首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
Intermediates formed during the anaerobic decomposition of propylene glycol under methanogenic conditions were studied using a serum bottle technique. The pathway is similar to the anaerobic decomposition of ethylene glycol as previously reported. For both compounds, the decomposition is believed to proceed via an initial disproportionation of the glycol to form equal molar amounts of the volatile fatty acid and normal alcohol of the same chain length. In the case of ethylene glycol, disproportionation results in the formation of acetate and ethanol, while disproportionation of propylene glycol produces propionate and n-propanol. Following disproportionation, the alcohols produced from glycol fermentation are oxidized to their corresponding volatile fatty acid with the reduction of protons to form hydrogen. Ethanol and propionate oxidation to acetate proceeds via a well-established syntrophic pathway that is favorable only under low hydrogen partial pressures. Subsequent degradation of acetate proceeds via acetoclastic methanogenesis with the production of carbon dioxide and methane. Despite the production of hydrogen in the initial steps of glycol degradation, both compounds are completely degradable under the methanogenic conditions tested in this study.  相似文献   

2.
Aims:  To understand the interactions between anaerobic biofilm development and process performances during the start-up period of methanogenic biofilm reactor.
Methods and Results:  Two methanogenic inverse turbulent bed reactors have been started and monitored for 81 days. Biofilm development (adhesion, growth, population dynamic) and characteristics (biodiversity, structure) were investigated using molecular tools (PCR–SSCP, FISH-CSLM). Identification of the dominant populations, in relation to process performances and to the present knowledge of their metabolic activities, was used to propose a global scheme of the degradation routes involved. The inoculum, which determines the microbial species present in the biofilm influences bioreactor performances during the start-up period. FISH observations revealed a homogeneous distribution of the Archaea and bacterial populations inside the biofilm.
Conclusion:  This study points out the link between biodiversity, functional stability and methanogenic process performances during start-up of anaerobic biofilm reactor. It shows that inoculum and substrate composition greatly influence biodiversity, physiology and structure of the biofilm.
Significance and Impact of the Study:  The combination of molecular techniques associated to a biochemical engineering approach is useful to get relevant information on the microbiology of a methanogenic growing biofilm, in relation with the start-up of the process.  相似文献   

3.
The biological decolorization of the textile azo dye Reactive Red 2 was investigated using a mixed, mesophilic methanogenic culture, which was developed with mixed liquor obtained from a mesophilic, municipal anaerobic digester and enriched by feeding a mixture of dextrin/peptone as well as media containing salts, trace metals and vitamins. Batch decolorization assays were conducted with the unacclimated methanogenic culture and dye decolorization kinetics were determined as a function of initial dye, biomass, and carbon source concentrations. Dye decolorization was inhibited at initial dye concentrations higher than 100 mg l-1 and decolorization kinetics were described based on the Haldane model. The effect of long-term culture exposure to the reactive dye on decolorization kinetics, culture acclimation, as well as possible dye mineralization was tested using two reactors fed weekly for two years with an initial dye concentration of 300 mg l-1 and a mixture of dextrin/peptone. The maximum dye decolorization rate after a 2-year acclimation at an initial dye concentration of 300 mg l-1 was more than 10-fold higher as compared to that obtained with the unacclimated culture. Aniline and the o-aminohydroxynaphthalene derivative resulting from the reductive azo bond cleavage of the dye were detected, but further transformation(s) leading to dye mineralization were not observed. Reactive Red 2 did not serve as the carbon and energy source for the mixed culture, and dye decolorization was sustained by the continuous addition of dextrin and peptone. Thus, biological decolorization of reactive azo dyes is feasible under conditions of low redox potential created and maintained in overall methanogenic systems, but supply of a biodegradable carbon source is necessary.  相似文献   

4.
The denitrification process was incorporated into the IWA Anaerobic Digestion Model No. 1 (ADM1) in order to account for the effect of denitrification on the methanogenic fermentation process. The model was calibrated and optimized using previously published experimental data and kinetic parameter values obtained with a mixed, mesophilic (35°C) methanogenic culture. Model simulations were used to predict the effect of nitrate reduction on the methanogenic fermentation process in batch, semi‐continuous, and continuous flow reactors experiencing operational changes and/or system disturbances. The extended model clearly revealed the importance of substrate competition between denitrifiers and non‐denitrifiers as well as the impact of N‐oxide inhibition on process interactions between fermentation, methanogenesis, and denitrification. Biotechnol. Bioeng. 2010;105: 98–108. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
This work reviews the existing methodologies for assessing microbial activity and inhibition under anaerobic conditions. The anaerobic digestion process consists of several metabolic steps–the Anaerobic Digestion Model No. 1 (ADM1) has attempted to describe these steps in the form of a mathematical model with the intention of providing a reference base for all further efforts in the modelling of anaerobic processes. The existence of a reference point for modelling has highlighted the fact that there is a lack of coherence between the many different methodologies for experimentally assessing anaerobic activity and inhibition.A working group of the International Water Association was recently founded to harmonise the existing methodologies with the ultimate intention of developing a unified reference procedure– a primary objective of the group will be the establishment of a standard terminology in the field of anaerobic digestion, activity and inhibition assessment. Secondly, it will compare the existing methodologies and develop standard protocols for assessing the kinetic parameters (e.g. maximum uptake rate, half-saturation constant) of anaerobic processes that may be entered directly into ADM1 and its successors.This paper revises and enlarges a contribution presented by the authors at the workshop Harmonisation of anaerobic biodegradation, activity and inhibition assays (Ligthart & Nieman 2002, Proc. workshop held in Orta (Italy) June 7–8, 2002) and aims to promote a clear understanding of the currently established methodology.Numerous methods have been developed over the past 30 years, since Van den Berg et al. (1974, Biotechnol Bioeng 16(11)– 1459–1469) measured methanogenic activity, by using a manometric device equipped with a photoelectric sensor to quantify the gas production. Methanogenesis is often the rate limiting step of the entire process and since the quantification of gas flowrate is relatively easy to perform, most of the methods reported in literature monitor the production of biogas. These methods can be termed volumetric or manometric methods, as the volume of biogas produced or the pressure increase due to gas production inside a close vessel are assessed, respectively. However, this same concept can be employed to assess activity or inhibition of individual metabolic steps preceding the methanogenic one, providing that they are rate limiting for the whole process. The reliability of activity assessment through gas measurement has been proven to be strongly dependent on the equilibrium between liquid and gas phase in a closed vessel. This can be influenced by many factors, e.g. the amount and characteristics of the test substrate; the concentration of the biomass; the gas-to-liquid ratio– all these aspects will need to be addressed in the standard procedure. Other direct or indirect methods, targeting physico-chemical or microbiological parameter exist and have been investigated by many authors. Besides the interest for research purposes, the definition of reference methods to assess activity and inhibition can be of great interest for engineers, both phy. Specific reference procedures might be needed for particular applications, e.g. the (kinetic) study of rate limiting microbial steps and might require ad-hoc methodologies to be devised. A microbiological technique such as FISH, coupled with microsensors have been reported to have a great potential in the near future.Passed away on April 7th 2003.  相似文献   

6.
7.
The effectiveness of operating an industrial UASB reactor, treating wastewater from the beer industry, with flows containing heavy metals was evaluated. A pilot-scale UASB reactor, already used to simulate the industrial reactor, was unsuccessfully employed. An easy start-up was obtained arranging it as an EGSB reactor. Considerations about this modification are reported. The effects of Cu(II), Ni(II) and Cr(III) ions on the anaerobic activity were analyzed by measurements of methane production rate and COD removal. The employed biomass was the sludge of the industrial UASB reactor, while a solution of ethanol and sodium acetate with COD of 3000 mg/L and a heavy metal concentration of 50 mg/L were continuously fed. Experimental results proved higher biomass sensitivity for copper and much slighter for nickel and chromium. Moreover, copper inhibition has been demonstrated to be less significant if a metal-free feed was provided to the system before copper addition.  相似文献   

8.
Batch anaerobic codigestion of municipal household solid waste (MHSW) and digested manure in mesophilic conditions was carried out. The different waste-to-biomass ratios and intensity of mixing were studied theoretically and experimentally. The experiments showed that when organic loading was high, intensive mixing resulted in acidification and failure of the process, while low mixing intensity was crucial for successful digestion. However, when loading was low, mixing intensity had no significant effect on the process. We hypothesized that mixing was preventing establishment of methanogenic zones in the reactor space. The methanogenic zones are important to withstand inhibition due to development of acids formed during acidogenesis. The 2D distributed models of symmetrical cylinder reactor are presented based on the hypothesis of the necessity of a minimum size of methanogenic zones that can propagate and establish a good methanogenic environment. The model showed that at high organic loading rate spatial separation of the initial methanogenic centers from active acidogenic areas is the key factor for efficient conversion of solids to methane. The initial level of methanogenic biomass in the initiation centers is a critical factor for the survival of these centers. At low mixing, most of the initiation methanogenic centers survive and expand over the reactor volume. However, at vigorous mixing the initial methanogenic centers are reduced in size, averaged over the reactor volume, and finally dissipate. Using fluorescence in situ hybridization, large irregular cocci of microorganisms were observed in the case with minimal mixing, while in the case with high stirring mainly dead cells were found.  相似文献   

9.
10.
The use of carbon-based conductive materials has been shown to lead to an increase in biogas and methane yields during anaerobic digestion (AD). The effect of these additives on AD using synthetic substrates has been extensively studied, yet their significance for wastewater sludge digestion has not been adequately investigated. Therefore, the aim of this research was to optimize the concentration of petroleum coke (PC) that is a waste by-product of oil refineries, for the anaerobic digestion of wastewater sludge and investigation of phosphate removal in the AD process in the mesophilic temperature range. According to the results of the experiments, supplementing reactors with PC could significantly improve biogas and methane production. Supplementation of reactors with 1.5 g/L PC led to 23.40 ± 0.26% and 42.55 ± 3.97% increase in biogas production and methane generation, respectively. Moreover, the average volatile solids (VS), phosphate, and chemical oxygen demand (COD) removals were 43.43 ± 0.73, 46.74 ± 0.77%, and 60.40 ± 0.38%, respectively.  相似文献   

11.
采用产氢产乙酸/同型产乙酸两相耦合工艺对剩余污泥进行了半连续式厌氧发酵,主要研究了pH值和产甲烷抑制剂2-bromoethanesulphonate(BES)对耦合系统定向产乙酸的影响.结果表明:碱性pH(pH=10.0)和添加BES都能促进A相乙酸的积累,提高乙酸的产率,同时碱性pH比添加BES更有利于污泥的水解.当...  相似文献   

12.
13.
Abstract In situ concentrations of hydrogen and other metabolites involved in H2-consuming and H2-producing reactions were measured in anoxic methanogenic lake sediments, sewage sludge and fetid liquid of cottonwood. The data were used to calculate the Gibbs free energies of the metabolic reactions under the conditions prevailing in situ. The thermodynamics of most of the reactions studied were exergonic with Gibbs free energies being more negative for H2-dependent sulfate reduction methanogenesis acetogenesis and for H2-producing lactate fermentation ethanol fermentation. Butyrate and propionate fermentation, on the other hand, were endergonic under in situ conditions. This observation is interpreted by suggesting that butyrate and propionate is degraded within microbial clusters which shield the fermentating bacteria from the outside H2 (and acetate) pool.  相似文献   

14.
An anaerobic, Fe(III)-reducing enrichment culture, which originatedfrom a sediment sample collected at a landfill in Nanji-do, Seoul, Korea, was capable ofdegrading cis-1,2-dichloroethylene (cis-DCE) and vinylchloride (VC). Although it exhibited the ability under Fe(III)-reducing conditions, the chlorinated ethenes degradationwas not linked to the Fe(III) reduction. During cis-DCE degradation, no VC, ethene, or ethanewas detected through the experimental period. Also, this culture did not accumulate ethene andethane during the VC degradation. It was unlikely that cis-DCE was reductivelydechlorinated to VC and then the VC formed was dechlorinated fast enough. Because the kinetic datashowed that the rate of cis-DCE degradation was 3.5 times higher than that of VC. Whereasglucose supported the culture growth and the degradation, formate, acetate, butyrate, propionate,lactate, pyruvate, and yeast extract did not. The results appeared consistent with the involvement ofoxidative degradation mechanism rather than reductive dechlorination mechanism. The traits of the culturedescribed here are unusual in the anaerobic degradation of chlorinated ethenes and may be usefulfor searching an effective organism and mechanism regarding anaerobic cis-DCE and VC degradation.  相似文献   

15.
Three of the four main stages of anaerobic digestion: acidogenesis, acetogenesis, and methanogenesis are described by a system of differential equations modelling the interaction of microbial populations in a chemostat. The microbes consume and/or produce simple substrates, alcohols and fatty acids, acetic acid, and hydrogen. Acetogenic bacteria and hydrogenotrophic methanogens interact through syntrophy. The model also includes the inhibition of acetoclastic and hydrogenotrophic methanogens due to sensitivity to varying pH-levels. To examine the effects of these interactions and inhibitions, we first study an inhibition-free model and obtain results for global stability using differential inequalities together with conservation laws. For the model with inhibition, we derive conditions for existence, local stability, and bistability of equilibria and present a global stability result. A case study illustrates the effects of inhibition on the regions of stability. Inhibition introduces regions of bistability and stabilizes some equilibria.  相似文献   

16.
Summary In this report we review the history of growth theories. We show how classical growth models may be derived as special cases of a generic growth rate equation. We show how growth models may be modified to represent survival data. We use linear combinations of growth and survival models to represent complex growth/survival curves and give practical examples utilizing nonlinear regression analysis. We show that traditional methods of estimating D values are inappropriate for complex, multiphasic growth/survival data. We show how such data may be modeled mathematically and illustrate methods for estimating true D values from such data.  相似文献   

17.
Soga K  Wakabayashi K  Kamisaka S  Hoson T 《Planta》2004,218(6):1054-1061
Hypergravity caused by centrifugation inhibits elongation growth of shoots by decreasing the cell wall extensibility via suppression of xyloglucan breakdown as well as by the thickening of cell walls. The mechanism of graviperception in hypergravity-induced growth inhibition was investigated in Arabidopsis [A. thaliana (L.) Heynh.] hypocotyls and azuki bean (Vigna angularis Ohwi et Ohashi) epicotyls. Hypergravity caused growth suppression in both sgr1-1 and pgm1, which are Arabidopsis mutants deprived of gravitropism, as in wild-type plants, suggesting that the graviperception in hypergravity-induced growth inhibition of shoots is independent of that in gravitropism. Hypergravity had no effects on growth of azuki bean epicotyls or Arabidopsis hypocotyls in the presence of lanthanum or gadolinium, which are blockers of mechanoreceptors. Moreover, lanthanum or gadolinium at the same concentration had no influence on gravitropism of azuki bean epicotyls and Arabidopsis hypocotyls. Hypergravity had no effects on cell wall extensibility and affected neither xyloglucan metabolism nor the thickness of cell walls in the lanthanum- or gadolinium-treated azuki bean epicotyls. Lanthanum or gadolinium inhibited the hypergravity-induced increase in the pH of the apoplastic fluid in the epicotyls, which is involved in the processes of the suppression of xyloglucan breakdown due to hypergravity. These findings suggest that plants perceive the hypergravity stimuli by mechanoreceptors in the plasma membrane, and utilize the perceived signal to regulate the growth rate of their shoots.Abbreviations HC-I Hemicellulose-I - HC-II Hemicellulose-II  相似文献   

18.
Our studies of the role of phospholipase C in inhibitory synaptic action upon visceral smooth muscles demonstrated that, under conditions of carbachol (CCh)-induced pre-activation of cholinoreceptors, ATP-or noradrenaline (NA)-evoked relaxation of these muscles is mediated by the phospholipase C-independent pathway, while the phospholipase C-dependent pathway does not manifest itself as a mechanism that determines the inhibitory effect of the above transmitters. Under conditions of pre-activation of muscarinic cholinoreceptors, ATP-and NA-induced relaxation is continued due to activation of inositol trisphosphate (InsP3)-sensitive receptors despite the fact that the pathway of inhibition is phospholipase C-independent. This is confirmed by complete depression of the inhibitory effects of ATP and NA against the background of CCh-induced contraction after pre-incubation of the studied preparations together with 100 μM 2-APB, a blocker of InsP3 receptors. Selective blockings of either M2 or M3 cholinoreceptors are accompanied by a complete loss of the ability of the above blocker of InsP3 receptors (2-APB) to suppress ATP-and NA-induced contraction of smooth muscles in the state of CCh-induced contraction. It can be hypothesized that, under conditions of selective pre-activation of M2 or M3 cholinoreceptors, the mechanisms of intracellular signalling mediating the inhibition events are modified. The InsP3-dependent pathway that determines both adrenergic and purinergic inhibition of smooth muscles is switched off, and the inhibitory action of neurotransmitters is realized under such conditions through the InsP3-independent pathway. Therefore, in our study we first found differences between cellular mechanisms underlying ATP-and NA-induced inhibition of smooth muscles under conditions of selective activation of either M2 or M3 cholinoreceptors and the mechanisms underlying the relaxing action of inhibitory neurotransmitters under conditions of combined synergistic activation of cholinoreceptors of both the above-mentioned subtypes. Neirofiziologiya/Neurophysiology, Vol. 39, No. 1, pp. 22–31, January–February, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号