutyryl cyclic AMP, but not B-cholera toxin or antibodies to the toxin receptor, were found to inhibit NGF-induced increases in Thy-1. Morphological differentiation of naive PC12 cells induced by NGF, but not cholera toxin, was also associated with increased expression of Thy-1. Despite showing a synergistic effect on morphological differentiation, cholera toxin was again found to inhibit NGF-induced increases in Thy-1 expression in cultures of naive PC12 cells. These data suggest that agents that interact directly or indirectly with adenylate cyclase may regulate the responsiveness of PC12 cells to NGF, and as such modulate the expression of the Thy-1 glycoprotein.  相似文献   

20.
探讨多聚ADP-核糖聚合酶(PARP)抑制剂3-氨基苯甲酰胺(3-AB)对400μmo1/L氯化锌损伤PC12细胞的保护作用及其对锌造成的细胞死亡类型的影响.应用MTT法,免疫细胞化学和Western印迹分别测定PC12细胞的存活率和PARP活性;用Hoechst 33342/PI荧光双染色、膜联蛋白V结合实验及DNA断裂分析等方法检测细胞死亡类型.结果表明在400μmol/L氯化锌的作用下,细胞存活率降至(22.7±4.6)%,PARP活性增强,坏死、凋亡和正常细胞百分比分别为(58.4±6.3)%、(18.0±5.6)%及(23.6±4.2)%;3-AB使细胞存活率提高至(76.9±4.7)%,PARP活性减弱,坏死细胞百分数降至(19.2±5.2)%,而正常和凋亡细胞百分数增加到(43.3±1.9)%和(37.5±6.5)%.实验证明,PARP参与了高浓度锌诱导的PC12细胞损伤,抑制PARP活性可提高细胞的存活率,而这种保护作用在于减少细胞的坏死而非凋亡.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号