首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Only a small number of Pseudomonas putida strains possess the typical N-acyl homoserine lactone quorum sensing system (AHL QS) that consists of a modular LuxR family protein and its cognate LuxI homolog that produces the AHL signal. Moreover, AHL QS systems in P. putida strains are diverse in the type of AHLs they produce and the phenotypes that they regulate.  相似文献   

2.
Pseudomonas sp. M18 is a rhizosphere isolate capable of producing two kinds of antifungal agents: phenazine-1-carboxylic acid (PCA) and pyoluteorin. Recently, the two well-studied quorum sensing (QS) systems of Pseudomonas aeruginosa, LasR/LasI and RhlR/RhlI, have also been identified in this strain. However, in this study, through the use of lacZ translational fusion expression analysis and acyl-homoserine lactone thin-layer chromatography (TLC) bioassays, we clearly display a more complex and distinctive hierarchy of the las and rhl QS systems in strain M18. In this QS cascade, expression of rhlI was negatively controlled by the LasR/LasI QS system. In contrast with lasI, which negatively regulated the rhlR induction, lasR exerted a positive influence on rhlR expression during the log-phase. This interrelationship indicated that the response regulators (LasR and RhlR) of the QS system are expressed independently of their cognate synthases (LasI and RhlI). Furthermore, the las system also modulated the timing and magnitude of the rhlI and rhlR maximal expression. In addition, our data imply that the lasR gene exerts its negative control on PCA production through modulation of rhlI expression. Thus, interactions between the two QS systems are strain specific.  相似文献   

3.
Quorum sensing (QS) has been a novel target for the treatment of infectious diseases. Here structural analogs of Pseudomonas aeruginosa autoinducer N-acyl homoserine lactone (AHL) were investigated for QS inhibitor (QSI) activity and a novel QSI was discovered, N-decanoyl-L-homoserine benzyl ester (C2). Virulence assays showed that C2 down-regulated total protease and elastase activities, as well as the production of rhamnolipid, that are controlled by QS in P. aeruginosa wild-type strain PAO1 without affecting growth. C2 was also shown to inhibit swarming motility of PAO1. Using a microdilution checkerboard method, we identified synergistic interactions between C2 and several antibiotics, tobramycin, gentamycin, cefepime, and meropenem. Data from real-time RT-PCR suggested that C2 inhibited the expression of lasR (29.67%), lasI (21.57%), rhlR (28.20%), and rhlI (29.03%).  相似文献   

4.
5.
To investigate quorum sensing in rhizosphere soil, a whole-cell biosensor, Agrobacterium tumefaciens(pAHL-Ice), was constructed. The biosensor responded to all N-acyl homoserine lactones (AHLs) tested, except C4 homoserine lactone, with a minimum detection limit of 10−12 M, as well as to both exogenously added AHLs and AHL-producing bacterial strains in soil. This highly sensitive biosensor reveals for the first time the increased AHL availability in intact rhizosphere microbial communities compared to that in bulk soil.  相似文献   

6.
7.
Pathogenic bacteria use interconnected multi-layered regulatory networks, such as quorum sensing (QS) networks to sense and respond to environmental cues and external and internal bacterial cell signals, and thereby adapt to and exploit target hosts. Despite the many advances that have been made in understanding QS regulation, little is known regarding how these inputs are integrated and processed in the context of multi-layered QS regulatory networks. Here we report the examination of the Pseudomonas aeruginosa QS 4-hydroxy-2-alkylquinolines (HAQs) MvfR regulatory network and determination of its interaction with the QS acyl-homoserine-lactone (AHL) RhlR network. The aim of this work was to elucidate paradigmatically the complex relationships between multi-layered regulatory QS circuitries, their signaling molecules, and the environmental cues to which they respond. Our findings revealed positive and negative homeostatic regulatory loops that fine-tune the MvfR regulon via a multi-layered dependent homeostatic regulation of the cell-cell signaling molecules PQS and HHQ, and interplay between these molecules and iron. We discovered that the MvfR regulon component PqsE is a key mediator in orchestrating this homeostatic regulation, and in establishing a connection to the QS rhlR system in cooperation with RhlR. Our results show that P. aeruginosa modulates the intensity of its virulence response, at least in part, through this multi-layered interplay. Our findings underscore the importance of the homeostatic interplay that balances competition within and between QS systems via cell-cell signaling molecules and environmental cues in the control of virulence gene expression. Elucidation of the fine-tuning of this complex relationship offers novel insights into the regulation of these systems and may inform strategies designed to limit infections caused by P. aeruginosa and related human pathogens.  相似文献   

8.
Psidium guajava L., which has been used traditionally as a medicinal plant, was explored for anti‐quorum sensing (QS) activity. The anti‐QS activity of the flavonoid (FL) fraction of P. guajava leaves was determined using a biosensor bioassay with Chromobacterium violaceum CV026. Detailed investigation of the effects of the FL‐fraction on QS‐regulated violacein production in C. violaceum ATCC12472 and pyocyanin production, proteolytic, elastolytic activities, swarming motility and biofilm formation in Pseudomonas aeruginosa PAO1 was performed using standard methods. Possible mechanisms of QS‐inhibition were studied by assessing violacein production in response to N‐acyl homoserine lactone (AHL) synthesis in the presence of the FL‐fraction in C. violaceum ATCC31532 and by evaluating the induction of violacein in the mutant C. violaceum CV026 by AHL extracted from the culture supernatants of C. violaceum 31532. Active compounds in the FL‐fraction were identified by liquid chromatography–mass spectrometry (LC–MS). Inhibition of violacein production by the FL‐fraction in a C. violaceum CV026 biosensor bioassay indicated possible anti‐QS activity. The FL‐fraction showed concentration‐dependent decreases in violacein production in C. violaceum 12472 and inhibited pyocyanin production, proteolytic and elastolytic activities, swarming motility and biofilm formation in P. aeruginosa PAO1. Interestingly, the FL‐fraction did not inhibit AHL synthesis; AHL extracted from cultures of C. violaceum 31532 grown in the presence of the FL‐fraction induced violacein in the mutant C. violaceum CV026. LC–MS analysis revealed the presence of quercetin and quercetin‐3‐O‐arabinoside in the FL‐fraction. Both quercetin and quercetin‐3‐O‐arabinoside inhibited violacein production in C. violaceum 12472, at 50 and 100 μg/mL, respectively. Results of this study provide scope for further research to exploit these active molecules as anti‐QS agents.  相似文献   

9.
Bacteria from the genus Dickeya cause severe symptoms on numerous economically important plants. Dickeya solani is the Dickeya species most frequently found on infected potato plants in Europe. D. solani strains from different countries show high genetic homogeneity, but significant differences in their virulence level. Dickeya species possess two quorum sensing (QS) mechanisms: the Exp system based on classic N‐acyl‐homoserine lactone (AHL) signals and a specific system depending on the production and perception of a molecule of unknown structure, Virulence Factor Modulating (VFM). To study the interplay between these two QS systems, five D. solani strains exhibiting different virulence levels were selected. Mutants were constructed by inactivating genes coding for each QS system. Double mutants were obtained by simultaneous inactivation of genes coding for both QS systems. Most of the D. solani mutants showed an attenuation of chicory maceration and a decreased production of plant cell wall‐degrading enzymes (PCWDEs) and motility, but to different degrees depending on the strain. The VFM‐QS system seems to regulate virulence in both D. solani and Dickeya dadantii, but the AHL‐QS system has greater effects in D. solani than in D. dadantii. The inactivation of both QS systems in D. solani did not reveal any additive effect on the tested features. The inactivation of vfm genes generally has a more dominant effect relative to that of exp genes. Thus, VFM‐ and AHL‐QS systems do not work in synergy to modulate the production of diverse virulence factors and the ability to macerate plant tissue.  相似文献   

10.
Several bacterial species possess the ability to differentiate into highly motile swarmer cells capable of rapid surface colonization. In Serratia liquefaciens, we demonstrate that initiation of swarmer-cell differentiation involves diffusible signal molecules that are released into the growth medium. Using high-performance liquid chromatography (HPLC), high resolution mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, we identified N-butanoyl-l -homoserine lactone (BHL) and N-hexanoyl-l -homoserine lactone (HHL) in cell-free Serratia culture supernatants. BHL and HHL are present in a ratio of approximately 10:1 and their structures were unequivocally confirmed by chemical synthesis. The swrlswarmer initiation) gene, the predicted translation product of which exhibits substantial homology to the Luxl family of putative Nacyl homoserine lactone (AHL) synthases is responsible for directing synthesis of both BHL and HHL. In an swrl mutant, swarming motility is abolished but can be restored by the addition of an exogenous AHL. These results add swarming motility to the rapidly expanding list of phenotypes known to be controlled through quorum sensing.  相似文献   

11.
《Process Biochemistry》2010,45(12):1944-1948
N-Acyl homoserine lactone (AHL) is a widespread quorum sensing signal molecule in Gram-negative bacteria and has an important role in many biological processes. However, it is still poorly understood whether or not AHL is present in pollutant treatment processes and further, what its role is in biodegradation processes. In this work, an environmental isolate of Pseudomonas aeruginosa CGMCC 1.860 that is an aromatic degrader and AHL producer was selected. The AHL plate bioassay indicated that AHL was produced by this strain during biodegradation of aromatic compounds including phenol, benzoate, p-hydroxy-benzoate, salicylate, and naphthalene. The AHLs were identified as N-butyryl-l-homoserine lactone (BHL) and N-hexanoyl-l-homoserine lactone (HHL) by using thin layer chromatography (TLC) and high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry (HPLC–APCI-MS/MS) analyses. Furthermore, phenol biodegradation was improved by exogenously added AHL extracts or by endogenously over-produced AHLs, repressed by abolishment of AHLs production, and not affected by the addition of extracts without AHLs. The results indicated that AHL was involved in the process of biodegradation of pollutants.  相似文献   

12.
13.
14.
Quorum sensing (QS) signals have been considered to play important roles in biofilm development and in the attractiveness of biofilms to higher organisms in marine ecosystem. In this study, bacterial QS signalsacylated homoserine lactone derivatives (AHLs) were detected in 2-, 4-, and 6-day-old subtidal biofilms by using AHLs reporter strains. N-dodecanoyl-homoserine lactone (C12-HSL) was identified in 6-day-old biofilm at a concentration of 9.04 μg cm−minus;2 (3.36 mmol l−minus;1). To investigate the possible role of AHLs in the consequent eventlarval settlement of the polychaete Hydroides elegans onto subtidal biofilmsseven biofilm-derived bacteria that effectively induced larval settlement of H. elegans, were screened for AHL production. One of them, the Vibrio sp. UST950701-007, produced N-hexanoyl-homoserine lactone (C6-HSL). Larval settlement bioassay showed that C6-HSL, C12-HSL, and 3-oxo-octanoyl-homoserine lactone (3-oxo-C8-HLS) at certain concentrations induced some initial larval settlement behaviors such as reducing swimming speed, crawling on the bottom. However, these AHLs did not effectively induce larval settlement in comparison to the effective settlement inducer 3-isobutyl-1-methylxanthine. The possible chemokinetic mechanism and indirect effects of AHLs on larval settlement are suggested.  相似文献   

15.
When Drosophila melanogaster feeds on Pseudomonas aeruginosa, some bacteria cross the intestinal barrier and eventually proliferate in the hemocoel. This process is limited by hemocytes through phagocytosis. P. aeruginosa requires the quorum‐sensing regulator RhlR to elude the cellular immune response of the fly. RhlI synthesizes the autoinducer signal that activates RhlR. Here, we show that rhlI mutants are unexpectedly more virulent than rhlR mutants, both in fly and in nematode intestinal infection models, suggesting that RhlR has RhlI‐independent functions. We also report that RhlR protects P. aeruginosa from opsonization mediated by the Drosophila thioester‐containing protein 4 (Tep4). RhlR mutant bacteria show higher levels of Tep4‐mediated opsonization, as compared to rhlI mutants, which prevents lethal bacteremia in the Drosophila hemocoel. In contrast, in a septic model of infection, in which bacteria are introduced directly into the hemocoel, Tep4 mutant flies are more resistant to wild‐type P. aeruginosa, but not to the rhlR mutant. Thus, depending on the infection route, the Tep4 opsonin can either be protective or detrimental to host defense.  相似文献   

16.
The facultative red algal epiphyte Acrochaetium sp. liberated spores preferentially and recruited more successfully in laboratory cultures when its host Gracilaria chilensis C. J. Bird, McLachlan et E. C. Oliveira was present. The same effect was also induced by cell‐free medium from G. chilensis, suggesting it contained a molecular signal. Antibiotics prevented spore release in Acrochaetium sp., even when G. chilensis was present, suggesting a prokaryotic origin of the signal. Simultaneous application of N‐butyl‐homoserine‐lactone (BHL) restored the spore‐release capacity, which demonstrated that spore release was not directly inhibited by the antibiotics and indicated that bacterially generated N‐acyl‐homoserine‐lactones (AHLs) regulate spore release. An involvement of AHL was further indicated by the fact that two different halofuranone inhibitors of AHL receptors also inhibited spore release when they were applied at relatively low concentrations. Of seven different AHLs tested, only BHL induced the effect. However, BHL was only active at relatively high concentrations (100 μM), and it was not detected in spore‐release‐inducing medium of G. chilensis. Another water‐soluble AHL or an AHL structure analog is therefore probably the active compound in G. chilensis cultures. The data presented demonstrate that life cycle completion in Acrochaetium sp. strongly depends on bacteria, which are not always present in sufficient numbers on the alga itself. Exogenous bacteria that are associated with G. chilensis or with other potential substrates may therefore trigger timely spore liberation in Acrochaetium sp., provided that the necessary concentration of AHL is reached. This first finding of AHL perception in a red alga confirms that AHL signalling is more widespread among eukaryotes than was thought until recently. However, spore release of a second red alga, Sahlingia subintegra (Rosenv.) Kornmann, was unaffected by AHL, and the reaction observed is therefore not universal.  相似文献   

17.
Lab-scale membrane bioreactors (MBRs) were investigated at 12, 18, and 25?°C to identify the correlation between quorum sensing (QS) and biofouling at different temperatures. The lower the reactor temperature, the more severe the membrane biofouling measured in terms of the transmembrane pressure (TMP) during filtration. More extracellular polymeric substances (EPSs) that cause biofouling were produced at 18?°C than at 25?°C, particularly polysaccharides, closely associated with QS via the production of N-acyl homoserine lactone (AHL). However, at 12?°C, AHL production decreased, but the release of EPSs due to deflocculation increased the soluble EPS concentration. To confirm the temperature effect related to QS, bacteria producing AHL were isolated from MBR sludge and identified as Aeromonas sp., Leclercia sp., and Enterobacter sp. through a 16S rDNA sequencing analysis. Batch assays at 18 and 25?°C showed that there was a positive correlation between QS through AHL and biofilm formation in that temperature range.  相似文献   

18.

The increasing occurrence of resistance among Pseudomonas aeruginosa clinical isolates necessitates finding alternatives to antibiotics for controlling the infection of such pathogenic bacteria. In this study, lactonase gene ahl-1 from Bacillus weihenstephanensis isolate-P65 was successfully cloned and expressed in Escherichia coli BL21 (DE3) under the control of T7 promoter for utilizing its quorum quenching activity against three multidrug-resistant (MDR) P. aeruginosa clinical isolates. The biological activity of the overexpressed lactonase enzyme (Ahl-1), tested using a synthetic signal and Chromobacterium violaceum CV026 as a biosensor, displayed good catalytic activity using hexanoyl homoserine lactone (HHL) as a substrate and Chromobacterium violaceum (CV026) as a biosensor (77.2 and 133 nm min−1 for the crude and the purified Ahl-lactonase enzymes, respectively). Upon challenging its ability to inhibit the virulence of three MDR P. aeruginosa clinical isolates, recombinant Ahl-1 successfully prevented the accumulation of acylhomoserine lactone signals resulting in a significant reduction in the investigated virulence determinants; protease (from 40 up to 75.5%), pyocyanin (48–75.9%), and rhamnolipids (52.7–63.4%) (P value < 0.05). Ahl-1 also displayed significant inhibitory activities on the swarming motility and biofilm formation of the three tested MDR P. aeruginosa clinical isolates (P value < 0.05). Consequently, Ahl-1 lactonase enzyme in this study is considered a promising therapeutic agent to inhibit P. aeruginosa pathogenicity with no fear of emergence of resistance.

  相似文献   

19.

Background:

N-Acyl homoserine lactone (AHL) is found to be the main component of quorum sensing (QS) in Gram-negative bacteria and plays an important role in biofilm formation. Little information is available regarding the role of AHL in biofilm formation in Escherichia coli (E. coli). The purpose of this investigation was to biochemically detect and characterize AHL activity in biofilm-forming uropathogenic E. coli (UPEC) isolated from urine samples of the patients with urinary tract infections (UTIs) in Kerman, Iran.

Methods:

Thirty-five UPEC isolates were obtained from urine samples of the patients with UTIs referred to the Afzalipoor hospital. The isolates were identified by biochemical tests. Biofilm analyses of all the isolates were performed using the microtiter plate method at OD 490nm. N-Acyl homoserine lactone was separated from cell mass supernatants by liquid-liquid extraction (LLE) and analyzed by a colorimetric method. N-Acyl homoserine lactone functional groups were identified by Fourier Transform-Infrared Spectroscopy (FT-IR).

Results:

The biofilm formation assay identified 10 (28.57%) isolates with strong, 16 (45.71%) with moderate, and 9 (25.71%) with weak biofilm activities. The UPEC isolates with strong and weak biofilm activities were subjected to AHL analyses. It was found that isolates with the highest AHL activities also exhibited strong adherence to microplate wells (P≤0.05). Two E. coli isolates with the highest AHL activities were selected for FT-IR spectroscopy. Peaks at 1764.33, 1377.99, and 1242.90 cm-1 correspond to the C=O bond of the lactone ring, and the N=H and C-O bonds of the acyl chain, respectively.

Conclusion:

We found that many UPEC isolates exhibited strong biofilm formation. The control of this property by AHL may contribute to the pathogenesis of the organism in UTI’s.Key Words: Biofilm, FT-IR, N-acylhomoserine lactone, Uropathogenic Escherichia coli  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号