首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Superoxide generation in the NADPH oxidase reaction of NADPH-cytochrome P-450 reductase, demonstrated using the ESR spin trap, 5,5-dimethyl-1-pyrroline-1-oxide, increased on the addition of lactoferrin. The NADPH-lactoferrin reductase activity was assessed in terms of NADPH oxidation and oxygen consumption. From Lineweaver-Burk plots, the Km and Vmax for lactoferrin were estimated to be 13 microM and 0.5 S-1, respectively. The liberation of iron from lactoferrin was proven with the use of bathophenanthroline and by the demonstration of bleomycin-dependent DNA degradation; lactoferrin was reduced by the enzyme in the presence of NADPH. During the reaction, the ESR spectrum of the spin trap adduct changed from one characteristic of DMPO-OOH to that of DMPO-OH. The conversion was ascribed to the reaction of hydrogen peroxide with reduced lactoferrin.  相似文献   

2.
Glutathione reductase from rabbit erythrocytes was pruified to homogeneity and found to be a monomer with a mol wt of 60,000. Both NADPH and HADH were capable of acting as cofactors for the reduction of GSSG and the following kinetic values were obtained: Km, GSSG = 120 muM; Km, NADPH = 37 muM; Vmax = 23 mumoles NADPH/min/mg protein, Km, NADH = 420 muM; Vmax = 3 mumoles NADH/min/mg protein. Rabbit erythrocyte GR exhibited substrate inhibition, and was susceptible to inhibition by p-hydroxymercuribenzoate under certain conditions.  相似文献   

3.
The microsomal fraction from tulip bulbs (Tulipa fosteriana, L.) contains cytochrome P450 (CYP3, EC 1.14.14.1) and peroxidase (EC 1.11.1.7.) enzymes catalyzing the NADPH--and hydrogen peroxide--dependent oxidation of the xenobiotic substrates, N-nitrosodimethylamine (NDMA), N-nitrosomethylaniline (NMA), aminopyrine and 1-phenylazo 2-hydroxynaphthalene (Sudan I), respectively. Oxidation of these model xenobiotics has also been assessed in a reconstituted electron-transport chain with a partially purified CYP fraction, phospholipid and isolated tulip NADPH:CYP reductase (EC 1.6.2.4.). Peroxidase isolated from tulip bulbs (isoenzyme C) oxidizes these xenobiotics, too. Values of kinetic parameters (Km, Vmax), requirements for cofactors (NADPH, hydrogen peroxide), the effect of inhibitors and identification of products formed from the xenobiotics by the microsomal fraction, partially purified CYP and peroxidase C were determined. These data were used to estimate the participation of the CYP preparation and peroxidase C in oxidation of two out of the four studied xenobiotics (NMA, Sudan I) in tulip microsomes. Using such detailed study, we found that the CYP-dependent enzyme system is responsible for the oxidation of these xenobiotics in the microsomal fraction of tulip bulbs. The results demonstrate the progress in resolving the role of plant CYP and peroxidase enzymes in oxidation of xenobiotics.  相似文献   

4.
The mechanism of hydrogen incorporation into fatty acids was investigated with an enzyme preparation from baker's yeast. Fatty acids synthesized from malonyl-CoA and acetyl-CoA in the presence of D2O or stereospecifically deuterium-labeled NADPH were isolated and analyzed by mass chromatography to examine the localization of deuterium atoms in the molecule. The following results were obtained: 1. Hydrogen atoms from water were found on the even-numbered methylene carbon atoms (2-hydrogen atoms per carbon atom). The second hydrogen atom was incorporated as the result of hydrogen exchange phenomenon between the methylene group of malonyl CoA and water. 2. HB hydrogen of NADPH was used for beta-ketoacyl reductase. 3. HB hydrogen of NADPH was also used for enoyl reductase. 4. Hydrogen atoms from HB position of NADPH were found on the odd-numbered methylene carbon atoms (2-hydrogen atoms per carbon atom).  相似文献   

5.
The kinetics of sodium dodecyl sulfate-induced activation of respiratory burst oxidase (NADPH oxidase) in a fully soluble cell-free system from resting (control) or phorbol myristate acetate (PMA)-stimulated human neutrophils were investigated. In a cell-free system containing solubilized membranes and cytosol fractions (cytosol) derived from control neutrophils (control cell-free system), the values of Km and Vmax for NADPH of the NADPH oxidase from control neutrophils continuously increased with increasing concentrations of cytosol, but with increasing concentrations of solubilized membranes from the control neutrophils, Km values continuously decreased, suggesting cytosolic activation factor-dependent continuous changes in the affinity of NADPH oxidase to NADPH. In a cell-free system containing solubilized membranes and cytosol prepared from PMA-stimulated neutrophils, NADPH oxidase was not activated after the addition of NADPH. However, cytosol from control neutrophils activated the NADPH oxidase of PMA-stimulated neutrophils in a cell-free system. Cytosol from PMA-stimulated neutrophils did not activate the control neutrophil oxidase, although it contained no inhibitors of NADPH oxidase activation. The results suggest that, in PMA-stimulated neutrophils, cytosolic activation factors may be consumed or exhausted with an increasing period of time after the stimulation of neutrophils, and that the affinity of PMA-stimulated neutrophil NADPH oxidase to NADPH may almost be the same as that of control neutrophil oxidase. It was concluded that the affinity of NADPH oxidase to NADPH was closely associated with interaction between solubilized membranes and cytosolic activation factors, as indicated by the concentration ratio.  相似文献   

6.
Holo-CRBP (cellular retinol binding protein) is recognized specifically by an NADP-dependent microsomal retinol dehydrogenase and protects retinol from conversion into retinal by NAD and NADPH dependent dehydrogenases. The synthesis of retinal from free retinol is catalyzed by both NADP- and NAD-dependent pathways, with the former being the preferred one (Km of 4 vs. 22 microM for retinol, and Vmax/Km of 33 vs. 9, respectively). NADPH does not support quantitatively significant retinal synthesis from physiological concentrations of retinol or holo-CRBP, if an NADPH regenerating system is used to prevent NADP formation.  相似文献   

7.
The catalytic properties of a new type of dihydropteridine reductase, NADPH-specific dihydropteridine reductase [EC 1.6.99.10], from bovine liver, were studied and compared with those of the previously characterized enzyme, NADH-specific dihydropteridine reductase [EC 1.6.99.7]. With quinonoid-dihydro-6-methylpterin, approximate Km values of NADPH-specific dihydropteridine reductase for NADPH and NADH were estimated to be 1.4 micron and 2,900 microns, respectively. The Vmax values were 1.34 mumol/min/mg with NADPH and 1.02 mumol/min/mg with NADPH. With NADPH, the Km values of the enzyme for the quinonoid-dihydro forms of 6-methylpterin and biopterin were 1.4 micron and 6.8 microns, respectively. The enzyme was inhibited by its reaction product, NADP+, in a competitive manner, and the inhibition constant was determined to be 3.2 microns. The enzyme was severely inhibited by L-thyroxine and by 2,6-dichlorophenolindophenol.  相似文献   

8.
Pyridine Nucleotide Transhydrogenase from Azotobacter vinelandii   总被引:5,自引:0,他引:5       下载免费PDF全文
A method is described for the partial purification of pyridine nucleotide transhydrogenase from Azotobacter vinelandii (ATCC 9104) cells. The most highly purified preparation catalyzes the reduction of 300 mumoles of nicotinamide adenine dinucleotide (NAD(+)) per min per mg of protein under the assay conditions employed. The enzyme catalyzes the reduction of NAD(+), deamino-NAD(+), and thio-NAD(+) with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as hydrogen donor, and the reduction of nicotinamide adenine dinucleotide phosphate (NADP(+)) and thio-NAD(+) with reduced NAD (NADH) as hydrogen donor. The reduction of acetylpyridine AD(+), pyridinealdehyde AD(+), acetylpyridine deamino AD(+), and pyridinealdehydedeamino AD(+) with NADPH as hydrogen donor was not catalyzed. The enzyme catalyzes the transfer of hydrogen more readily from NADPH than from NADH with different hydrogen acceptors. The transfer of hydrogen from NADH to NADP(+) and thio-NAD(+) was markedly stimulated by 2'-adenosine monophosphate (2'-AMP) and inhibited by adenosine diphosphate (ADP), adenosine triphosphate (ATP), and phosphate ions. The transfer of hydrogen from NADPH to NAD(+) was only slightly affected by phosphate ions and 2'-AMP, except at very high concentrations of the latter reagent. In addition, the transfer of hydrogen from NADPH to thio-NAD(+) was only slightly influenced by 2'-AMP, ADP, ATP, and other nucleotides. The kinetics of the transhydrogenase reactions which utilized thio-NAD(+) as hydrogen acceptor and NADH or NADPH as hydrogen donor were studied in some detail. The results suggest that there are distinct binding sites for NADH and NAD(+) and perhaps a third regulator site for NADP(+) or 2'-AMP. The heats of activation for the transhydrogenase reactions were determined. The properties of this enzyme are compared with those of other partially purified transhydrogenases with respect to the regulatory functions of 2'-AMP and other nucleotides on the direction of flow of hydrogen between NAD(+) and NADP(+).  相似文献   

9.
本文报导了从猪肝中提取二氢蝶啶还原酶[Ecl.6.99.7]的方法,提取百分率达30%左右。以DMPH_4为底物,分别以NADH和NADPH为辅酶,测定了该酶的动力学,发现它对NADH具有一定的特异性[Km(NADH)Vmax(NADPH)]。不同的金属离子对该酶活性影响的程度有很大的差异。  相似文献   

10.
The peroxisomal acyl/alkyl dihydroxyacetone-phosphate reductase (EC 1.1.1.101) was solubilized and purified 5500-fold from guinea pig liver. The enzyme could be solubilized by detergents only at high ionic strengths in presence of the cosubstrate NADPH. Peroxisomes, isolated from liver by a Nycodenz step density gradient centrifugation, were first treated with 0.2% Triton X-100 to remove the soluble and a large fraction of the membrane-bound proteins. The enzyme was solubilized from the resulting residue by 0.05% Triton X-100, 1 M KCl, 0.3 mM NADPH, and 2 mM dithiothreitol in Tris-HCl buffer (10 mM) at pH 7.5. The enzyme was further purified after precipitating it by dialyzing out the KCl and then resolubilized with 0.8% octyl glucoside in 1 M KCl (plus NADPH and dithiothreitol). The second solubilized enzyme was purified to homogeneity (370-fold from peroxisomes) by gel filtration in a Sepharose CL-6B column followed by affinity chromatography on an NADPH-agarose gel matrix. NADPH-agarose was prepared by reacting periodate-oxidized NADP+ to adipic acid dihydrazide-agarose and then reducing the immobilized NADP+ with NaBH4. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified enzyme showed a single homogeneous band with an apparent molecular weight of 60,000. The molecular weight of the native enzyme was estimated to be 75,000 by size exclusion chromatography. Amino acid analysis of the purified protein showed that hydrophobic amino acid comprised 27% of the molecule. The Km value of the purified enzyme for hexadecyldihydroxyacetone phosphate (DHAP) was 21 microM, and the Vmax value in the presence of 0.07 mM NADPH was 67 mumol/min/mg. The turnover number (Kcat), after correcting for the isotope effect of the cosubstrate NADP3H, was calculated to be 6,000 mol/min/mol of enzyme, assuming the enzyme has a molecular weight of 60,000. The purified enzyme also used palmitoyldihydroxyactone phosphate as a substrate (Km = 15.4 microM, and Vmax = 75 mumol/min/mg). Palmitoyl-DHAP competitively inhibited the reduction of hexadecyl-DHAP, indicating that the same enzyme catalyzes the reduction of both acyl-DHAP and alkyl-DHAP. NADH can substitute for NADPH, but the Km of the enzyme for NADH (1.7 mM) is much higher than that for NADPH (20 microM). The purified enzyme is competitively (against NADPH) inhibited by NADP+ and palmitoyl-CoA. The enzyme is stable on storage at 4 degrees C in the presence of NADPH and dithiothreitol.  相似文献   

11.
The biosynthesis of fatty acids from malonyl-CoA and acetyl-CoA was investigated with an enzyme preparation which was purified 100-fold from Brevibacterium ammoniagenes. Fatty acids synthesized in the presence of D2O and stereospecifically deuterated NADPH and NADH were isolated and analyzed by mass chromatography to examine the localization of deuterium in the molecule. The following results were obtained: 1) HB hydrogen of NADPH was used for beta-ketoacyl reductase. 2) HB hydrogen of NADH was used for enoyl reductase. 3) Hydrogen atoms from water were found on the even-numbered methylene carbon atoms (2-hydrogen atoms per carbon atom) and some were also found on the odd-numbered methylene carbon atoms. 4) Hydrogen atoms from NADPH was found on the odd-numbered methylene carbon atoms (1 hydrogen per carbon). 5) Hydrogen atoms from NADH was also found on the odd-numbered methylene carbon atoms, but the number of incorporated hydrogen atoms was less than expected. The exchange of HB hydrogen of NADH with water catalyzed by enoyl reductase was suspected. 6) The exchange of methylene hydrogen atoms of malonyl-CoA with protons of water was suggested by 13C NMR analysis.  相似文献   

12.
An empirical equation that describes deviations from Michaelian kinetics is proposed. The equation allows the limiting values of the Michaelis constant at v/Vmax --> 0 and v/Vmax --> 1 to be estimated (v is the rate of the enzymatic reaction and Vmax is the limiting value of v at saturating concentrations of substrate). The applicability of the equation is demonstrated for kinetic data obtained for glutamate dehydrogenases from various sources (negative kinetic cooperativity for coenzyme) and for biosynthetic threonine deaminase from pea seedlings (sharper approaching the limiting value of the enzymatic reaction rate with increasing substrate concentration in comparison with the hyperbolic law). The negative cooperativity for the function of saturation of protein by ligand is also analyzed (data on binding of spin-labeled NAD, NADH, and NADPH by beef liver glutamate dehydrogenase and binding of cupric ions by BSA are used as examples).  相似文献   

13.
Authentic N omega-hydroxy-L-arginine was synthesized and used to determine whether it is an intermediate in nitric oxide (.NO) synthesis from L-arginine by macrophage .NO synthase. The apparent Km (6.6 microM) and Vmax (99 nmol x min-1 x mg-1) observed with N omega-hydroxy-L-arginine were similar to those observed with L-arginine (Km = 2.3 microM; Vmax = 54 mumol x min-1 x mg-1). N omega-Hydroxy-D-arginine was not a substrate. Stable isotope studies showed that .NO synthase exclusively oxidized the hydroxylated nitrogen of N omega-hydroxy-L-arginine, forming .NO and L-citrulline. As with L-arginine, O2 was the source of the ureido oxygen in L-citrulline from N omega-hydroxy-L-arginine. In the presence of excess N omega-hydroxy-L-arginine, .NO synthase generated a metabolite of L-[14C]arginine that cochromatographed with authentic N omega-hydroxy-L-arginine. The labeled metabolite exhibited identical chromatographic behavior in three solvent systems and generated the same product (L-citrulline) upon alkaline hydrolysis as authentic N omega-hydroxy-L-arginine. Experiments were then run to identify which redox cofactor (NADPH or tetrahydrobiopterin) participated in the enzymatic synthesis of N omega-hydroxy-L-arginine. Both cofactors were required for synthesis of .NO from either N omega-hydroxy-L-arginine or L-arginine. However, with L-arginine, the synthesis of 1 mol of .NO was coupled to the oxidation of 1.52 +/- 0.02 mol of NADPH; whereas with N omega-hydroxy-L-arginine, only 0.53 +/- 0.04 mol of NADPH was oxidized per mol of .NO formed. These results support a mechanism in which N omega-hydroxy-L-arginine is generated as an intermediate in .NO synthesis through an NADPH-dependent hydroxylation of L-arginine.  相似文献   

14.
The role of pyridine nucleotide synergism in CCl4 metabolism was evaluated for its potential contribution to enhanced lipid peroxidation. Male Sprague-Dawley rats receiving either no treatment (control) or treatment with phenobarbital (PB) were used to prepare hepatic microsomes. Metabolism was evaluated in the presence and absence of an NADPH generator system and in the presence and absence of NADH. The generator system produced a greater extent of metabolism for both control and PB microsomes. NADH-catalyzed CCl4 metabolism occurred to a similar extent in control and PB microsomes, amounting to 9-10% and 5-6% of the NADPH rate in control and PB microsomes, respectively. Synergism by NADH occurred at the lowest concentrations of NADPH, apparently decreasing the Km for NADPH and having little effect on the Vmax. Addition of NAD+ produced synergism, as did the addition of 5' AMP, an inhibitor of nucleotide pyrophosphatase. Thus, the synergistic increase in CCl4 metabolism produced by NADH may occur in part from an increased availability of NADPH, as a result of decreased degradation, rather than by electron donation from NADH.  相似文献   

15.
Affinity labeling studies of NADP(+)-glutamate dehydrogenase from Salmonella typhimurium have shown that the peptide Leu-282-Lys-286 is located near the coenzyme site [Haeffner-Gormley et al. (1991) J. Biol. Chem. 266, 5388-5394]. The present study was undertaken to evaluate the role of lysine-286. The mutant enzymes K286R, K286Q, and K286E were prepared by site-directed mutagenesis, expressed in Escherichia coli, and purified. The Vmax values (micromoles of NADPH per minute per milligram of protein) were similar for WT (270), K286R (529), K296Q (409), and K286E (382) enzymes. As measured at pH 7.9, the Km value for NADPH was much greater for K286E (280 microM) than for WT (9.8 microM), K286R (30 microM), or K286Q (66 microM) enzymes. The efficiencies (kcat/Km) of the WT and K286R mutant were similar (1.2 x 10(3) min-1 microM-1 and 1.0 x 10(3) min-1 microM-1, respectively) while those of K286Q (0.30 x 10(3) min-1 microM-1) and K286E (0.07 x 10(3) min-1 microM-1) were greatly reduced. The decreased efficiency of the K286E mutant results from the increase in Km-NADPH, consistent with a role for a basic residue at position 286 which enhances the binding of NADPH. Plots of Vmax vs pH showed the pH optima to be 8.1-8.3 for all enzymes at saturating NADPH concentrations. A 40-fold increase in Km-NADPH for K286E was observed as the pH increased from 5.98 to 8.08, from which a unique pKe of 6.5 was calculated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The L(+)-lactate dehydrogenase from Thermoanaerobacter ethanolicus wt was purified to a final specific activity of 598 mumol pyruvate reduced per min per mg of protein. The specific activity of the pure enzyme with L(+)-lactate was 0.79 units per mg of protein. The M(r) of the native enzyme was 134,000 containing a single subunit type of M(r) 33,500 indicating an apparent tetrameric structure. The L(+)-lactate dehydrogenase was activated by fructose 1,6-bisphosphate in a cooperative manner affecting Vmax and Km values. The activity of the enzyme was also effected by pH, pyruvate and NADH. The Km for NADH at pH 6.0 was 0.05 mM and the Vmax for pyruvate reduction at pH 6.0 was 1082 units per mg in the presence of 1 mM fructose 1,6-bisphosphate. The enzyme was inhibited by NADPH, displaying an uncompetitive pattern. This pattern indicated that NADPH was a negative modifier of the enzyme. The role of L(+)-lactate dehydrogenase in controlling the end products of fermentation is discussed.  相似文献   

17.
Ecdysone 3-epimerase was partially purified by ammonium sulfate fractionation from the 100,000 g supernate of Manduca sexta midguts. The enzyme converts ecdysone and 20-hydroxyecdysone to their respective 3-epimers, requires NADH or NADPH and O2 for this reaction, and has the following kinetic parameters: for ecdysone, Km = 17.0 +/- 1.4 microM, Vmax = 110.6 +/- 14.6 pmol min-1 mg-1; for 20-hydroxyecdysone, Km = 47.3 +/- 7.5 microM, Vmax = 131.0 +/- 3.5 pmol min-1 mg-1: for NADPH, Km = 85.4 +/- 10.6 microM; for NADH, Km = 51.3 +/- 1.3 microM. The reaction is irreversible and can be inhibited by various ecdysteroids.  相似文献   

18.
Analysis of negative cooperativity for glutamate dehydrogenase   总被引:1,自引:0,他引:1  
The empirical equation, which describes negative cooperativity in the enzyme kinetics, has been proposed. The equation is obtained from the Michaelis-Menten equation where the Michaelis constant is replaced by the effective Michaelis constant, which is a linear function of the v/Vmax ratio (v is the rate of the enzymatic reaction and Vmax is the limiting value of v at saturating concentrations of substrate). The equation allows the limiting values of the Michaelis constant at v/Vmax --> 0 and V/Vmax --> 1 to be estimated, K0 and Klim, respectively. The Klim/K0 ratio is considered as a quantitative characteristic of negative cooperativity. The applicability of the equation has been demonstrated for the kinetic data obtained for glutamate dehydrogenases from various sources (negative kinetic cooperativity for coenzyme). The negative cooperativity for the functions of saturation of protein by ligand is also analyzed. The data on binding of spin-labeled NAD, NADH, and NADPH by beef liver glutamate dehydrogenase are used as examples.  相似文献   

19.
The NADPH:5 alpha-dihydroprogesterone 3 alpha-hydroxysteroid oxidoreductase (3 alpha-HSOR) [EC 1.1.1.50] which catalyzes the reversible conversion of 5 alpha-pregnane-3,20-dione (5 alpha-dihydroprogesterone; 5 alpha-DHP) to 3 alpha-hydroxy-5 alpha-pregnan- 20-one (3 alpha-,5 alpha-tetrahydroprogesterone; 3 alpha,5 alpha-THP) was purified to apparent homogeneity from female rat anterior pituitary cytosol by a three step micro-purification procedure. Specific activity of purified 3 alpha-HSOR was enriched 438-fold from that in pituitary cytosol using successive ion exchange, chromatofocusing and affinity column chromatography purification steps. 3 alpha-HSOR appears to be a monomer with an approximate molecular weight of 36 kDa and an isoelectric point of about 5.75. The purified enzyme appears as a single protein staining band (36 kDa) when examined by polyacrylamide gel electrophoresis and with both silver or Coomassie blue staining. Under non-dissociating electrophoretic conditions, all of the 3 alpha-HSOR activity co-migrated with the 36 kDa protein staining band. The purified enzyme in the presence of the preferred cofactor, NADPH, has an apparent Km for 5 alpha-DHP of 82 nM and a Vmax of 1.2 mumol of 3 alpha,5 alpha-THP formed per mg protein/30 min. The Km for NADPH was 0.71 microM. In the oxidative direction, the enzyme in the presence of NADP+ has a Km for 3 alpha,5 alpha-THP of 1.4 microM and a Vmax of 9.7 mumol of 5 alpha-DHP formed per mg protein/30 min. The Km for NADP+ was 1.6 microM.  相似文献   

20.
Estimates of the activities (Vmax) of four enzymes that generate the coenzyme NADPH, an absolute requirement for tissue fatty-acid synthesis, and of the concentration of NADP plus NADPH were made in lines of mice differing in fat content. These lines had been selected from the same base population for 20 generations, and 3 high, 3 low replicates and 1 unselected control were used. Analyses were performed on liver and gonadal fat pad (GFP) of males at 5 and 10 weeks of age. In both the liver and the GFP, measurable activities of the four enzymes: glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), isocitrate dehydrogenase (IDH) and malic enzyme (ME) expressed per mg soluble protein were, with minor exceptions, higher in the Fat (F) than in the Lean (L) lines at both ages; the highest ratio being 2.2 for ME in the GFP. The relationships between these measurable activities (Vmax) and in vivo lipogenesis are not however known. When expressed per gram tissue, the ratios for F to L in the GFP were less than 1 in most cases, presumably because of the very different adipocyte numbers and/or sizes between the lines. There were no significant differences between the lines in the concentration of NADP plus NADPH per gram tissue in liver or GFP, suggesting that F lines converted NADP to NADPH faster than L lines. It is predicted that selection on the enzyme activities would be less efficient than direct selection at changing fat content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号