首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid serodiagnostic methods for Toxoplasma gondii infection in cats are urgently needed for effective control of transmission routes toward human infections. In this work, 4 recombinant T. gondii antigens (SAG1, SAG2, GRA3, and GRA6) were produced and tested for the development of rapid diagnostic test (RDT). The proteins were expressed in Escherichia coli, affinity-purified, and applied onto the nitrocellulose membrane of the test strip. The recombinant SAG1 (rSAG1) showed the strongest antigenic activity and highest specificity among them. We also performed clinical evaluation of the rSAG1-loaded RDT in 182 cat sera (55 household and 127 stray cats). The kit showed 0.88 of kappa value comparing with a commercialized ELISA kit, which indicated a significant correlation between rSAG1-loaded RDT and the ELISA kit. The overall sensitivity and specificity of the RDT were 100% (23/23) and 99.4% (158/159), respectively. The rSAG1-loaded RDT is rapid, easy to use, and highly accurate. Thus, it would be a suitable diagnostic tool for rapid detection of antibodies in T. gondii-infected cats under field conditions.  相似文献   

2.
Cats are pivotal in the transmission of Toxoplasma gondii. To develop a sensitive and specific serodiagnostic method for feline toxoplasmosis, surface antigen 2 (SAG2) of T. gondii was expressed in Escherichia coli and its diagnostic potential evaluated in an enzyme-linked immunosorbent assay (ELISA). The ELISA with recombinant SAG2 (rSAG2) was able to differentiate very clearly between sera from cats experimentally infected with T. gondii and sera from normal cats. Serum samples collected from domestic cats in Japan were investigated by the ELISA, and the results were compared with those of a commercially available latex agglutination test (LAT) kit. Of the 192 samples screened, 42 (21.9%) were positive by ELISA. Among the 42 ELISA-positive samples, 39 were positive by LAT. There was a significant correlation between ELISA and LAT titers. All the 150 ELISA-negative samples were negative by LAT. These results indicate that the ELISA with rSAG2 expressed in E. coli should be a useful method for detection of T. gondii infection in cats.  相似文献   

3.
The surface antigen 2 (SAG2) gene of the protozoan parasite, Toxoplasma gondii, was cloned and extracellularly expressed in the yeast Pichia pastoris. The effectiveness of the secreted recombinant SAG2 (rSAG2-S) as a serodiagnosis reagent was assessed by western blots and ELISA. In the western blot assay, rSAG2-S reacted with all Toxoplasma-antibody positive human serum samples but not with Toxoplasma-negative samples. In the ELISA, rSAG2-S yielded sensitivity rates ranging from 80% (IgG negative, IgM positive) to 100% (IgG positive, IgM negative). In vivo experiments showed that serum from mice immunized with rSAG2-S reacted specifically with the native SAG2 of T. gondii. These mice were protected when challenged with live cells of T. gondii.  相似文献   

4.

Background  

Codon optimization and subcellular targeting were studied with the aim to increase the expression levels of the SAG178-322 antigen of Toxoplasma gondii in tobacco leaves. The expression of the tobacco-optimized and native versions of the SAG1 gene was explored by transient expression from the Agrobacterium tumefaciens binary expression vector, which allows targeting the recombinant protein to the endoplasmic reticulum (ER) and the apoplast. Finally, mice were subcutaneously and orally immunized with leaf extracts-SAG1 and the strategy of prime boost with rSAG1 expressed in Escherichia coli was used to optimize the oral immunization with leaf extracts-SAG1.  相似文献   

5.
在大肠杆菌中以可溶性形式高效表达弓形虫膜表面抗原SAG2蛋白,并对其免疫活性进行分析。应用PCR技术从刚地弓形虫RH株的基因组DNA中扩增编码SAG2的基因片段,亚克隆至原核表达载体pET32a(+),在大肠埃希菌(E.coli)BL21内表达,并对其表达条件进行优化,Western blotting和ELISA分析纯化蛋白的免疫原性;纯化的重组蛋白免疫小鼠制备多抗,用间接免疫荧光试验(IFA)分析表达蛋白的免疫反应性。成功构建重组质粒pET32a(+)-tSAG2,所表达的融合蛋白大小约为38kD。在IPTG终浓度为0.1mmol/L、诱导时间4-6h和培养温度32℃条件下,重组SAG2蛋白主要以可溶性形式在大肠杆菌中高效表达,每升培养菌液约获得可溶性重组SAG2蛋白16mg。Western blotting及ELISA结果显示纯化蛋白具有良好的免疫原性。IFA显示重组蛋白的抗血清能够识别刚地弓形虫表面的SAG2天然蛋白,所表达蛋白具有良好的免疫反应性。截断的SAG2基因在大肠杆菌中得到了高效表达,重组蛋白保持了天然蛋白的免疫活性,为进一步利用该重组蛋白进行弓形虫病免疫诊断及基因工程亚单位疫苗的研制奠定基础。  相似文献   

6.
He Y  Gan S 《The Plant cell》2002,14(4):805-815
SAG101, a leaf senescence-associated gene, was cloned from an Arabidopsis leaf senescence enhancer trap line and functionally characterized. Reporter gene and RNA gel blot analyses revealed that SAG101 was not expressed until the onset of senescence in leaves. A recombinant SAG101 fusion protein overexpressed in Escherichia coli displayed acyl hydrolase activity. Antisense RNA interference in transgenic plants delayed the onset of leaf senescence for approximately 4 days. Chemically induced overexpression of SAG101 caused precocious senescence in both attached and detached leaves of transgenic Arabidopsis plants. These data suggest that SAG101 plays a significant role in leaf senescence.  相似文献   

7.
Recombinant Toxoplasma gondii small heat shock protein HSP20, surface antigen SAG1 and dense granule GRA7 were analyzed by IgG-ELISA with serum samples of Toxoplasma infected humans grouped as I (IgG+, IgM+), II (IgG+, IgM−) and III (IgG−, IgM−). rHSP20 reacted against 80% and 62.5% of serum samples from groups I and II, respectively. rSAG1 was recognized by 85% of the samples from group I and 70.8% from group II, whereas rGRA7 was recognized by 85% and 66.6% of the serum samples from groups I and II, respectively. When a combination of two or three recombinant antigens was used, the sensitivity values improved to 85-95% for group I and 87.5-91.7% for group II. All combinations tested produced similar reactivity profiles. None of the recombinant proteins reacted against group III serum samples. In conclusion, we demonstrated that T. gondii HSP20 elicits an important B-cell response during human infection, and could be suitable for the development of serodiagnosis tools.  相似文献   

8.
Sensitive to apoptosis gene (SAG) protein is a redox-inducible protein that protects cells against apoptosis induced by redox agents. In this study, we observed effects of SAG on cell proliferation and neuroblast differentiation in the mouse hippocampal dentate gyrus (DG) using Ki67 and doublecortin (DCX), respectively. For easy penetration into neurons, Tat-SAG expression vector was constructed by ligation with SAG and expression vector, Tat, in-frame with six histidine open-reading frames to generate the expression vector, and cloned into E. coli DH5α cells. One or 5?mg/kg Tat-SAG fusion protein (Tat-SAG) was intraperitoneally administered to mice once a day for 3?weeks. The administration of Tat-SAG significantly increased the number of 5-bromodeoxyuridine positive cells, Ki67 positive cells and DCX immunoreactive neuroblast in the mouse DG: Especially, in the 5?mg/kg Tat-SAG-treated mice, DCX positive neuroblasts showed a well-developed arborization of tertiary dendrites in the DG. On the other hand, we examined that the administration of Tat-SAG significantly reduced the DNA damage and lipid peroxidation judging from 8-hydroxy-2'-deoxyguanosine and 4-hydroxynonenal immunohistochemistry: The decrease was much more distinct in the 5?mg/kg Tat-SAG-treated mice than 1?mg/kg Tat-SAG-treated mice. This result suggests that SAG significantly increases cell proliferation, neuroblast differentiation and oxidative stress in normal states.  相似文献   

9.
We have recently cloned and characterized an evolutionarily conserved gene, Sensitive to Apoptosis Gene (SAG), which encodes a redox-sensitive antioxidant protein that protects cells from apoptosis induced by redox agents. The SAG protein was later found to be the second family member of ROC/Rbx/Hrt, a component of the Skp1-cullin-F box protein (SCF) E3 ubiquitin ligase, being required for yeast growth and capable of promoting cell growth during serum starvation. Here, we report the genomic structure of the SAG gene that consists of four exons and three introns. We also report the characterization of a SAG splicing variant (SAG-v), that contains an additional exon (exon 2; 264 bp) not present in wildtype SAG. The inclusion of exon 2 disrupts the SAG ORF and gives rise to a protein of 108 amino acids that contains the first 59 amino acids identical to SAG and a 49-amino acid novel sequence at the C terminus. The entire RING-finger domain of SAG was not translated because of several inframe stop codons within the exon 2. The SAG-v protein was expressed in multiple human tissues as well as cell lines, but at a much lower level than wildtype SAG. Unlike SAG, SAG-v was not able to rescue yeast cells from lethality in a ySAG knockout, nor did it bind to cullin-1 or have ligase activity, probably because of the lack of the RING-finger domain. Finally, we report the identification of two SAG family pseudogenes, SAGP1 and SAGP2, that share 36% or 47% sequence identity with ROC1/Rbx1/Hrt1 and 30% or 88% with SAG, respectively. Both genes are intronless with two inframe stop codons.  相似文献   

10.
We adapted a previously described Agrobacterium-mediated transient expression system to test the expression level of three constructs carrying the surface antigen 1 (SAG1) of Toxoplasma gondii. Two constructs were based in a Potato virus X (PVX) amplicon. In one of them, the PVX movement protein genes were replaced by the sag1 gene. In the other, the sag1 gene was placed under the control of an additional coat protein subgenomic promoter. In the third construct, the sag1 gene was fused to an apoplastic peptide signal under the CaMV 35S promoter. Western blot analysis of leaf extracts infiltrated with each construct revealed a protein of 35 kDa. SAG1 accumulation in leaves ranged from 0.1 to 0.06% of total soluble protein (equivalent to 10 microg and 6 microg of SAG1 per gram of fresh leaf tissue, respectively). Three of five human seropositive samples reacted with tobacco-expressed SAG1 in Western blot analysis. The C3H mice were immunized with SAG-expressing leaf extracts and perorally challenged with a nonlethal dose of the T. gondii Me49 strain. Mice vaccinated with SAG1 showed significantly lower brain cyst burdens compared to those from the control group. Immunization with SAG1-expressing leaves elicited a specific humoral response with predominant participation of type IgG2a. In conclusion, a functional SAG1 version could be transiently expressed in tobacco leaves.  相似文献   

11.
Sensitive to Apoptosis Gene (SAG), a RING component of SCF E3 ubiquitin ligase, was shown to be phosphorylated by protein kinase CK2 at the Thr10 residue. It is, however, unknown whether this phosphorylation is stress-responsive or whether the phosphorylation changes its E3 ubiquitin ligase activity. To address these, we made a specific antibody against the phosphor-SAGThr10. Transient transfection experiment showed that SAG was phosphorylated at Thr10 which can be significantly inhibited by TBB, a relatively specific inhibitor of protein kinase CK2. To determine whether this SAG phosphorylation is stress-responsive, we defined a chemical-hypoxia condition in which SAG and CK2 were both induced. Under this condition, we failed to detect SAG phosphorylation at Thr10, which was readily detected, however, in the presence of MG132, a proteasome inhibitor, suggesting that the phosphorylated SAG has undergone a rapid degradation. To further define this, we made two SAG mutants, SAG-T10A which abolishes the SAG phosphorylation and SAG-T10E, which mimics the constitutive SAG phosphorylation. The half-life study revealed that indeed, SAG-T10E has a much shorter protein half-life (2 h), as compared to wild-type SAG (10 h). Again, rapid degradation of SAG-T10E in cells can be blocked by MG132. Thus, it appears that CK2-induced SAG phosphorylation at Thr10 regulates its stability through a proteasome-dependent pathway. Immunocytochemistry study showed that SAG as well as its phosphorylation mutants, was mainly localized in nucleus and lightly in cytoplasm. Hypoxia condition did not change their sub-cellular localization. Finally, an in vitro ubiqutination assay showed that SAG mutation at Thr10 did not change its E3 ligase activity when complexed with cullin-1. These studies suggested that CK2 might regulate SAG-SCF E3 ligase activity through modulating SAG’s stability, rather than its enzymatic activity directly.  相似文献   

12.
SAG (Sensitive to Apoptosis Gene), also known as RBX2 (RING box protein 2), ROC2 (Regulator of Cullins 2), or RNF7 (RING Finger Protein 7), was originally cloned in our laboratory as a redox inducible antioxidant protein and later characterized as the second member of the RBX/ROC RING component of the SCF (SKP1-CUL-F-box Proteins) E3 ubiquitin ligase. When acting alone, SAG scavenges oxygen radicals by forming inter- and intra- molecular disulfide bonds, whereas by forming a complex with other components of the SCF E3 ligase, SAG promotes ubiquitination and degradation of a number of protein substrates, including c-JUN, DEPTOR, HIF-1α, IκBα, NF1, NOXA, p27, and procaspase-3, thus regulating various signaling pathways and biological processes. Specifically, SAG protects cells from apoptosis, confers radioresistance, and plays an essential and non-redundant role in mouse embryogenesis and vasculogenesis. Furthermore, stress-inducible SAG is overexpressed in a number of human cancers and SAG overexpression correlates with poor patient prognosis. Finally, SAG transgenic expression in epidermis causes an early stage inhibition, but later stage promotion, of skin tumorigenesis triggered by DMBA/TPA. Given its major role in promoting targeted degradation of tumor suppressive proteins, leading to apoptosis suppression and accelerated tumorigenesis, SAG E3 ligase appears to be an attractive anticancer target.  相似文献   

13.
Systemic acquired resistance (SAR), a natural disease response in plants, can be induced chemically. Salicylic acid (SA) acts as a key endogenous signaling molecule that mediates SAR in dicotyledonous plants. However, the role of SA in monocotyledonous plants has yet to be elucidated. In this study, the mode of action of the agrochemical protectant chemical probenazole was assessed by microarray-based determination of gene expression. Cloning and characterization of the most highly activated probenazole-responsive gene revealed that it encodes UDP-glucose:SA glucosyltransferase (OsSGT1) , which catalyzes the conversion of free SA into SA O- β-glucoside (SAG). We found that SAG accumulated in rice leaf tissue following treatment with probenazole or 2,6-dichloroisonicotinic acid. A putative OsSGT1 gene from the rice cultivar Akitakomachi was cloned and the gene product expressed in Escherichia coli was characterized, and the results suggested that probenazole-responsive OsSGT1 is involved in the production of SAG. Furthermore, RNAi-mediated silencing of the OsSGT1 gene significantly reduced the probenazole-dependent development of resistance against blast disease, further supporting the suggestion that OsSGT1 is a key mediator of development of chemically induced disease resistance. The OsSGT1 gene may contribute to the SA signaling mechanism by inducing up-regulation of SAG in rice plants.  相似文献   

14.
15.
We adapted a previously described Agrobacterium-mediated transient expression system to test the expression level of three constructs carrying the surface antigen 1 (SAG1) of Toxoplasma gondii. Two constructs were based in a Potato virus X (PVX) amplicon. In one of them, the PVX movement protein genes were replaced by the sag1 gene. In the other, the sag1 gene was placed under the control of an additional coat protein subgenomic promoter. In the third construct, the sag1 gene was fused to an apoplastic peptide signal under the CaMV 35S promoter. Western blot analysis of leaf extracts infiltrated with each construct revealed a protein of 35 kDa. SAG1 accumulation in leaves ranged from 0.1 to 0.06% of total soluble protein (equivalent to 10 μg and 6 μg of SAG1 per gram of fresh leaf tissue, respectively). Three of five human seropositive samples reacted with tobacco-expressed SAG1 in Western blot analysis. The C3H mice were immunized with SAG-expressing leaf extracts and perorally challenged with a nonlethal dose of the T. gondii Me49 strain. Mice vaccinated with SAG1 showed significantly lower brain cyst burdens compared to those from the control group. Immunization with SAG1-expressing leaves elicited a specific humoral response with predominant participation of type IgG2a. In conclusion, a functional SAG1 version could be transiently expressed in tobacco leaves.  相似文献   

16.
Toxoplasmosis is one of the world's most widespread zoonoses caused by protozoan parasite Toxoplasma gondii. The development of an effective vaccine for controlling toxoplasmosis is an extremely important issue due to the serious clinical and veterinary outcomes of this parasitosis. The objective of this study was evaluation of vaccine potential of three trivalent subunit recombinant vaccines composed of rROP2+rGRA4+rSAG1, rROP2+rROP4+rGRA4 and rROP2+rROP4+rSAG1 against chronic toxoplasmosis in BALB/c (H-2(d)) mice. All tested vaccines provided a partial protection against challenge with tissue cysts of the low virulence DX T. gondii strain, but the strongest level of protection was induced by the mixtures of both rhoptry proteins (rROP2 and rROP4) administered with the dense granule rGRA4 antigen or the main surface rSAG1 protein. The average parasite burden in these groups of vaccinated BALB/c mice was reduced by 84% and 77%, respectively, compared to the control PBS-injected animals. The vaccine-induced protection was correlated with the development of cellular and humoral immune responses demonstrated by the antigen-specific in vitro proliferation of spleen cells, the specific antigen-induced in vitro synthesis of Th1-type cytokines, IFN-γ and IL-2, and the generation of the high titers of systemic antigen-specific IgG1 and IgG2a antibodies. This study completed and confirmed our earlier investigations in C3H/HeJ (H-2(k)) and C57BL/6 (H-2(b)) mouse strains on the utility of the tested trivalent recombinant antigen-cocktails as potential vaccines against chronic toxoplasmosis and showed that particularly rROP2+rROP4+rGRA4 and rROP2+rROP4+rSAG1 protein-combinations are very effective in the development of a high level of protection irrespective of the genetic backgrounds and innate resistance to toxoplasmosis of the laboratory mice. It makes these two mixtures of recombinant antigens very promising for further experiments.  相似文献   

17.
Salicylic acid (SA) plays an important role in plant disease resistance. Inoculation of tobacco leaves with incompatible pathogens triggers the biosynthesis of SA which accumulates primarily as the SA 2-O-beta-D-glucoside (SAG) and glucosyl salicylate (GS). The tobacco UDP-glucose:salicylic acid glucosyltransferase (SA GTase) capable of forming both SAG and GS was purified, characterized, and partially sequenced. It has an apparent molecular mass of 48 kDa, a pH optimum of 7.0, and an isoelectric point at pH 4.4. UDP-glucose was the sole sugar donor for the enzyme. However, SA and several phenolics served as glucose acceptors. The apparent K(m) values for UDP-glucose and SA were 0.27 and 1-2 mM, respectively. Zn(2+) and UDP inhibited its activity. The corresponding cDNA clone which encoded a protein of 459 amino acids was isolated from an SA-induced tobacco cDNA library and overexpressed in Escherichia coli. The recombinant protein catalyzed the formation of SAG and GS, and exhibited a broad specificity to simple phenolics, similar to that of the purified enzyme. Northern blot analysis showed that the SA GTase mRNA was induced both by SA and incompatible pathogens. The rapid induction timing of the mRNA by SA indicates that it belongs to the early SA response genes.  相似文献   

18.
Sensitive to apoptosis gene (SAG) protein, a novel zinc RING finger protein, which is redox responsive and protects mammalian cells from apoptosis, is a metal chelator and a potential reactive oxygen species scavenger, but its antioxidant properties have not been completely defined. The present study was undertaken to test the hypothesis that human SAG protects from DNA damage induced by peroxynitrite, a potent physiological inorganic toxin. The present study has shown that SAG significantly inhibits single strand breaks in supercoiled plasmid DNA induced by synthesized peroxynitrite (ONOO(-)) and 3-morpholinosydnomine N-ethylcarbamide (SIN-1), a generator of peroxynitrite through the reaction between nitric oxide and superoxide anion. The formation of 8-hydroxy-2(')-deoxyguanosine in calf thymus DNA by peroxynitrite and SIN-1 was also significantly inhibited by SAG. The protective effect on peroxynitrite-mediated DNA damage was completely abolished by the reaction of SAG with N-ethylmaleimide, a chemical modification agent for the sulfhydryl group of proteins. These observations suggested that the sulfhydryl group of cysteines in SAG could react directly with peroxynitrite to prevent DNA damage.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号