首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli molecular chaperone GroEL and co-chaperone GroES are well known to assist the folding/refolding of a diverse range of substrate proteins. Despite this, there have been relatively few reports of the GroEL/GroES molecular chaperone system being used as a biotechnology tool for protein folding/refolding. In this paper, a solution-phase protein folding bioreactor is described that involves the complete GroEL/GroES system. The main features of this bioreactor are the use of a stirred-cell concentrator fitted with a 100 kDa molecular weight cutoff membrane and an attached buffer reservoir. This bioreactor system was used successfully for assisted-batch refolding of guanidinium chloride (Gu-HCl) unfolded mitochondrial malate dehydrogenase (mMDH). We believe that protein folding bioreactor systems of this type could have wide potential utility for the folding/refolding of unfolded protein substrates.  相似文献   

2.
Members of the phosducin gene family were initially proposed to act as down-regulators of G protein signaling by binding G protein βγ dimers (Gβγ) and inhibiting their ability to interact with G protein subunits (G) and effectors. However, recent findings have over-turned this hypothesis by showing that most members of the phosducin family act as co-chaperones with the cytosolic chaperonin complex (CCT) to assist in the folding of a variety of proteins from their nascent polypeptides. In fact rather than inhibiting G protein pathways, phosducin-like protein 1 (PhLP1) has been shown to be essential for G protein signaling by catalyzing the folding and assembly of the Gβγ dimer. PhLP2 and PhLP3 have no role in G protein signaling, but they appear to assist in the folding of proteins essential in regulating cell cycle progression as well as actin and tubulin. Phosducin itself is the only family member that does not participate with CCT in protein folding, but it is believed to have a specific role in visual signal transduction to chaperone Gβγ subunits as they translocate to and from the outer and inner segments of photoreceptor cells during light-adaptation.  相似文献   

3.
Members of the proline-rich antibacterial peptide family, pyrrhocoricin, apidaecin and drosocin appear to kill responsive bacterial species by binding to the multihelical lid region of the bacterial DnaK protein. Pyrrhocoricin, the most potent among these peptides, is nontoxic to healthy mice, and can protect these animals from bacterial challenge. A structure-antibacterial activity study of pyrrhocoricin against Escherichia coli and Agrobacterium tumefaciens identified the N-terminal half, residues 2-10, the region responsible for inhibition of the ATPase activity, as the fragment that contains the active segment. While fluorescein-labeled versions of the native peptides entered E. coli cells, deletion of the C-terminal half of pyrrhocoricin significantly reduced the peptide's ability to enter bacterial or mammalian cells. These findings highlighted pyrrhocoricin's suitability for combating intracellular pathogens and raised the possibility that the proline-rich antibacterial peptides can deliver drug leads into mammalian cells. By observing strong relationships between the binding to a synthetic fragment of the target protein and antibacterial activities of pyrrhocoricin analogs modified at strategic positions, we further verified that DnaK was the bacterial target macromolecule. Inaddition, the antimicrobial activity spectrum of native pyrrhocoricin against 11 bacterial and fungal strains and the binding of labeled pyrrhocoricin to synthetic DnaK D-E helix fragments of the appropriate species could be correlated. Mutational analysis on a synthetic E. coli DnaK fragment identified a possible binding surface for pyrrhocoricin.  相似文献   

4.
Introduction: Hydrogen–deuterium exchange (HDX) mass spectrometry (MS) is ideal for monitoring the protein folding and unfolding. The exchange of a deuterium in solution for an amide hydrogen in a protein can be very different depending on the degree of folding and protection of backbone amide positions. Molecular chaperones that assist with protein folding in vivo are necessary for folding of many substrate (client) proteins. HDX MS provides valuable insight into what chaperones are doing in protein folding and how they are doing it.

Areas covered: Application of HDX MS to the protein folding problem was desirable from the outset of the technique, but technical issues prohibited many studies. In the last 20 years, conformational changes of chaperones themselves (e.g., GroEL/GroES, Hsp70, and Hsp90) have been studied. Studies of interactions between chaperones, co-chaperones, and substrate proteins have revealed binding interfaces, allosteric conformational changes, and remodeling of components during various chaperone cycles. Experiments elucidating how chaperones contribute to and enhance the folding pathway of substrate proteins have been demonstrated.

Expert opinion: Technical issues that once prevented the analysis of chaperones have largely been resolved, permitting exciting comprehensive HDX MS studies of folding pathways during chaperone-assisted protein folding.  相似文献   


5.
Summary Pyrrhocoricin, a highly active antibacterial peptide isolated from insects, inhibits chaperone-assisted protein folding via binding to the 70 kDa heat shock protein DnaK with its amino terminal half. The C-terminus functions as an intracellular delivery module. In the current study, chimeras consisting of the putative functional units of pyrrhocoricin and a related peptide, drosocin, were made, and it was found that some mixed and matched sequences retained their ability to killEscherichia coli, Salmonella typhimurium andAgrobacterium tumefaciens. While pyrrhocoricin appeared to have a more universal pharmacophore, drosocin featured a more robust intracellular delivery unit. We also identified the minimal length of pyrrhocoricin that is needed to efficiently kill bacteria. While for activity againstS. typhimurium the peptide could not be shortened, againstE. coli it was sufficient to have a Vall-Ile16 amino-terminal fragment. Although Vall was not part of the Asp2-Pro 10 pharmacophore (it could be replaced with other residues), it could not be eliminated and apparently played an important role in defining the activity of the peptide. Indeed, when Val1 was replaced with lysine, not only the efficacy of pyrrhocoricin to kill the sensitive strains increased significantly, resulting in the most active antimicrobial peptide against some clinical strains ever made, but the modified peptide was also able to killPseudomonas aeruginosa, an originally unresponsive bacterium in the low μg ml−1 concentration range. However, this substitution likely influenced the interaction with bacterial membranes rather than that with the target protein, and therefore the dominant mode of action of the Lysl-pyrrhocoricin peptide may feature membrane disintegration instead of DnaK inhibition.  相似文献   

6.
Pyrrhocoricin, a highly active antibacterial peptide isolated from insects, inhibits chaperone-assisted protein folding via binding to the 70 kDa heat shock protein DnaK with its amino terminal half. The C-terminus functions as an intracellular delivery module. In the current study, chimeras consisting of the putative functional units of pyrrhocoricin and a related peptide, drosocin, were made, and it was found that some mixed and matched sequences retained their ability to kill Escherichia coli, Salmonella typhimurium and Agrobacterium tumefaciens. While pyrrhocoricin appeared to have a more universal pharmacophore, drosocin featured a more robust intracellular delivery unit. We also identified the minimal length of pyrrhocoricin that is needed to efficiently kill bacteria. While for activity against S. typhimurium the peptide could not be shortened, against E. coli it was sufficient to have a Val1-Ile16 amino-terminal fragment. Although Val1 was not part of the Asp2-Pro10 pharmacophore (it could be replaced with other residues), it could not be eliminated and apparently played an important role in defining the activity of the peptide. Indeed, when Val1 was replaced with lysine, not only the efficacy of pyrrhocoricin to kill the sensitive strains increased significantly, resulting in the most active antimicrobial peptide against some clinical strains ever made, but the modified peptide was also able to kill Pseudomonas aeruginosa, an originally unresponsive bacterium in the low g ml-1 concentration range. However, this substitution likely influenced the interaction with bacterial membranes rather than that with the target protein, and therefore the dominant mode of action of the Lys1-pyrrhocoricin peptide may feature membrane disintegration instead of DnaK inhibition.  相似文献   

7.
Previously, it was found that the dnaK1 gene of the halotolerant cyanobacterium Aphanothece halophytica encodes a polypeptide of 721 amino acids which has a long C-terminal region rich in acidic amino acid residues. To understand whether the A. halophytica DnaK1 possesses chaperone activity at high salinity and to clarify the role of the extra C-terminal amino acids, a comparative study examined three kinds of DnaK molecules for ATPase activity as well as the refolding activity of other urea-denatured proteins under various salinity conditions. DnaK1s from A. halophytica and Synechococcus sp. PCC 7942 and the C-terminal deleted A. halophytica DnaK1 were expressed in Escherichia coli and purified. The ATPase activity of A. halophytica DnaK1 was very high even at high salinity (1.0 M NaCl or KCl), whereas this activity in Synechococcus PCC 7942 DnaK1 decreased with increasing concentrations of NaCl or KCl. The salt dependence on the refolding activity of urea-denatured lactate dehydrogenase by DnaK1s was similar to that of ATPase activity of the respective DnaK1s. The deletion of the C-terminal amino acids of A. halophytica DnaK1 had no effect on the ATPase activity, but caused a significant decrease in the refolding activity of other denatured proteins. These facts indicate that the extra C-terminal region of A. halophytica DnaK1 plays an important role in the refolding of other urea-denatured proteins at high salinity. Furthermore, it was shown that DnaK1 could assist the copper binding of precursor apo-plastocyanin as well as that of mature apo-plastocyanin during the folding of these copper proteins.  相似文献   

8.
Capistruin, a ribosomally synthesized, post-translationally modified peptide produced by Burkholderia thailandensis E264, efficiently inhibits growth of Burkholderia and closely related Pseudomonas strains. The functional target of capistruin is not known. Capistruin is a threaded-lasso peptide (lariat peptide) consisting of an N-terminal ring of nine amino acids and a C-terminal tail of 10 amino acids threaded through the ring. The structure of capistruin is similar to that of microcin J25 (MccJ25), a threaded-lasso antibacterial peptide that is produced by some strains of Escherichia coli and targets DNA-dependent RNA polymerase (RNAP). Here, we show that capistruin, like MccJ25, inhibits wild type E. coli RNAP but not mutant, MccJ25-resistant, E. coli RNAP. We show further that an E. coli strain resistant to MccJ25, as a result of a mutation in an RNAP subunit gene, exhibits resistance to capistruin. The results indicate that the structural similarity of capistruin and MccJ25 reflects functional similarity and suggest that the functional target of capistruin, and possibly other threaded-lasso peptides, is bacterial RNAP.  相似文献   

9.
The unfolding-refolding of proteins is a cooperative process and, as judged by equilibrium properties, occurs in one step involving the native,N, and the unfoldedU, conformational states. Kinetic studies have shown that the denatured protein exists as a mixture of slow-(U)Sand fast-(U)Frefolding forms produced by proline peptidecis-trans isomerization. Proline residues inU Fare in the same configuration as in the native protein while they are in non-native configuration inU S. For protein folding to occur quicklyU Smust be converted intoU F. The fact that the equilibrium and kinetic properties of are the same as those found for prolinecis-trans isomerization taken together with the absence of slow phase in the kinetics of refolding of a protein devoid of proline, support this view. However, the absence of a linear correlation between half-time of reactivation of denatured enzymes and their proline-contents, as well as the dissimilarities in the kinetic properties of in unfolding and refolding experiments are not consistent with the model. Conformational energy calculation and experimental results on refolding of proteins suggest that some proline residues are non-essential. They will not block protein folding even in wrong isomeric form. The native-like folded structure with incorrect proline isomers will serve as intermediate state(s) in which these prolines will more readily isomerize to the correct isomeric form. The picture becomes more complex when one considers the consequence ofcis-trans isomerism of non-proline residues on protein folding.  相似文献   

10.
Trigger factor and DnaK protect nascent protein chains from misfolding and aggregation in the E. coli cytosol, but how these chaperones affect the mechanism of de novo protein folding is not yet understood. Upon expression under chaperone-depleted conditions, multidomain proteins such as bacterial beta-galactosidase (beta-gal) and eukaryotic luciferase fold by a rapid but inefficient default pathway, tightly coupled to translation. Trigger factor and DnaK improve the folding yield of these proteins but markedly delay the folding process both in vivo and in vitro. This effect requires the dynamic recruitment of additional trigger factor molecules to translating ribosomes. While beta-galactosidase uses this chaperone mechanism effectively, luciferase folding in E. coli remains inefficient. The efficient cotranslational domain folding of luciferase observed in the eukaryotic system is not compatible with the bacterial chaperone system. These findings suggest important differences in the coupling of translation and folding between bacterial and eukaryotic cells.  相似文献   

11.
Recent reports have indicated that insect antimicrobial peptides kill bacteria by inhibiting the molecular chaperone DnaK. It was proposed that the antimicrobial peptide, all-L-pyrrhocoricin (L-PYR), binds to two sites on DnaK, the conventional substrate-binding site and the multi-helical C-terminal lid, and that inhibition of DnaK comes about from the lid mode of binding. In this report, we show using two different assays that L-PYR binds to and stimulates the ATPase activity of both wild-type and a lidless variant of DnaK. Our study shows that L-PYR interacts with DnaK much like the all-L NR (NRLLLTG) peptide, which is known to bind in the conventional substrate-binding site of DnaK. L-PYR antimicrobial activity is thus a consequence of the competitive inhibition of bacterial DnaK.  相似文献   

12.
An 84-residue bactericidal peptide, PSK, was purified from a Chrysomya megacephala fly larvae preparation. Its amino acid sequence is similar to that of a previously reported larval peptide of the Drosophila genus (SK84) noticed for its anticancer and antimicrobial properties. The PSK sequence is also homologous to mitochondrial ATPase inhibitors from insects to humans (35–65% sequence identity), indicating an intracellular protein target and possible mechanism for PSK. It contains a cluster of six glycine residues, and has several two- and three-residue repeats. It is active against both Gram-positive and Gram-negative bacteria via a mechanism apparently involving cell membrane disintegration and inhibition of ATP hydrolysis. In addition, PSK induces an inward cationic current in pancreatic β cells. Together, the findings identify a bioactive peptide of the ATPase inhibitor family with specific effects on both prokaryotic and mammalian cells.  相似文献   

13.
Slepenkov SV  Witt SN 《FEBS letters》2003,539(1-3):100-104
The molecular chaperone DnaK is composed of two functional domains, the ATPase domain and the substrate-binding domain. In this report, we show that peptide binding to DnaK can be sensed in real time through a labeled nucleotide bound in the ATPase domain. Specifically, when N8-(4-N'-methylanthraniloylaminobutyl)-8-aminoadenosine 5'-triphosphate (MABA)-ATP.DnaK complexes are rapidly mixed with excess peptide, MABA fluorescence rapidly increases and the rate of increase is proportional to peptide concentration. Analysis of the formation traces yield on and off rate constants that are exactly equal to the rate constants obtained from experiments that directly probe peptide binding to DnaK. These results are the first to show that peptide binding to ATP.DnaK triggers a concerted conformational change in the ATPase domain.  相似文献   

14.
15.
The assembly of interactive protein subunits into extracellular structures, such as pilus fibers in the Enterobacteriaceae, is dependent on the activity of PapD-like periplasmic chaperones. The ability of PapD to undergo a beta zippering interaction with the hydrophobic C-terminus of pilus subunits facilitates their folding and release from the cytoplasmic membrane into the periplasm. In the absence of the chaperone, subunits remained tethered to the membrane and were driven off-pathway via non-productive interactions. These off-pathway reactions were detrimental to cell growth; wild-type growth was restored by co-expression of PapD. Subunit misfolding in the absence of PapD was sensed by two parallel pathways: the Cpx two-component signaling system and the sigma E modulatory pathway.  相似文献   

16.
In this study, the DNA fragment encoding the N-terminus of scallop H2A was expressed in the marine-derived yeast Yarrowia lipolytica, which has a high protein content. After cultivation in PBB medium for 120 h, the transformant producing the highest amount of antibacterial peptide, 29a, was obtained. The supernatant from cultures of 29a had killing activity against Vibrio harveyi, V. anguillarum, and V. parahaemolyticus. After purification, the molecular mass of the recombinant antibacterial peptide was 4.5 kDa, and the purified recombinant antibacterial peptide was able to cause leakage of intracellular components from both whole and protoplast cells of V. parahaemolyticus. The results indicated that when the yeast transformant 29a was grown in YPD medium, PBB medium or hydrolysate of soybean meal containing ammonium sulfate, its cells still had a high protein content. Because this recombinant marine yeast both had a high protein content and produced the antibacterial peptide, it has high value-added applications.  相似文献   

17.
When organisms ranging from microbes to man are subjected to certain environmental stresses a characteristic 'heat shock' response is observed. In Escherichia coli this response is characterized by the induction of several proteins, three of which are the 70 kilodalton product of the dnaK gene, the 60 kilodalton product of the groEL (mopA) gene and the 15 kilodalton product of the groES (mopB) gene. In this review, utilizing enteric bacteria as model organisms, we focus on the role of these proteins within the context provided by well-established functions of other heat shock products. These facts serve as a starting point from which to speculate upon the in vivo role of these proteins during steady-state growth.  相似文献   

18.
The linker peptide of the ArsA ATPase   总被引:3,自引:0,他引:3  
Plasmid R773 encodes an As(III)/Sb(III)-translocating ATPase that confers resistance to those metalloids in Escherichia coli. The catalytic subunit of the pump, the ArsA ATPase, consists of homologous N- and C-terminal nucleotide-binding domains connected by a 25-residue linker. The role of this linker sequence was examined by deletion of five, 10, 15 or 23 residues or insertion of five glycine residues. Cells expressing arsA with the 5-residue insertion had wild-type arsenite resistance. Resistance of cells expressing modified arsA genes with deletions was dependent on the linker length. Cells with five or 10 deleted residues exhibited slightly reduced resistance. Deletion of 15 or 23 residues resulted in further decreases in resistance. Each altered ArsA was purified. The enzyme with the 5-residue insertion had the same affinity for ATP and Sb(III) as the wild-type enzyme. Enzymes with 5-, 10-, 15- or 23-residue deletions exhibited decreased affinity for both Sb(III) and ATP. The enzyme with a 23-residue deletion exhibited only basal ATPase activity and was unable to be allosterically activated by Sb(III). These results suggest that the linker has evolved to a length optimal for bringing the two halves of the protein into proper contact with each other, facilitating catalysis.  相似文献   

19.
Cell survival under severe thermal stress requires the activity of a bi-chaperone system, consisting of the ring-forming AAA+ chaperone ClpB (Hsp104) and the DnaK (Hsp70) chaperone system, which acts to solubilize and reactivate aggregated proteins. Recent studies have provided novel insight into the mechanism of protein disaggregation, demonstrating that ClpB/Hsp104 extracts unfolded polypeptides from an aggregate by threading them through its central pore. This translocation activity is necessary but not sufficient for aggregate solubilization. In addition, the middle (M) domain of ClpB and the DnaK system have essential roles, possibly by providing an unfolding force, which facilitates the extraction of misfolded proteins from aggregates.  相似文献   

20.
分子内分子伴侣--Pro肽在蛋白质折叠中的作用   总被引:7,自引:0,他引:7  
在体内,许多蛋白质,如很多胞外蛋白酶、某些多肽激素等都以含前导肽的前体形式合成,前导肽在蛋白质折叠中具有分子伴侣的功能。为了与一般意义上的分子伴侣相区别,人们将对蛋白质折叠有帮助的前导肽称为分子内分子伴侣,分子内分子伴侣帮助蛋白质在折叠过程中克服高的能量障碍,某些蛋白质的分子内分子伴侣甚至促进其在氧化性折叠中二硫键的正确配对。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号