首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
We have isolated the virus from a fecal pellet in the colon of a BALB/c mouse with X-linked immunodeficiency (xid) housed in a room in which there has recently been an epidemic due to mouse hepatitis virus (MHV) and designated it as the MHV-TY strain. Sequence analysis of the MHV-TY strain was performed on major structural, spike (S), membrane (M) and nucleocapsid (N), proteins directly from PCR products. The comparison of nucleotide sequences of MHV-TY with other strains investigated so far revealed that all three structural proteins of the TY strain had some unique amino acid sequences among MHV strains which can be used as markers of this strain.  相似文献   

2.
3.
4.
5.
We developed a microfabricated electrochemical DNA chip for detection of polymerase chain reaction (PCR) products from 16S rRNA sequences of Clostridium piliforme (Cp), Helicobacter bilis (Hb) and Helicobacter hepaticus (Hh), and the nucleocapsid protein gene of mouse hepatitis virus (MHV). This chip does not require DNA labeling, and the hybridization signal can be detected as an anodic current. The average anodic currents of 9 (Cp), 5 (Hb), 8 (Hh) and 7 (MHV) PCR positive samples derived from feces of spontaneously infected mice (Cp, Hb and Hh) and MHV-contaminated tumor cells were 27.9+/-7.2, 31.9+/-8.1, 29.3+/-10.1, and 27.6+/-3.0 nA, respectively. On the other hand, the average anodic currents of 19 (Cp), 27 (Hb), 18 (Hh), and 13 (MHV) PCR negative samples were 0.3+/-2.9, 3.7+/-2.4, -1.0+/-1.7, and -2.3+/-2.7 nA, respectively. The anodic current increased with increasing concentrations of pathogens. For experimentally infected samples, the results of PCR/electrophoresis were in complete accord with those of this system when anodic currents of 6.1 (Cp), 8.5 (Hb), 2.4 (Hh), and 3.1 nA (MHV) were taken as the cut-off value. The results suggested that the electrochemical DNA chip system is useful for specific and quantitative detection of PCR products.  相似文献   

6.
Targeted RNA recombination was used to construct mouse hepatitis virus (MHV) mutants containing chimeric nucleocapsid (N) protein genes in which segments of the bovine coronavirus N gene were substituted in place of their corresponding MHV sequences. This defined portions of the two N proteins that, despite evolutionary divergence, have remained functionally equivalent. These regions included most of the centrally located RNA-binding domain and two putative spacers that link the three domains of the N protein. By contrast, the amino terminus of N, the acidic carboxy-terminal domain, and a serine- and arginine-rich segment of the central domain could not be transferred from bovine coronavirus to MHV, presumably because these parts of the molecule participate in protein-protein interactions that are specific for each virus (or, possibly, each host). Our results demonstrate that targeted recombination can be used to make extensive substitutions in the coronavirus genome and can generate recombinants that could not otherwise be made between two viruses separated by a species barrier. The implications of these findings for N protein structure and function as well as for coronavirus RNA recombination are discussed.  相似文献   

7.
B Hsue  P S Masters 《Journal of virology》1997,71(10):7567-7578
The 3' untranslated region (UTR) of the positive-sense RNA genome of the coronavirus mouse hepatitis virus (MHV) contains sequences that are necessary for the synthesis of negative-strand viral RNA as well as sequences that may be crucial for both genomic and subgenomic positive-strand RNA synthesis. We have found that the entire 3' UTR of MHV could be replaced by the 3' UTR of bovine coronavirus (BCV), which diverges overall by 31% in nucleotide sequence. This exchange between two viruses that are separated by a species barrier was carried out by targeted RNA recombination. Our results define regions of the two 3' UTRs that are functionally equivalent despite having substantial sequence substitutions, deletions, or insertions with respect to each other. More significantly, our attempts to generate an unallowed substitution of a particular portion of the BCV 3' UTR for the corresponding region of the MHV 3' UTR led to the discovery of a bulged stem-loop RNA secondary structure, adjacent to the stop codon of the nucleocapsid gene, that is essential for MHV viral RNA replication.  相似文献   

8.
Coronavirus contains three envelope proteins, M, E and S, and a nucleocapsid, which consists of genomic RNA and N protein, within the viral envelope. We studied the macromolecular interactions involved in coronavirus assembly in cells infected with a murine coronavirus, mouse hepatitis virus (MHV). Coimmunoprecipitation analyses demonstrated an interaction between N protein and M protein in infected cells. Pulse-labeling experiments showed that newly synthesized, unglycosylated M protein interacted with N protein in a pre-Golgi compartment, which is part of the MHV budding site. Coimmunoprecipitation analyses further revealed that M protein interacted with only genomic-length MHV mRNA, mRNA 1, while N protein interacted with all MHV mRNAs. These data indicated that M protein interacted with the nucleocapsid, consisting of N protein and mRNA 1, in infected cells. The M protein-nucleocapsid interaction occurred in the absence of S and E proteins. Intracellular M protein-N protein interaction was maintained after removal of viral RNAs by RNase treatment. However, the M protein-N protein interaction did not occur in cells coexpressing M protein and N protein alone. These data indicated that while the M protein-N protein interaction, which is independent of viral RNA, occurred in the M protein-nucleocapsid complex, some MHV function(s) was necessary for the initiation of M protein-nucleocapsid interaction. The M protein-nucleocapsid interaction, which occurred near or at the MHV budding site, most probably represented the process of specific packaging of the MHV genome into MHV particles.  相似文献   

9.
10.
Neutralizing and nonneutralizing monoclonal antibodies to the peplomer glycoprotein and nucleocapsid protein of a mouse hepatitis virus (MHV), MHV-NuU, protected mice against lethal MHV-2 challenge. Histopathologically, livers of mice receiving protective antibodies showed some focal necrotic lesions with remarkable cellular infiltration instead of fulminant hepatitis caused by MHV-2.  相似文献   

11.
Spleen cells from uninfected control mice selectively lysed BALB/c 3T3 fibroblasts infected with mouse hepatitis virus (MHV), a murine coronavirus. Lysis of infected cells occurred within 3 hr, and histocompatibility between effector and target cells was not required. This natural, cell-mediated, virus-associated cytotoxicity differed from NK cell- and T cell-mediated lysis. Spleen cells from animals infected with MHV were enriched in NK activity and were more cytotoxic to YAC-1 target cells, but did not show enhanced cytotoxicity for MHV-infected target cells. Spleen cells from beige mice, which are deficient in NK cell activity, were able to lyse MHV-infected target cells, as were spleen cells from nude mice, which are deficient in T cell activity. Lysis of MHV-infected target cells could be mediated by cells from the spleen and, to a lesser extent, by cells from the bone marrow, but not by resident peritoneal cells or thymocytes. We suggest the term "virus killer (VK) activity" for this phenomenon. VK activity of splenocytes from different mouse strains correlated with the ability of the splenocytes to bind purified radiolabeled MHV virions. MHV virions caused agglutination of spleen leukocytes from susceptible mouse strains, indicating that leukocyte agglutination or adsorption may provide a useful assay for coronaviruses such as MHV which lack hemagglutinating activity. SJL mouse splenocytes did not bind MHV and did not lyse infected targets. MHV bound relatively well to splenocytes of other mouse strains, but poorly to thymocytes and erythrocytes. Binding of MHV to leukocytes was not influenced by 6 mM EDTA or EGTA, indicating a lack of requirement for Mg++ or Ca++. VK activity was also resistant to EDTA and EGTA, in contrast to NK activity, which was sensitive to those chelating agents. VK activity was also unaffected by actinomycin D, cycloheximide, or puromycin, indicating that new protein synthesis was not required for lysis. Antibody to interferon-alpha/beta did not block lysis, nor was there substantially enhanced lysis mediated by leukocytes from mice infected with virus and thus exposed to high levels of interferon. VK activity was blocked by antibody directed against the peplomeric glycoprotein E2 of MHV. VK activity required infected target cells, because cells with adsorbed MHV virions were not lysed by splenocytes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Nonstructural protein (nsp) 3 is the largest of 16 nsps translated from the murine hepatitis virus (MHV) genome. The N-terminal most domain of nsp3, nsp3a, has been identified by reverse genetics as a likely binding partner of MHV nucleocapsid protein. Here we report the backbone and side chain resonance assignments of MHV nsp3a (residues 1-114).  相似文献   

13.
Kuo L  Masters PS 《Journal of virology》2002,76(10):4987-4999
The coronavirus membrane (M) protein is the most abundant virion protein and the key component in viral assembly and morphogenesis. The M protein of mouse hepatitis virus (MHV) is an integral membrane protein with a short ectodomain, three transmembrane segments, and a large carboxy-terminal endodomain facing the interior of the viral envelope. The carboxy terminus of MHV M has previously been shown to be extremely sensitive to mutation, both in a virus-like particle expression system and in the intact virion. We have constructed a mutant, M(Delta)2, containing a two-amino-acid truncation of the M protein that was previously thought to be lethal. This mutant was isolated by means of targeted RNA recombination with a powerful host range-based selection allowed by the interspecies chimeric virus fMHV (MHV containing the ectodomain of the feline infectious peritonitis virus S protein). Analysis of multiple second-site revertants of the M(Delta)2 mutant has revealed changes in regions of both the M protein and the nucleocapsid (N) protein that can compensate for the loss of the last two residues of the M protein. Our data thus provide the first genetic evidence for a structural interaction between the carboxy termini of the M and N proteins of MHV. In addition, this work demonstrates the efficacy of targeted recombination with fMHV for the systematic genetic analysis of coronavirus structural protein interactions.  相似文献   

14.
In vitro replication of mouse hepatitis virus strain A59.   总被引:15,自引:9,他引:6       下载免费PDF全文
An in vitro replication system for mouse hepatitis virus (MHV) strain A59 was developed using lysolecithin to produce cell extracts. In extracts of MHV-infected cells, radiolabeled UMP was incorporated at a linear rate for up to 1 h into RNA, which hybridized to MHV-specific cDNA probes and migrated in denaturing formaldehyde-agarose gels to the same position as MHV genomic RNA. The incorporation of [32P]UMP into genome-sized RNA in vitro correlated with the observed increase of [3H]uridine incorporation in MHV-infected cells labeled in vivo. Incorporation of [32P]UMP into genome-sized RNA was inhibited when extracts were incubated with puromycin. The addition to the assay of antiserum to the MHV-A59 nucleocapsid protein N inhibited synthesis of genome-sized RNA by 90% compared with the addition of preimmune serum. In contrast, antiserum to the E1 or E2 glycoproteins did not significantly inhibit RNA replication. In vitro-synthesized RNA banded in cesium chloride gradients as a ribonucleoprotein complex with the characteristic density of MHV nucleocapsids isolated from virions. These experiments suggest that ongoing protein synthesis is necessary for replication of MHV genomic RNA and indicate that the N protein plays an important role in MHV replication.  相似文献   

15.
目的建立长爪沙鼠小鼠肝炎病毒(MHV)RT-PCR检测方法,应用于长爪沙鼠、小鼠等实验动物MHV的检测。方法根据已发表的小鼠肝炎病毒(MHV)S基因序列,设计合成引物。提取MHV细胞毒RNA,以其为模板,进行PCR扩增。优化反应条件,进行特异性、敏感性、稳定性、重复性试验。并对65只长爪沙鼠及12只小鼠进行检测。结果建立的MHVRT-PCR检测方法特异、敏感、稳定。以MHVRNA逆转录产物为模板,所能检测RNA最小模板浓度为3.1pg/μL,可检测病毒最小滴度为10^-3/mL。65只沙鼠经RT-PCR检测,均为阴性,12只小鼠经RT.PCR检测,有3只MHV阳性,测序结果与Genbank中MHV核酸序列同源性均为97%。结论建立的长爪沙鼠小鼠肝炎病毒(MHV)RT-PCR检测方法可用于长爪沙鼠、小鼠等实验动物MHV的检测。  相似文献   

16.
The coronavirus membrane (M) protein carboxy tail interacts with the nucleocapsid during virus assembly. Previous studies demonstrated that the two terminal residues are important, and the charged residue (R227) in the penultimate position in the mouse hepatitis coronavirus (MHV) A59 M protein was suggested to participate in intermolecular interactions with negative charges in the nucleocapsid (N) protein. To determine the significance of the positive charge at position 227, we substituted the arginine with lysine (K), aspartic acid (D), glutamic acid (E), or alanine (A) and studied these by reverse genetics in the context of a MHV full-length infectious clone. Viruses with wild-type phenotype were readily recovered with the K or A substitutions. In contrast, negative-charge substitutions were not tolerated as well. In all recovered R227D viruses the negative charge was replaced with heterologous residues resulting from apparent template switching during negative-strand synthesis of subgenomic RNA 7. An additional second-site compensatory V202I substitution was present in some viruses. Recovered R227E viruses had second-site changes within the M protein carboxy tail that were partially compensatory. Significantly, most of the second site changes in the R227E mutant viruses were previously shown to compensate for the removal of negative charges in the N protein. Our results strongly indicate that a positive charge is not absolutely required. It is clear that other regions within the tail must also be involved in helping mediate interactions between the M protein and the nucleocapsid.  相似文献   

17.
The coronavirus mouse hepatitis virus (MHV) translates its replicase gene (gene 1) into two co-amino-terminal polyproteins, polyprotein 1a and polyprotein 1ab. The gene 1 polyproteins are processed by viral proteinases to yield at least 15 mature products, including a putative RNA helicase from polyprotein 1ab that is presumed to be involved in viral RNA synthesis. Antibodies directed against polypeptides encoded by open reading frame 1b were used to characterize the expression and processing of the MHV helicase and to define the relationship of helicase to the viral nucleocapsid protein (N) and to sites of viral RNA synthesis in MHV-infected cells. The antihelicase antibodies detected a 67-kDa protein in MHV-infected cells that was translated and processed throughout the virus life cycle. Processing of the 67-kDa helicase from polyprotein 1ab was abolished by E64d, a known inhibitor of the MHV 3C-like proteinase. When infected cells were probed for helicase by immunofluorescence laser confocal microscopy, the protein was detected in patterns that varied from punctate perinuclear complexes to large structures that occupied much of the cell cytoplasm. Dual-labeling studies of infected cells for helicase and bromo-UTP-labeled RNA demonstrated that the vast majority of helicase-containing complexes were active in viral RNA synthesis. Dual-labeling studies for helicase and the MHV N protein showed that the two proteins almost completely colocalized, indicating that N was associated with the helicase-containing complexes. This study demonstrates that the putative RNA helicase is closely associated with MHV RNA synthesis and suggests that complexes containing helicase, N, and new viral RNA are the viral replication complexes.  相似文献   

18.
The small envelope protein (E) plays a role of central importance in the assembly of coronaviruses. This was initially established by studies demonstrating that cellular expression of only E protein and the membrane protein (M) was necessary and sufficient for the generation and release of virus-like particles. To investigate the role of E protein in the whole virus, we previously generated E gene mutants of mouse hepatitis virus (MHV) that were defective in viral growth and produced aberrantly assembled virions. Surprisingly, however, we were also able to isolate a viable MHV mutant (DeltaE) in which the entire E gene, as well as the nonessential upstream genes 4 and 5a, were deleted. We have now constructed an E knockout mutant that confirms that the highly defective phenotype of the DeltaE mutant is due to loss of the E gene. Additionally, we have created substitution mutants in which the MHV E gene was replaced by heterologous E genes from viruses spanning all three groups of the coronavirus family. Group 2 and 3 E proteins were readily exchangeable for that of MHV. However, the E protein of a group 1 coronavirus, transmissible gastroenteritis virus, became functional in MHV only after acquisition of particular mutations. Our results show that proteins encompassing a remarkably diverse range of primary amino acid sequences can provide E protein function in MHV. These findings suggest that E protein facilitates viral assembly in a manner that does not require E protein to make sequence-specific contacts with M protein.  相似文献   

19.
Hurst KR  Kuo L  Koetzner CA  Ye R  Hsue B  Masters PS 《Journal of virology》2005,79(21):13285-13297
The two major constituents of coronavirus virions are the membrane (M) and nucleocapsid (N) proteins. The M protein is anchored in the viral envelope by three transmembrane segments flanked by a short amino-terminal ectodomain and a large carboxy-terminal endodomain. The M endodomain interacts with the viral nucleocapsid, which consists of the positive-strand RNA genome helically encapsidated by N protein monomers. In previous work with the coronavirus mouse hepatitis virus (MHV), a highly defective M protein mutant, MDelta2, was constructed. This mutant contained a 2-amino-acid carboxy-terminal truncation of the M protein. Analysis of second-site revertants of MDelta2 revealed mutations in the carboxy-terminal region of the N protein that compensated for the defect in the M protein. To seek further genetic evidence corroborating this interaction, we generated a comprehensive set of clustered charged-to-alanine mutants in the carboxy-terminal domain 3 of N protein. One of these mutants, CCA4, had a highly defective phenotype similar to that of MDelta2. Transfer of the CCA4 mutation into a partially diploid MHV genome showed that CCA4 was a loss-of-function mutation rather than a dominant-negative mutation. Analysis of multiple second-site revertants of CCA4 revealed mutations in both the M protein and the N protein that could compensate for the original lesion in N. These data more precisely define the region of the N protein that interacts with the M protein. Further, we found that fusion of domain 3 of the N protein to the carboxy terminus of a heterologous protein caused it to be incorporated into MHV virions.  相似文献   

20.
Murine coronaviruses such as mouse hepatitis virus (MHV) infect mouse cells via cellular receptors that are isoforms of biliary glycoprotein (Bgp) of the carcinoembryonic antigen gene family (G. S. Dveksler, C. W. Dieffenbach, C. B. Cardellichio, K. McCuaig, M. N. Pensiero, G.-S. Jiang, N. Beauchemin, and K. V. Holmes, J. Virol. 67:1-8, 1993). The Bgp isoforms are generated through alternative splicing of the mouse Bgp1 gene that has two allelic forms called MHVR (or mmCGM1), expressed in MHV-susceptible mouse strains, and mmCGM2, expressed in SJL/J mice, which are resistant to MHV. We here report the cloning and characterization of a new Bgp-related gene designated Bgp2. The Bgp2 cDNA allowed the prediction of a 271-amino-acid glycoprotein with two immunoglobulin domains, a transmembrane, and a putative cytoplasmic tail. There is considerable divergence in the amino acid sequences of the N-terminal domains of the proteins coded by the Bgp1 gene from that of the Bgp2-encoded protein. RNase protection assays and RNA PCR showed that Bgp2 was expressed in BALB/c kidney, colon, and brain tissue, in SJL/J colon and liver tissue, in BALB/c and CD1 spleen tissue, in C3H macrophages, and in mouse rectal carcinoma CMT-93 cells. When Bgp2-transfected hamster cells were challenged with MHV-A59, MHV-JHM, or MHV-3, the Bgp2-encoded protein served as a functional MHV receptor, although with a lower efficiency than that of the MHVR glycoprotein. The Bgp2-mediated virus infection could not be inhibited by monoclonal antibody CC1 that is specific for the N-terminal domain of MHVR. Although CMT-93 cells express both MHVR and Bgp2, infection with the three strains of MHV was blocked by pretreatment with monoclonal antibody CC1, suggesting that MHVR was the only functional receptor in these cells. Thus, a novel murine Bgp gene has been identified that can be coexpressed in inbred mice with the Bgp1 glycoproteins and that can serve as a receptor for MHV strains when expressed in transfected hamster cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号