首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have determined the DNA sequence of the H-2Kk gene of the mouse major histocompatibility complex (MHC). Comparison on the nucleotide and protein level of three H-2K alleles (Kk, Kb and Kd) reveals a high degree of homology, in particular between the Kb and Kk alleles. Differences between the two latter antigens are almost exclusively confined to the alpha 1 and alpha 2 domains. At nine positions in the extracellular part of the molecules we have found allele-specific amino acids. Interestingly, 78% of these residues are either polar or carry hydroxyl-groups. This makes it likely that they are exposed on the surface of the molecules and might then be part of antigenic determinants. We have also identified potentially allele-specific nucleotide sequences of the K genes which might be used as specific DNA probes.  相似文献   

3.
The mechanism that generates spontaneous mutants of the Kb histocompatibility gene was analyzed. Nucleotide sequence analysis of four mutant genes (Kbm3, Kbm4, Kbm10, and Kbm11) revealed that each mutant K gene contains clustered, multiple nucleotide substitutions. Hybridization analyses of parental B6 genomic DNA and cloned class I genes with mutant-specific oligonucleotide probes, followed by sequence analyses, have identified major histocompatibility complex class I genes in the K, D, and Tla regions (K1, Db, and T5, respectively) that contain the exact sequences as substituted into mutant Kb genes. These data provide evidence for the hypothesis that the mutant Kb genes are generated by a microrecombination (gene conversion) mechanism that results in the transfer of small DNA segments from class I genes of all four regions of the major histocompatibility complex (K, D, Qa, and Tla) to Kb. Many of the nucleotides substituted into the mutant Kb genes were identical to those found in other naturally occurring K alleles such as Kd. Thus, we propose that the accumulation of microrecombination products within the K genes of a mouse population is responsible for the high sequence diversity among H-2 alleles.  相似文献   

4.
Genetic interaction as a mechanism for the generation of mutations is suggested by recurrent, multiple nucleotide substitutions that are identical to nucleotide sequences elsewhere in the genome. We have sequenced the mutant K gene from the bm6 mouse, which is one of a series of eight closely related, yet independently occurring mutants known collectively as the "bg series." Two changes from the Kb gene are found, positioned 15 nucleotides apart: an A-to-T change and a T-to-C change in the codons corresponding to amino acids 116 and 121, resulting in Tyr-to-Phe and Cys-to-Arg substitutions, respectively. Hybridization analysis with an oligonucleotide specific for the altered Kbm6 sequence identifies one donor gene, Q4, located in the Qa region of the H-2 complex. The two altered nucleotides that differentiate Kbm6 and Kb are present in Q4 in a region where Kb and Q4 are otherwise identical for 95 nucleotides, delineating the maximum genetic transfer between the two genes. Because the Kbm6 mutation arose in an homozygous mouse these data indicate that the Q4 gene contains the only donor sequence and demonstrates that Q-region gene sequences can interact with the Kb gene to generate variant K molecules.  相似文献   

5.
We report the structural organization of an 80 Kb segment of rat DNA, which encodes for about 40% of Thyroglobulin mRNA at the 3' end. The codogenic information included in this segment is splitted in 17 exons of homogeneous size (about 200 bp). The seven exons at the extreme 3' end have been precisely defined by DNA sequence analysis. No clear sequence homology is found among the exons, even though their coding capacity is quite similar, from 55 to 63 aminoacids residues. We located 2 hormonogenic (T4 forming) sites on the extreme 3' end of the gene in different exons. The DNA sequence coding for these functional sites shows a 70% homology in a 50 nucleotides segment. In addition we found a remnant of this sequence in other exons of the gene. Two large introns have been found on the 3' end of the gene: one is 17 Kb and the other one is more than 30 Kb long. On the basis of these findings and of preliminary studies on the remaining 5' end of the gene, we can predict that the minimum length of the rat TGB gene will be 150 Kb, which makes this gene the largest so far identified eukaryotic gene. We propose in addition that the 3' end exons arose by duplication of a common ancestor.  相似文献   

6.
7.
Human N-ras: cDNA cloning and gene structure.   总被引:31,自引:9,他引:22       下载免费PDF全文
A Hall  R Brown 《Nucleic acids research》1985,13(14):5255-5268
  相似文献   

8.
9.
The structure of the 3' one-third of the dystrophin gene has not previously been established. We have used vectorette PCR on a yeast artificial chromosome containing part of the human dystrophin gene to determine that there are 20 exons in this region and to characterize adjacent intron sequences of each one. Combined with previous information on the remainder of the gene, this study shows that the coding sequence is distributed between 79 exons. We have used PCR between exons to measure the distances that separate the more closely clustered exons. Vectorette PCR products were used as probes on Southern blots to assign all the 3' exons to genomic HindIII fragments that are commonly detected in the analysis of dystrophin gene deletions. The results will be useful for determining the effect of genomic deletions on the translational reading frame, for setting up genomic PCR assays to confirm point mutations, for analyzing splice site mutations, and for investigating potential cis-acting elements involved in tissue-specific alternative splicing. Vectorette PCR using primers derived from cDNA sequence represents an efficient and widely applicable method for establishing gene structure and obtaining intron sequence flanking exons, starting from a genomic clone and a cDNA sequence.  相似文献   

10.
The complete nucleotide sequence of an active class I HLA gene, HLA-A3, has been determined. This sequence, together with that obtained for the HLA-CW3 gene, represents the first complete nucleotide sequence to be determined for functional class I HLA genes. The gene organisation of HLA-A3 closely resembles that of class I H-2 genes in mouse: it shows a signal exon, three exons encoding the three extracellular domains, one exon encoding the transmembrane region and three exons encoding the cytoplasmic domain. The complete nucleotide sequences of the active HLA genes, HLA-A3 and HLA-CW3, now permit a meaningful comparison of the nucleotide sequences of class I HLA genes by alignment with the sequence established for a HLA-B7-specific cDNA clone and the sequences of two HLA class I pseudogenes HLA 12.4 and LN- 11A . The comparisons show that there is a non-random pattern of nucleotide differences in both exonic and intronic regions featuring segmental homologies over short regions, which is indicative of a gene conversion mechanism. In addition, analysis of the frequency of nucleotide substitution at the three base positions within the codons of the functional genes HLA-A3, HLA-B7 and HLA-CW3 shows that the pattern of nucleotide substitution in the exon coding for the 3rd extracellular domain is consistent with strong selection pressure to conserve the sequence. The distribution of nucleotide variation in the other exons specifying the mature protein is nearly random with respect to the frequencies of substitution at the three nucleotide positions of their codons. The evolutionary implications of these findings are discussed.  相似文献   

11.
12.
13.
We have determined the DNA sequence of the murine I-E beta b immune response gene of the major histocompatibility complex (MHC) of the C57BL/10 mouse and compared it with the sequence of allelic I-E and non-allelic I-A genes from the d and k haplotypes. The polymorphic exon sequences which encode the first extracellular globular domain of the E beta domain show approximately 8% nucleotide substitutions between the E beta b and E beta d alleles compared with only approximately 2% substitutions for the intron sequences. This suggests that an active mechanism such as micro gene conversion events drive the accumulation of these mutations in the polymorphic exons. The fact that several of the nucleotide changes are clustered supports this hypothesis. The E beta b and E beta k genes show approximately 2-fold fewer nucleotide substitutions than the E beta d/E beta b pair. The A beta bm12, a mutant I-A beta b gene from the C57BL/6 mouse, has been shown to result from three nucleotide changes clustered in a short region of the beta 1 domain, which suggests that a micro gene conversion event caused this mutation. We show here that the E beta b gene is identical to the non-allelic A beta bm12 DNA sequence in the mutated region and suggest, therefore, that the E beta b gene was the donor sequence for this intergenic transfer of genetic information. Diversity in class II MHC genes appears therefore to be generated, at least in part, by the same mechanism proposed for class I genes: intergenic transfer of short DNA regions between non-allelic genes.  相似文献   

14.
A Kimura  A Isra?l  O Le Bail  P Kourilsky 《Cell》1986,44(2):261-272
Sequencing and deletion analyses of the H-2Kb promoter have suggested that several regions may be important for expression and regulation of this gene. Two of these regions are conserved inside the promoter of several genes coding for classical transplantation antigens, but not in the promoter of class I genes located in the Qa region. They display enhancer-like activity in cells that express H-2 genes, but show some tissue specificity in that they function very poorly in undifferentiated embryonal carcinoma cells in which H-2 genes are not expressed. They also have been shown not to be the target of the adenovirus-12 induced repression of class I gene expression recently demonstrated by Schrier et al. The promoter of the beta 2-microglobulin gene also contains a sequence with enhancer-like activity, but shares no homology with the H-2Kb promoter region.  相似文献   

15.
The gene for the HLA-A2 antigen has been cloned from the human lymphoblastoid cell line 721. Comparison of this sequence with the published sequence for HLA-A3 permits the examination of two alleles at the extremely polymorphic HLA-A locus. A high degree of sequence conservation was seen in both coding and noncoding DNA, 97.2% and 94.5%, respectively. Interestingly, the 3' untranslated region was the most conserved, with 99.5% homology. The polymorphism of the HLA-A antigens results from a high proportion of amino acid substitutions relative to the total nucleotide changes in exons 2 and 3. Unlike the clustered differences seen in this region on comparison of two H-2K alleles of mouse, nucleotide substitutions between the HLA-A2 and A3 alleles are evenly distributed. Substitutions at silent sites and within introns were used to calculate an intra-allelic divergence time of at least 10 to 15 million years for these two HLA-A alleles.  相似文献   

16.
M. Kuhner  S. Watts  W. Klitz  G. Thomson    R. S. Goodenow 《Genetics》1990,126(4):1115-1126
In order to better understand the role of gene conversion in the evolution of the class I gene family of the major histocompatibility complex (MHC), we have used a computer algorithm to detect clustered sequence similarities among 24 class I DNA sequences from the H-2, Qa, and Tla regions of the murine MHC. Thirty-four statistically significant clusters were detected; individual analysis of the clusters suggested at least 25 past gene conversion or recombination events. These clusters are comparable in size to the conversions observed in the spontaneously occurring H-2K(bm) and H-2K(km2) mutations, and are distributed throughout all exons of the class I gene. Thus, gene conversion does not appear to be restricted to the regions of the class I gene encoding their antigen-presentation function. Moreover, both the highly polymorphic H-2 loci and the relatively monomorphic Qa and Tla loci appear to have participated as donors and recipients in conversion events. If gene conversion is not limited to the highly polymorphic loci of the MHC, then another factor, presumably natural selection, must be responsible for maintaining the observed differences in level of variation.  相似文献   

17.
We present the complete nucleotide sequence and the deduced amino acid sequence of the H-2Dp class I gene. This gene, which was cloned from a B10.P genomic DNA library, encodes and intact, functional H-2Dp molecule. Comparative analysis of the Dp sequence with other class I sequences reveals both similarities and differences. This analysis also shows that these genes exhibit D region-specific, locus-specific, as well as allele-specific sequences. The H-2Dp nucleotide sequence is greater than 90% homologous to the H-2Ld and H-2Db genes and only approximately 85% homologous to the H-2Dd gene. The K region and Qa region genes are less homologous. The 3' noncoding sequences appear to be region-specific. All of the previously described D region genes, Db, Ld, and Dd, possess the B2-SINE Alu-like repetitive sequence, as does Dp. Thus, this B2 repeat is a region-specific marker present in all D region genes studied so far. The additional polyadenylation site found in the H-2Dp gene starting at nucleotide 4671, which is homologous to non-D region sequences, as well as unique protein Dp coding sequences, make this gene an interesting model for studying the evolution of polymorphism and structure/function relationships in the class I gene family.  相似文献   

18.
19.
20.
Oligonucleotide-directed, site-specific mutagenesis has been employed to elucidate the role of individual amino acids on the expression and function of a MHC class I antigen. Two oligonucleotides were synthesized to introduce single amino acid substitutions in the murine H-2Ld gene. The highly conserved glycosylation site at amino acid position 86 was changed from asparagine to lysine to remove the carbohydrate moiety from the first external domain of the H-2 molecule, and the phenylalanine at position 116 was changed to tyrosine, replacing the Ld residue with the Kb type amino acid analogous to Kb mutants: bm5 and bm16 mutants derived from the Kb antigen have the Ld-type residue at this position. The mutant genes were constructed by annealing the mutagenic oligomers to the single stranded H-2Ld gene, followed by chain elongation reaction. The expected mutations were confirmed by DNA sequence determination. The mutant genes were introduced into mouse L cells by DNA-mediated gene transfer. Both mutant genes expressed the antigens on the cell surface, as detected by antibody binding; these antigens were reactive with the cytotoxic T cells specific for the H-2Ld antigen. Detailed examination with 16 monoclonal anti-H-2Ld antibodies revealed that the binding of some antibodies was significantly reduced in the glycosylation mutant, implying a certain contribution of the carbohydrates to the antigenic activity of some determinants. No detectable changes have been observed in the mutant of the substitution at position 116 by the parameters we tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号