首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cell wall and soluble polysaccharides that reacted with Trichosporon domesticum factor III serum were isolated from the type strain of T. domesticum. The fractions contained O-acetyl groups, which contributed to the serological reactivity. The antigenic structure was characterized by chromatographic and spectroscopic methods. The polysaccharide has an α-(1→3)- -mannan backbone with hetero-oligosaccharide side chains consisting of a 2-O-substituted β- -glucuronic acid residue bound to O-2 of the mannose residue, β- -xylopyranosyl residues located in the middle of the side chain, and a nonreducing terminal α- -arabinopyranosyl residue bound to O-4 of xylose. The mannan backbone is O-acetylated at O-6 of the mannose residues.  相似文献   

3.
Lipopolysaccharide (LPS) is a major virulence determinant of the human bacterial pathogen Haemophilus influenzae. Structural elucidation of the LPS from H. influenzae type b strain RM7004 was achieved by using electrospray ionization mass spectrometry (ESI-MS) and high-field NMR techniques on delipidated LPS and core oligosaccharide samples of LPS. It was found that the organism elaborates a series of related LPS glycoforms having a common inner-core structure, but differing in the number and position of attached hexose residues. LPS glycoforms containing between four and nine hexose residues were structurally characterized. The inner-core element was determined to be L-alpha-D-Hepp-(1-->2)-[PEA-->6]-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-L-alpha-D-Hepp-(1-->5)-[P-->4]-alpha-KDOp-(2-->, a structural feature which has been identified in every H. influenzae strain investigated to date. Two major groups of isomeric glycoforms were characterized in which the terminal Hepp residue of the inner-core element was either substituted at the O-2 position with a beta-D-Galp residue or not. The structures of the major LPS glycoforms were found to have oligosaccharide chain extensions from O-3 of the middle Hepp residue. Glycoforms containing five and six hexose residues were most abundant and were shown to carry the tetrasaccharide unit alpha-D-Galp-(1-->4)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->4)-alpha-D-Glcp at the O-3 position of the middle heptose. This tetrasaccharide displays the globoside trisaccharide (globotriose) as a terminal epitope, a structure that is found on many human cells (P(k) blood group antigen) and which is thought to be an important virulence determinant for H. influenzae. LPS glycoforms were characterized that had further chain extension from the beta-D-Glcp-(1--> residue of the proximal Hepp. In the fully extended LPS (Hex9/Hex8' glycoforms), both the proximal and middle heptose residues carried tetrasaccharide chains displaying terminal globotriose epitopes. In addition, the LPS was found to carry phosphorylcholine and O-acetyl groups.  相似文献   

4.
The structures of the oligosaccharides obtained after acetic acid hydrolysis and alkaline deacylation of the rough-type lipopolysaccharide (LPS) from Pectinatus frisingensis strain VTT E-82164 were analysed using NMR spectroscopy, MS and chemical methods. The LPS contains two major structural variants, differing by a decasaccharide fragment, and some minor variants lacking the terminal glucose residue. The largest structure of the carbohydrate backbone of the LPS that could be deduced from experimental results consists of 25 monosaccharides (including the previously found Ara4NP residue in lipid A) arranged in a well-defined nonrepetitive structure: We presume that the shorter variant with R1 = H represents the core-lipid A part of the LPS, and the additional fragment is present instead of the O-specific polysaccharide. Structures of this type have not been previously described. Analysis of the deacylation products obtained from the LPS of the smooth strain, VTT E-79100T, showed that it contains a very similar core but with one different glycosidic linkage.  相似文献   

5.
Angiotensin II is able to trigger inflammatory responses through an angiotensin II type 1 (AT1) receptor. The role of AT1 receptor in acute lung injury (ALI) is poorly understood. Mice were randomly divided into three groups (n = 40 each groups): NS group; LPS group (2 mg/kg LPS intratracheally); and LPS + ZD 7155 group, 10 mg/kg ZD 7155 (an AT1 receptor antagonist) intraperitoneally 30 min prior to LPS exposure. Samples from the lung were isolated and assayed for histopathology analyses or proinflammatory gene expressions, angiotensin II receptors expressions and nuclear factors activities. LPS exposure resulted in severe ALI, elevated levels of TNF-α and IL-1β mRNA expressions, and increased activities of NF-κB and activated protein (AP)-1. Upregulation of AT1 receptor and down-regulation of AT2 receptor were also observed after LPS challenge. Pretreatment with ZD 7155 significantly inhibited the increase of AT1 receptor expression and upregulated AT2 receptor expression. ZD 7155 also reduced the mRNA expression of TNF-α and IL-1β, inhibited the activation of NF-κB and AP-1, and improved lung histopathology. These findings suggest that antagonism of AT1 receptor inhibits the activation of NF-κB and AP-1 in the lung, which may mediate the release of TNF-α and IL-1β and contribute to LPS-induced ALI.  相似文献   

6.
Several colicin-sensitivity mutants were isolated from Escherichia coli K-12. The mutants could not form colonies in the presence of colicin E2, but recovered their colony-forming ability on trypsin treatment even after prolonged incubation with the colicin. They showed increased sensitivity to hydrophobic antibiotics and detergents, as well as resistance against P1 and T4 phages, both of which seemed due to structural changes of lipopolysaccharide (LPS). Quantitative analysis by gas-liquid chromatography revealed that the mutant-LPS contained a different stereoisomer of heptose with decreased amounts of neutral sugars (rhamnose, glucose and galactose). LPS extracted from the parental colicin-sensitive strain could neutralize the killing activity of colicin E2 in vitro, but the mutant-LPS could not. The mutant strains retained functional receptor proteins for colicin E2. These observations suggest that LPS plays an important role in the early stage of the interaction of colicin E2 with E. coli cells.  相似文献   

7.
A genetic basis for the biosynthetic assembly of the globotetraose containing lipopolysaccharide (LPS) of Haemophilus influenzae strain RM118 (Rd) was determined by structural analysis of LPS derived from mutant strains. We have previously shown that the parent strain RM118 elaborates a population of LPS molecules made up of a series of related glycoforms differing in the degree of oligosaccharide chain extension from the distal heptose residue of a conserved phosphorylated inner-core element, L-alpha-D-Hepp-(1-->2)-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)-]-L-alpha-D-Hepp-(1-->5)-alpha-Kdo. The fully extended LPS glycoform expresses the globotetraose structure, beta-D-GalpNAc-(1-->3)-alpha-D-Galp-(1-->4)-beta-D-Galp-(1-->4)-beta-D-Glcp. A fingerprinting strategy was employed to establish the structure of LPS from strains mutated in putative glycosyltransferase genes compared to the parent strain. This involved glycose and linkage analysis on intact LPS samples and analysis of O-deacylated LPS samples by electrospray ionization mass spectrometry and 1D (1)H-nuclear magnetic resonance spectroscopy. Four genes, lpsA, lic2A, lgtC, and lgtD, were required for sequential addition of the glycoses to the terminal inner-core heptose to give the globotetraose structure. lgtC and lgtD were shown to encode glycosyltransferases by enzymatic assays with synthetic acceptor molecules. This is the first genetic blueprint determined for H. influenzae LPS oligosaccharide biosynthesis, identifying genes involved in the addition of each glycose residue.  相似文献   

8.
Gammadelta T lymphocytes are involved in a great variety of inflammatory and infectious responses. However, the mechanisms by which gammadelta T lymphocytes migrate to inflamed sites are poorly understood. In this study we investigate the role of monocyte chemotactic protein (MCP)-1 in regulating gammadelta T cell migration after LPS or Mycobacterium bovis bacille Calmette-Guérin (BCG) challenge. LPS-induced gammadelta T cell influx was significantly inhibited by either pretreatment with dexamethasone or vaccinia virus Lister 35-kDa chemokine binding protein, vCKBP, a CC chemokine neutralizing protein, suggesting a role for CC chemokines in this phenomenon. LPS stimulation increased the expression of MCP-1 mRNA and protein at the inflammation site within 6 h. It is noteworthy that LPS was unable to increase MCP-1 production or gammadelta T cell recruitment in C3H/HeJ, indicative of the involvement of Toll-like receptor 4. Gammadelta T cells express MCP-1 receptor CCR2. Pretreatment with anti-MCP-1 mAb drastically inhibited LPS-induced in vivo gammadelta T cell mobilization. Indeed, MCP-1 knockout mice were unable to recruit gammadelta T cells to the pleural cavity after LPS stimulation, effect that could be restored by coadministration of MCP-1. In addition, BCG-induced gammadelta lymphocyte accumulation was significantly reduced in MCP-1 knockout mice when compared with wild-type mice. In conclusion, our results indicate that LPS-induced gammadelta T lymphocyte migration is dependent on Toll-like receptor 4 and sensitive to both dexamethasone and CC chemokine-binding protein inhibition. Moreover, by using MCP-1 neutralizing Abs and genetically deficient mice we show that LPS- and BCG-induced gammadelta T lymphocyte influx to the pleural cavity of mice is mainly orchestrated by the CC chemokine MCP-1.  相似文献   

9.
Structural elucidation of the sialylated lipopolysaccharide (LPS) of non-typeable Haemophilus influenzae (NTHi) strain 486 has been achieved by the application of high-field NMR techniques and ESI-MS along with composition and linkage analyses on O-deacylated LPS and oligosaccharide samples. It was found that the LPS contains the common element of H. influenzae, L-alpha-D-Hepp-(1-->2)-[PEtn-->6]-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-L-alpha-D-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdop-(2-->6)-Lipid A, but instead of glycosyl substitution of the terminal heptose residue (HepIII) at the O2 position observed in other H. influenzae strains, HepIII is chain elongated at the O3 position by either lactose or sialyllactose (i.e. alpha-Neu5Ac-(2-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp). The LPS is substituted by an O-acetyl group linked to the O2 position of HepIII and phosphocholine (PCho) which was located at the O6 position of a terminal alpha-D-Glcp residue attached to the central heptose, a molecular environment different from what has been reported earlier for PCho. In addition, minor substitution by O-linked glycine to the LPS was observed. By investigation of LPS from a lpsA mutant of NTHi strain 486, it was demonstrated that the lpsA gene product also is responsible for chain extension from HepIII in this strain. The involvement of lic1 in expression of PCho was established by investigation of a lic1 mutant of NTHi strain 486.  相似文献   

10.
《Autophagy》2013,9(11):1937-1952
Lipopolysaccharide (LPS)-induced activation of TLR4 (toll-like receptor 4) is followed by a subsequent overwhelming inflammatory response, a hallmark of the first phase of sepsis. Therefore, counteracting excessive innate immunity by autophagy is important to contribute to the termination of inflammation. However, the exact molecular details of this interplay are only poorly understood. Here, we show that PELI3/Pellino3 (pellino E3 ubiquitin protein ligase family member 3), which is an E3 ubiquitin ligase and scaffold protein in TLR4-signaling, is impacted by autophagy in macrophages (MΦ) after LPS stimulation. We noticed an attenuated mRNA expression of proinflammatory Il1b (interleukin 1, β) in Peli3 knockdown murine MΦ in response to LPS treatment. The autophagy adaptor protein SQSTM1/p62 (sequestosome 1) emerged as a potential PELI3 binding partner in TLR4-signaling. siRNA targeting Sqstm1 and Atg7 (autophagy related 7), pharmacological inhibition of autophagy by wortmannin as well as blocking the lysosomal vacuolar-type H+-ATPase by bafilomycin A1 augmented PELI3 protein levels, while inhibition of the proteasome had no effect. Consistently, treatment to induce autophagy by MTOR (mechanistic target of rapamycin (serine/threonine kinase)) inhibition or starvation enhanced PELI3 degradation and reduced proinflammatory Il1b expression. PELI3 was found to be ubiquitinated upon LPS stimulation and point mutation of PELI3-lysine residue 316 (Lys316Arg) attenuated Torin2-dependent degradation of PELI3. Immunofluorescence analysis revealed that PELI3 colocalized with the typical autophagy markers MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) and LAMP2 (lysosomal-associated membrane protein 2). Our observations suggest that autophagy causes PELI3 degradation during TLR4-signaling, thereby impairing the hyperinflammatory phase during sepsis.  相似文献   

11.
LPS preparations cause a variety of body temperature (T(b)) responses: monophasic fever, different phases of polyphasic fever, and hypothermia. Conventional (c) LPS preparations contain highly active lipoprotein contaminants (endotoxin proteins). Whereas LPS signals predominantly via the Toll-like receptor (TLR) 4, endotoxin proteins signal via TLR2. Several TLR2-dependent responses of immunocytes to cLPS in vitro are triggered by endotoxin proteins and not by LPS itself. We tested whether any T(b) response to cLPS from Escherichia coli 055:B5 is triggered by non-TLR4-signaling contaminants. A decontaminated (d) LPS preparation (free of endotoxin proteins) was produced by subjecting cLPS to phenol-water reextraction. The presence of non-TLR4-signaling contaminants in cLPS (and their absence in dLPS) was confirmed by showing that cLPS (but not dLPS) induced IL-1beta expression in the spleen and increased serum levels of TNF-alpha and IL-1beta of C3H/HeJ mice; these mice bear a nonfunctional TLR4. Yet, both cLPS and dLPS caused cytokine responses in C3H/HeOuJ mice; these mice bear a fully functional TLR4. We then studied the T(b) responses to cLPS and dLPS in Wistar rats preimplanted with jugular catheters. At a neutral ambient temperature (30 degrees C), a low (0.1 microg/kg iv) dose of cLPS caused a monophasic fever, whereas a moderate (10 microg/kg iv) dose produced a polyphasic fever. In the cold (20 degrees C), a high (500 microg/kg iv) dose of cLPS caused hypothermia. All T(b) responses to dLPS were identical to those of cLPS. We conclude that all known T(b) responses to LPS preparations are triggered by LPS per se and not by non-TLR4-signaling contaminants of such preparations.  相似文献   

12.
Haemophilus parainfluenzae is a Gram-negative bacterium that colonizes the upper respiratory tract of humans and is a part of normal flora. In this study, we investigated the lipopolysaccharide (LPS) expressed by H. parainfluenzae strain 20. Using NMR and MS techniques on LPS, oligosaccharide samples and lipid A, the structures for O-antigen, core oligosaccharide and lipid A could be established. It was found that the biological repeating unit of the O-antigen is →4)-α-d-GalpNAc-(1→P→6)-β-d-Glcp-(1→3)-α-d-FucpNAc4N-(1→, in which d-FucpNAc4N is 2-acetamido-4-amino-2,4,6-trideoxy-d-galactose. This sugar is in β-configuration when linked to O-4 of the glucose residue of β-d-Galp-(1→2)-l-α-d-Hepp-(1→2)-[PEtn→6]-l-α-d-Hepp-(1→3)-[β-d-Glcp-(1→4)]-l-α-d-Hepp-(1→5)-[PPEtn→4]-α-Kdo-(2→6)-lipid A. LPS from a wbaP mutant of H. parainfluenzae strain 20 did not contain an O-antigen, consistent with the wbaP gene product being required for expression of O-antigen in fully extended LPS.  相似文献   

13.
Structural analysis of the lipopolysaccharide (LPS) from nontypeable Haemophilus influenzae strain 981 has been achieved using NMR spectroscopy and ESI-MS on O-deacylated LPS and core oligosaccharide (OS) material as well as by ESI-MSn on permethylated dephosphorylated OS. A heterogeneous glycoform population was identified, resulting from the variable length of the OS branches attached to the glucose residue in the common structural element of H. influenzae LPS, l-alpha-d-Hepp-(1-->2)-[PEtn-->6]-l-alpha-d-Hepp-(1-->3)-[beta-d-Glcxp-(1-->4)]-l-alpha-d-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdop-(2-->6)-Lipid A. Notably, the O-6 position of the beta-d-Glcp residue was either substituted by PCho or the disaccharide branch beta-d-Galp-(1-->4)-d-alpha-d-Hepp, while the O-4 position was substituted by the globotetraose unit, beta-d-GalpNAc-(1-->3)-alpha-d-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-d-Glcp, or sequentially truncated versions thereof. This is the first time a branching sugar residue has been reported in the outer-core region of H. influenzae LPS. Additionally, a PEtn group was identified at O-3 of the distal heptose residue in the inner-core.  相似文献   

14.
O-specific polysaccharides (O-antigens) of the lipopolysaccharides (LPS) of Proteus penneri strains 1 and 4 were studied using sugar analysis, (1)H and (13)C NMR spectroscopy, including 2D COSY, H-detected (1)H,(13)C HMQC, and rotating-frame NOE spectroscopy (ROESY). The following structures of the tetrasaccharide (strain 1) and pentasaccharide (strain 4) repeating units of the polysaccharides were established: [reaction: see text]. In the polysaccharide of P. penneri strain 4, glycosylation with the lateral Glc residue (75%) and O-acetylation of the lateral GalNAc residue (55%) are nonstoichiometric. This polysaccharide contains also other, minor O-acetyl groups, whose positions were not determined. The structural similarity of the O-specific polysaccharides was consistent with the close serological relatedness of the LPS, which was demonstrated by immunochemical studies with O-antisera against P. penneri 1 and 4. Based on these data, it was proposed to classify P. penneri strains 1 and 4 into a new Proteus serogroup, O72, as two subgroups, O72a and O72a,b, respectively. Serological cross-reactivity of P. penneri 1 O-antiserum with the LPS of P. penneri 40 and 41 was substantiated by the presence of an epitope(s) on the LPS core region shared by all P. penneri strains studied.  相似文献   

15.
Lipopolysaccharide (LPS)-induced activation of TLR4 (toll-like receptor 4) is followed by a subsequent overwhelming inflammatory response, a hallmark of the first phase of sepsis. Therefore, counteracting excessive innate immunity by autophagy is important to contribute to the termination of inflammation. However, the exact molecular details of this interplay are only poorly understood. Here, we show that PELI3/Pellino3 (pellino E3 ubiquitin protein ligase family member 3), which is an E3 ubiquitin ligase and scaffold protein in TLR4-signaling, is impacted by autophagy in macrophages (MΦ) after LPS stimulation. We noticed an attenuated mRNA expression of proinflammatory Il1b (interleukin 1, β) in Peli3 knockdown murine MΦ in response to LPS treatment. The autophagy adaptor protein SQSTM1/p62 (sequestosome 1) emerged as a potential PELI3 binding partner in TLR4-signaling. siRNA targeting Sqstm1 and Atg7 (autophagy related 7), pharmacological inhibition of autophagy by wortmannin as well as blocking the lysosomal vacuolar-type H+-ATPase by bafilomycin A1 augmented PELI3 protein levels, while inhibition of the proteasome had no effect. Consistently, treatment to induce autophagy by MTOR (mechanistic target of rapamycin (serine/threonine kinase)) inhibition or starvation enhanced PELI3 degradation and reduced proinflammatory Il1b expression. PELI3 was found to be ubiquitinated upon LPS stimulation and point mutation of PELI3-lysine residue 316 (Lys316Arg) attenuated Torin2-dependent degradation of PELI3. Immunofluorescence analysis revealed that PELI3 colocalized with the typical autophagy markers MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) and LAMP2 (lysosomal-associated membrane protein 2). Our observations suggest that autophagy causes PELI3 degradation during TLR4-signaling, thereby impairing the hyperinflammatory phase during sepsis.  相似文献   

16.
17.
Analysis of the core part of the LPS from several strains of Proteus revealed that P. penneri strains 2, 11, 19, 107, and P. vulgaris serotypes O4 and O8 have the same structure with a new type of linkage between monosaccharides–an open-chain acetal — that was previously determined for P. vulgaris OX2 and P. penneri 17. The LPS from P. penneri strain 40 contains the same structure substituted with one additional monosaccharide:
Full-size image (5K)
where (1S)-GalaNAc1 is a residue of N-acetyl- -galactosamine in the open-chain form. It is connected as a cyclic acetal to positions 4 and 6 of the galactosamine residue having a free amino group. All other sugars are in the pyranose form.  相似文献   

18.
The core lipopolysaccharide (LPS) of Aeromonas hydrophila AH-3 and Aeromonas salmonicida A450 is characterized by the presence of the pentasaccharide α-d-GlcN-(1→7)-l-α-d-Hep-(1→2)-l-α-d-Hep-(1→3)-l-α-d-Hep-(1→5)-α-Kdo. Previously it has been suggested that the WahA protein is involved in the incorporation of GlcN residue to outer core LPS. The WahA protein contains two domains: a glycosyltransferase and a carbohydrate esterase. In this work we demonstrate that the independent expression of the WahA glycosyltransferase domain catalyzes the incorporation of GlcNAc from UDP-GlcNAc to the outer core LPS. Independent expression of the carbohydrate esterase domain leads to the deacetylation of the GlcNAc residue to GlcN. Thus, the WahA is the first described bifunctional glycosyltransferase enzyme involved in the biosynthesis of core LPS. By contrast in Enterobacteriaceae containing GlcN in their outer core LPS the two reactions are performed by two different enzymes.  相似文献   

19.
Toll-like receptor 4 (TLR4) and its coreceptor MD-2 recognize bacterial lipopolysaccharide (LPS) and signal the innate immune response. Two single nucleotide polymorphisms (SNPs) of human TLR4, D299G and T399I, have been identified and suggested to be associated with LPS hyporesponsiveness. Moreover, the SNPs have been proposed to be associated with a variety of infectious and noninfectious diseases. However, how the SNPs affect the function of TLR4 remains largely unknown. Here, we report the crystal structure of the human TLR4 (D299G/T399I)·MD-2·LPS complex at 2.4 Å resolution. The ternary complex exhibited an agonistic “m”-shaped 2:2:2 architecture that was similar to that of the human wild type TLR4·MD-2·LPS complex. Local structural differences that might affect the binding of the ligands were observed around D299G, but not around T399I, SNP site.  相似文献   

20.
When Rhizobium etli CE3 was grown in the presence of Phaseolus vulgaris seed extracts containing anthocyanins, its lipopolysaccharide (LPS) sugar composition was changed in two ways: greatly decreased content of what is normally the terminal residue of the LPS, di-O-methylfucose, and a doubling of the 2-O-methylation of other fucose residues in the LPS O antigen. R. etli strain CE395 was isolated after Tn5 mutagenesis of strain CE3 by screening for mutant colonies that did not change antigenically in the presence of seed extract. The LPS of this strain completely lacked 2-O-methylfucose, regardless of whether anthocyanins were present during growth. The mutant gave only pseudonodules in association with P. vulgaris. Interpretation of this phenotype was complicated by a second LPS defect exhibited by the mutant: its LPS population had only about 50% of the normal amount of O-antigen-containing LPS (LPS I). The latter defect could be suppressed genetically such that the resulting strain (CE395α395) synthesized the normal amount of an LPS I that still lacked 2-O-methylfucose residues. Strain CE395α395 did not elicit pseudonodules but resulted in significantly slower nodule development, fewer nodules, and less nitrogenase activity than lps+ strains. The relative symbiotic deficiency was more severe when seeds were planted and inoculated with bacteria before they germinated. These results support previous conclusions that the relative amount of LPS I on the bacterial surface is crucial in symbiosis, but LPS structural features, such as 2-O-methylation of fucose, also may facilitate symbiotic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号