首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Otto L. Lange 《Oecologia》1980,45(1):82-87
Summary Net photosynthesis (10 klx light intensity, 150 E m-2 s-1 PAR) and dark respiration of the lichen Ramalina maciformis at different temperatures are measured in relation to thallus water content. Both first increase with increasing hydration. Dark respiration then remains constant with increased water content until thallus saturation. In contrast, a further increase in water content leads to a depression of net photosynthesis, as shown in previous studies, after a maximum of CO2 uptake has been attained. However, the extent of this depression depends strongly on temperature. In saturated thalli (160% water content in relation to lichen dry weight) the depression amounts to about 15% and 63% of the maximum unsaturated rate at 5°C and 25°C thallus temperature, respectively. The moisture compensation-point of net photosynthesis is also decisively determined by temperature (for 0°C at 20% water content; for 25°C at 15%), and the water content that allows maximum rates of CO2 uptake (for 0°C at 80%; for 25°C at less than 40% water content). An electrical analogue of CO2 exchange in a lichen thallus is presented, and it is suggested that the experimental results may be interpreted in terms of temperature-dependent CO2 diffusion resistances in imbibed lichen thalli.  相似文献   

2.
Lange OL  Green TG 《Oecologia》2005,142(1):11-19
Five species of lichens, the majority members of a soil-crust community (Cladonia convoluta, Diploschistes muscorum, Fulgensia fulgens, Lecanora muralis, Squamarina lentigera) showed seasonal changes of temperature sensitivity of their dark respiration (DR) to such an extent that several substantially met the definition of full acclimation, i.e. near identical DR under different nocturnal temperature conditions during the course of the year. C. convoluta, for example, had maximal DR at 5°C of –0.42, –1.11 and –0.09 nmol CO2 g–1 s–1 in autumn, winter, and summer, respectively, a tenfold range. However, at the mean night temperatures for the same three seasons, 9.7°C, 4.2°C and 13.6°C, maximal DR were almost identical at –1.11, –0.93, and –1.45 nmol CO2 g–1 s–1. The information was extracted from measurements using automatic cuvettes that continuously recorded a sample lichens gas exchange every 30 min under near-natural conditions. The longest period (for L. muralis) covered 15 months and 22,000 data sets whilst, for the other species studied, data blocks were available throughout the calendar year. The acclimation of DR means that maximal net carbon fixation rates remain substantially similar throughout the year and are not depressed by increased carbon loss by respiration in warmer seasons. This is especially important for lichens because of their normally high rate of DR compared to net photosynthesis. We suggest that lichens, especially soil-crust species, could be a suitable model for fungi generally, a group of organisms for which little is known about temperature acclimation because of the great difficulty in separating the organism from its growth medium. Fungi, whether saprophytic, symbiotic or parasitic, including soil lichens, are important components of soil ecosystems and contribute much of the respired CO2 from these systems. Temperature acclimation by fungi would mean that expected increases in carbon losses caused by global climate warming from soil ecosystems might not be as extensive as first thought. This would ameliorate this positive feedback loop present in some climate models and might substantially lower the predicted warming.This work is dedicated to Professor Hubert Ziegler on the occasion of his 80th birthday. We would like to acknowledge his impressive contribution to physiological plant ecology, and to wish him continuing joie de vivre with his scientific interests during a happy retirement.  相似文献   

3.
Summary Green lichens have been shown to attain positive net photosynthesis in the presence of water vapour while blue-green lichens require liquid water (Lange et al. 1986). This behaviour is confirmed not only for species with differing photobionts in the genusPseudocyphellaria but for green and blue-green photobionts in a single joined thallus (photosymbiodeme), with a single mycobiont, and also when adjacent as co-primary photobionts. The different response is therefore a property of the photobiont. The results are consistent with published photosynthesis/water content response curves. The minimum thallus water content for positive net photosynthesis appears to be much lower in green lichens (15% to 30%, related to dry weight) compared to blue-greens (85% to 100%). Since both types of lichen rehydrate to about 50% water content by water vapour uptake only green lichens will show positive net photosynthesis. It is proposed that the presence of sugar alcohols in green algae allow them to retain a liquid pool (concentrated solution) in their chloroplasts at low water potentials and even to reform it by water vapour uptake after being dried. The previously shown difference in δ13C values between blue-green and green lichens is also retained in a photosymbiodeme and must be photobiont determined. The wide range of δ13C values in lichens can be explained by a C3 carboxylation system and the various effects of different limiting processes for photosynthetic CO2 fixation. If carboxylation is rate limiting, there will be a strong discrimination of13CO2, at high internal CO2 partial pressure. The resulting very low δ13C values (-31 to-35‰) have been found only in green lichens which are able to photosynthesize at low thallus water content by equilibraiton with water vapour. When the liquid phase diffusion of CO2 becomes more and more rate limiting and the internal CO2 pressure decreases, the13C content of the photosynthates increases and less negative δ13C values results, as are found for blue-green lichens.  相似文献   

4.
D. S. Coxson 《Oecologia》1987,73(3):454-458
Summary The response of net photosynthesis to temperature, moisture, and light was examined in thalli of the tropical basidiomycete lichen Cora pavonia from recent lahar flows on the volcanic summit La Soufrière (Guadeloupe, French West Indies). Although thalli of C. pavonia are typically exposed to only low light intensities and isothermal temperature conditions under prevailing cloud/shroud conditions on La Soufrière, their photosynthetic response matrix reveals an unexpected breadth of response. The temperature optimum of net photosynthetic uptake in C. pavonia rises from 6°C at a photon flux area density of 25 mol m–2 s–1 PAR to 27°C at 1000 mol m–2 s–1 PAR, with rates of maximal net photosynthetic uptake exceeding 25 mg CO2 g–1 h–1. Net photosynthesis was optimal at thallus moisture contents of 250 to 350 percent water content by weight, declining only slightly in fully saturated thalli. These response patterns pose an apparent paradox, as on most days they will act to severely restrict net photosynthetic uptake by thalli of C. pavonia on La Soufrière. This paradox is discussed in context of those selective pressures faced by lichen thalli in later successional stages as well as those imposed by brief periods of atypical weather conditions.  相似文献   

5.
Summary Microclimate and CO2 exchange of the lichen Usnea sphacelata were measured during summen on a hill near Casey Station, Bailey Peninsula, Wilkes Land, Antarctica. Within a period of 52 days (November 10 until December 31, 1985), 8 diurnal courses of net photosynthesis were measured in naturally snow-covered lichen thalli, and 9 diurnal courses in thalli experimentally sprayed with melt water. Photosynthetic performance of a light-form of Usnea sphacelata was compared with that of a shade-form. Net photosynthesis was reversibly depressed in snow-covered lichen thalli of both forms when irradiance was higher than 600 mol m–2 s–1 photosynthetic active radiation (PAR), the depression persisting several hours after a period of strong light. These responses suggest photoinhibition. Models of photosynthesis were established for the light-form by non-linear regressions with field data from water-sprayed thalli (Model W) and field data measured in snow-covered lichens (SNO I, SNO II). Model SNO I is based on median values of photosynthetic rates and SNO II on maximum values for each light/temperature combination. Photosynthetic rates were calculated using model W; the results showed values approximately three times higher than measured in the field with naturally moistened thalli. Photosynthetic rates according to model SNO II fitted the data of naturally moistened lichens measured during the day, before strong light (> 600 mol m–2s–1 PAR) caused reversible decrease of net photosynthesis. Model SNO I fitted the data measured during and after a phase of strong irradiance. Model SNO I demonstrated that light stress was highest at temperatures below 2 °C. This study has shown that long-term calculation of the photosynthetic productivity must take into account decreases in net photosynthesis rate caused by strong light, as well as effects of water content and temperature. For the investigated period of the austral summer, a carbon production of 3.44 gm–2 was estimated for U. sphacelata.  相似文献   

6.
Kellomäki  S.  Wang  Kai-Yun  Lemettinen  M. 《Photosynthetica》2000,38(1):69-81
A closed CO2 and temperature-controlled, long-term chamber system has been developed and set up in a typical boreal forest of Scots pine (Pinus sylvestris L.) near the Mekrijärvi Research Station (62°47N, 30°58E, 145 m above sea level) belonging to the University of Joensuu, Finland. The main objectives of the experiment were to provide a means of assessing the medium to long-term effects of elevated atmospheric CO2 concentration (EC) and temperature (ET) on photosynthesis, respiration, growth, and biomass at the whole-tree level and to measure instantaneous whole-system CO2 exchange. The system consists of 16 chambers with individual facilities for controlling CO2 concentration, temperature, and the combination of the two. The chambers can provide a wide variety of climatic conditions that are similar to natural regimes. In this experiment the target CO2 concentration in the EC chambers was set at a fixed constant of 700 µmol mol–1 and the target air temperature in the ET chambers to track the ambient temperature but with a specified addition. Chamber performance was assessed on the base of recordings covering three consecutive years. The CO2 and temperature control in these closed chambers was in general accurate and reliable. CO2 concentration in the EC chambers was within 600–725 µmol mol–1 for 90 % of the exposure time during the "growing-season" (15 April – 15 September) and 625–725 µmol mol–1 for 88 % of the time in the "off-season" (16 September – 14 April), while temperatures in the chambers were within ±2.0 °C of the ambient or target temperature in the "growing season" and within ±3.0 °C in the "off season". There were still some significant chamber effects. Solar radiation in the chambers was reduced by 50–60 % for 82 % of the time in the "growing season" and 55–65 % for 78 % of the time in the "off season", and the relative humidity of the air was increased by 5–10 % for 72 % of the time in the "growing season" and 2–12 % for 91 % of the time in the "off season". The crown architecture and main phenophase of the trees were not modified significantly by enclosure in the chambers, but some physiological parameters changed significantly, e.g., the radiant energy-saturated photosynthesis rate, transpiration rate, maximum photochemical efficiency of photosystem 2, and chlorophyll content.  相似文献   

7.
Detached leaves of Bryophyllum fedtschenkoi Hamet et Perrier kept in normal air show a single period of net CO2 fixation on transfer to constant darkness at temperatures in the range 0–25 °C. The duration of this initial fixation period is largely independent of temperature in the range 5–20 °C, but lengthens very markedly at temperatures below 4 °C, and is reduced at temperatures above 25 °C. The onset of net fixation of CO2 on transfer of leaves to constant darkness is immediate at low temperatures, but is delayed as the temperature is increased. The ambient temperature also determines whether or not a circadian rhythm of CO2 exchange occurs. The rhythm begins to appear at about 20 °C, is most evident at 30 °C and becomes less distinct at 35 °C. The occurrence of a distinct circadian rhythm in CO2 output at 30° C in the absence of a detectable rhythm in PEPCase kinase activity shows that the kinase rhythm is not a mandatory requirement for the rhythm of PEPCase activity. However, when it occurs, the kinase rhythm undoubtedly amplifies the PEPCase rhythm.Abbreviation PEPCase phosphoenolpyruvate carboxylase We thank the Agricultural and Food Research Council for financial support for this work.  相似文献   

8.
Summary Pseudocyphellaria dissimilis, a foliose, cyanobacterial lichen, is shown not to fit into the normal ecological concept of lichens. This species is both extremely shade-tolerant and also more intolerant to drying than aquatic lichens previously thought to be the most desiccation-sensitive of lichens. Samples of P. dissimilis from a humid rain-forest site in New Zealand were transported in a moist state to Germany. Photosynthesis response curves were generated. The effect of desiccation was measured by comparing CO2 exchange before and after a standard 20-h drying routine. Lichen thalli could be equilibrated at 15° C to relative humidities (RH) from 5% to almost 100%. Photosynthesis was saturated at a photosynthetically active radiation (PAR) level of 20 mol m-2 s-1 (350 bar CO2) and PAR compensation was a very low 1 mol m-2 s-1. Photosynthesis did not saturate until 1500 bar CO2. Net photosynthesis was relatively unaffected by temperature between 10° C and 30° C with upper compensation at over 40° C. Temporary depression of photosynthesis occurred after a drying period of 20 h with equilibration at 45–65% relative humidity (RH). Sustained damage occurred at 15–25% RH and many samples died after equilibration at 5–16% RH. Microclimate studies of the lichen habitat below the evergreen, broadleaf forest canopy revealed consistently low PAR (normally below 10–20 mol m-2 s-1) and high humidities (over 80% RH even during the day time). The species shows many features of an extremely deep shade-adapted plant including low PAR saturation and compensation, low photosynthetic and respiratory rates and low dry weight per unit area.  相似文献   

9.
The hypothesis that CO2 gas exchange and chlorophyll a fluorescence (ChlaF) of lichens vary according to the light regimes of their original habitat, as observed in vascular plants, was tested by analysing the photosynthetic performance of 12 populations of seven dorsoventral, foliose lichens collected from open, south-exposed rocks to densely shaded forests. Light response curves were induced at optimum thallus water content and ChlaF emission curves at the species-specific photon flux at which the quantum yield of CO2 assimilation is the highest and is saturating the photosynthetic process. Photosynthetic pigments were quantified in crude extracts. The results confirm that the maximum rate of gross photosynthesis is correlated with the chlorophyll content of lichens, which is influenced by light as well as by nitrogen availability. Like leaves, shade tolerant lichens emit more ChlaF than sun-loving ones, whereas the photosynthetic quantum conversion is higher in the latter.  相似文献   

10.
A few species of Cymbopogon and Vetiveria are potentially important tropical grasses producing essential oils. In the present study, we report on the leaf anatomy and photosynthetic carbon assimilation in five species of Cymbopogon and Vetiveria zizanioides. Kranz-type leaf anatomy with a centrifugal distribution of chloroplasts and exclusive localization of starch in the bundle sheath cells were common among the test plants. Besides the Kranz leaf anatomy, these grasses displayed other typical C4 characteristics including a low (0–5 µl/l) CO2 compensation point, lack of light saturation of CO2 uptake at high photon flux densities, high temperature (35°C) optimum of net photosynthesis, high rates of net photosynthesis (55–67 mg CO2 dm-2 leaf area h-1), little or no response of net photosynthesis to atmospheric levels of O2 and high leaf 13C/12C ratios. The biochemical studies with 14CO2 indicated that the leaves of the above plant species synthesize predominantly malate during short term (5 s) photosynthesis. In pulse-chase experiments it was shown that the synthesis of 3-phosphoglycerate proceeds at the expense of malate, the major first formed product of photosynthesis in these plant species.  相似文献   

11.
CO2 fixation was studied in a lichen, Xanthoria parietina, kept in continuous light, and with cyclic changes in light intensity, dark period or temperature. The diurnal and seasonal courses of CO2 exchange were followed. The rate of net photosynthesis was observed to fall from morning to evening, and this decline was more pronounced in winter than in summer. The maximal net photosynthetic rate, 223 ng CO2g-1dws-1, occured in winter and the minimum, 94 ng CO2g-1dws-1, late in spring. The light compensation point in summer was four times as high as in winter. In continuous light (180 or 90 mol photons m-2s-1, 15°C) net photosynthesis decreased noticeably during one week, falling below the level maintained in a 12 h light: 12 h dark cycle. Photosynthetic activity did not decrease, however, in lichens held in continuous light (90 mol photons m-2s-1) with cyclic changes of temperature (12 h 20 °C: 12 h 5 °C). Active photosynthesis was also maintained in light of cyclically changing intensity (12 h: 12 h, 15 °C) when night-time light was at least 75% lower than illumination by day. A dark period of 4 hours in a 24-h light:dark cycle was sufficient to keep CO2 fixation at the control level. It seems that plants need an unproductive period during the day to survive and this can be induced by fluctuations in light and/or temperature.  相似文献   

12.
Structural, functional, and biochemical characteristics of the photosynthetic apparatus of a nemoral herbaceous perennial plant Ajuga reptansL. inhabiting the middle taiga subzone were investigated. Plant leaves were characterized by a high content of green (3.1 mg/dm2) and yellow (0.64 mg/dm2) pigments and contained moderate-sized chloroplasts with grana consisting of ten thylakoids or more. The maximum rate of photosynthesis in summergreen leaves (5–8 mg CO2/(dm2h)) was observed at 14–16°C under a saturating photosynthetically active radiation of 50 W/m2. At 6–7°C, the rate of CO2assimilation was reduced to 60–80% of the maximum one. The temperature optimum of photosynthesis was not constant and shifted by 2–6°C depending on the changes in the ambient temperature. Wintergreen leaves were capable of photosynthesis in late autumn after heavy freezes and in early spring after a long winter. The accumulation of soluble carbohydrates and free amino acids in leaves helps to maintain the functional activity of the photosynthetic apparatus.  相似文献   

13.
An apparent paradox exists in the ecology of Antarctic lichens: their net photosynthetic temperature optimum (around 0°C) lies far below the temperature optima of their constituent algae and fungi (around 20°C). To address this paradox, we consider lichens as microbial communities and propose the “community adaptation” hypothesis, which posits that in each thermal regime there is an equilibrium between photosynthetic primary producers (photobionts), and heterotrophic consumers (mycobiont and parasymbiont fungi). This equilibrium, expressed as the producer/consumer ratio (Rp/c), maximizes the fitness of the community. As respiration increases with temperature, more rapidly than does photosynthesis, Rp/c will shift accordingly in warm habitats, resulting in a high-growth temperature optimum for the community (the lichen). This lends lichens an adaptive flexibility that enables them to function optimally at any thermal regime within the tolerance limits of the constituent organisms. The variable equilibrium of producers and consumers may have a similar role in thermal adaptation of more complex communities and ecosystems.  相似文献   

14.
Summary Chlorophyll distribution within the carpets, CO2 gas exchange under controlled conditions, and heat resistance of the snowbed bryophyte Anthelia juratzkana (Limpr.) Trev. were investigated. Also the gas-exchange parameters of the co-occurring Polytrichum sexangulare Floercke were assessed. Only the uppermost 4 mm layer of Anthelia carpets contains sufficient pigments for photosynthesis. At light saturation and optimal temperatures (6–11°C) the maximum rates of CO2 uptake are 0.7 mg CO2 g-1dw h-1 in Anthelia and 1.5 mg CO2 g-1dw h-1 in Polytrichum. Gas exchange reaches light saturation at about 300 E m-2s-1 in both species. At +2°C the light compensation point is reached at ca. 10E m-2s-1 and increases significantly with increasing temperature. The lower temperature compensation point is reached at-4°C in Anthelia and does not drop much below-5°C in Polytrichum. Anthelia cannot sustain net photosynthesis beyond 30°C and Polytrichum not beyond 32°C. Nine month storage under dark, cold and wet conditions does not affect the photosynthetic capability of Anthelia. As a response, however, the net photosynthesis rate is depressed due to an increase of the respiration rates. Polytrichum sexangulare did not tolerate the storage so well. The heat resistance limit of Anthelia is low (39°C). There is evidence that the distribution of the two bryophytes within snowbed communities is determined by their capability to make use of low light intensities and their low temperature demand for optimal photosynthetic rates. Being resistant to long lasting cold, wet, and dark conditions, Anthelia is particularly adapted to grow in the border zone along permanent snowpatches. Polytrichum is more productive and is therefore capable of competing successfully at sites which are less extreme and therefore accessible for higher plants.  相似文献   

15.
CO2 exchange rate in relation to thallus water content (WC, % of dry weight) was determined for 22 species of lichens, mainly members of the genera Pseudocyphellaria and Sticta, from a temperate rainforest, Urewere National Park, New Zealand. All data were obtained in the field, either using a standard technique in which the lichens were initially wetted (soaked or sprayed, then shaken) and allowed to slowly dry, or from periodic measurements on samples that were continuously exposed in their natural habitat. A wide range of WC was found, with species varying from 357 to 3360% for maximal WC in the field, and from 86 to 1300% for optimal WC for photosynthesis. Maximal WC for lichens, wetted by the standard technique, were almost always much less than the field maxima, due to the presence of water on the thalli. The relationships between CO2 exchange rate and WC could be divided into four response types based on the presence, and degree, of depression of photosynthesis at high WC. Type A lichens showed no depression, and Type B only a little at maximal WC. Type C had a very large depression and, at the highest WC, CO2 release could occur even in the light. Photosynthetic depression commenced soon after optimal WC was reached. Type D lichens showed a similar depression but the response curve had an inflection so that net photosynthesis was low but almost constant, and never negative, at higher WC. There was little apparent relationship between lichen genus or photobiont type and the response type. It was shown that high WC does limit photosynthetic CO2 uptake under natural conditions. Lichens, taken directly from the field and allowed to dry under controlled conditions, had net photosynthesis rates that were initially strongly inhibited but rose to an optimum, before declining at low WC. The limiting effects of high WC were clearly shown when, under similar light conditions, severe photosynthetic depression followed a brief, midday, rain storm. Over the whole measuring period the lichens were rarely at their optimal WC for photosynthesis, being mostly too wet or, occasionally, too dry. Photosynthetic performance by the lichens exposed in the field was similar to that expected from the relationship between the photosynthetic rate and WC established by the standard procedure.  相似文献   

16.
Summary A physiologically based steady-state model of whole leaf photosynthesis (WHOLEPHOT) is detailed which describes the functional dependence of net photosynthesis in C 3 leaves on [CO2], [O2], incident radiant flux (PhAR), and leaf temperature. The model simulates among other phenomena a) observed [CO2], [O2], and temperature effects on the initial slope of light response curves, b) a C 3 type temperature response curve of net photosynthesis, c) a shift of the optimum temperature of net photosynthesis to higher temperatures with increasing light intensity, and d) observed temperature and [O2] effects on the CO2 compensation point. Model parameters are derived from published response data of several C 3 species. Simulations also demonstrate that parameter changes based on literature data result in acclimation-like changes in net photosynthesis response with respect to light intensity and temperature. The advantages of this model are that the number of parameters is minimized in order to focus on environmental effects and that all parameters can be determined from measured net photosynthesis responses.  相似文献   

17.
Multifactorial experiments were performed to study the diurnal dynamics of CO2 exchange in intact cucumber plants (Cucumis sativus L.). Based on experimental data, we analyzed the models of net photosynthesis, night respiration, and biomass accumulation. This analysis allowed us to resolve the growth component of respiration and to determine the diurnal temperature pattern that is optimal for biomass accumulation. It was found that the most profound transformation of assimilates into the biomass occurs under the maximum ratio of growth respiration to maintenance respiration. Under the experimental conditions used, this requirement was fulfilled at a temperature of 25°C during the photoperiod (optimum of net photosynthesis) and at subsequent gradual cooling to a hardening temperature (13°C by the end of the night).  相似文献   

18.
Two branches of a field-grown Chamaecy-paris obtusa tree were enclosed in chambers of an open gas exchange system for continuous CO2 exchange measurements. One branch was subjected to ambient air (CO2, 370 μmol mol–1) and the other was subjected to CO2-enriched air (800 μmol mol–1). The CO2 exchange rate of the branches, air temperature and photosynthetic photon flux density were recorded every 4 min by a computer during the two experimental periods of July 1994 to June 1995 (experiment 1) and April 1996 to August 1997 (experiment 2). The response of CO2 gas exchange rate to light changed with the seasonal temperature. The highest saturated rate of net photosynthesis on a leaf area basis was observed in May and October in both CO2 treatments when the mean daytime temperature was about 18–19°C. This temperature was almost equal to the yearly mean daytime temperature. Above and below this temperature, the saturated net photosynthesis rate decreased. The net photosynthesis rate was usually higher in the elevated CO2 treatment. The ratio of monthly net photosynthesis rate in elevated CO2 to that in ambient CO2 was linearly related to the monthly mean daytime temperature. This ratio increased by 3.3% for each 1°C increase in the monthly mean daytime temperature; the highest ratio of 1.8 occurred in August. When the ratio was 1.0, the temperature was about 5–6°C, which was close to the mean daytime temperature of the coldest month. Elevated CO2 increased per unit area net photosynthesis by 38.5% and 43.7% in experiments 1 and 2, respectively. Received: 29 March 1999 / Accepted: 22 October 1999  相似文献   

19.
Photosynthetic activity, in leaf slices and isolated thylakoids, was examined at 25° C after preincubation of the slices at either 25° C or 4° C at a moderate photon flux density (PFD) of 450 mol·m–2·s–1, or at 4° C in the dark. The plants used wereSpinacia oleracea L.,Cucumis sativus L. andNerium oleander L. which was acclimated to growth at 20° C or 45° C. The plants were grown at a PFD of 550 mol·m–2·s–1. Photosynthesis, measured as CO2-dependent O2 evolution, was not inhibited in leaf slices from any plant after preincubation at 25° C at a moderate PFD or at 4° C in the dark. However, exposure to 4° C at a moderate PFD induced an inhibition of CO2-dependent O2 evolution within 1 h inC. sativus, a chilling-sensitive plant, and in 45° C-grownN. oleander. The inhibition in these plants after 5 h reached 80% and 40%, respectively, and was independent of the CO2 concentration but was reduced at O2 concentrations of less than 3%. Methyl-viologen-dependent O2 exchange in leaf slices from these plants was not inhibited. There was no photoxidation of chlorophyll, in isolated thylakoids, or any inhibition of electron transport at photosystem (PS)II, PSI or through both photosystems which would account for the inhibition of photosynthesis. The conditions which inhibit photosynthesis in chilling-sensitive plants do not cause inhibition inS. oleracea, a chilling-insensitive plant, or in 20° C-grownN. oleander. The CO2-dependent photosynthesis, measured at 5° C, was reduced to about 3% of that recorded at 25° C in chilling-sensitive plants but only to about 30% in the chilling-insensitive plants. Methyl-viologen-dependent O2 exchange, measured at 5° C, was greater than 25% of the activity at 25° C in all the plants. The results indicate that the mechanism of the chilling-induced inhibition of photosynthesis does not involve damage to PSII. That inhibition of photosynthesis is observed only in the chilling-sensitive plants indicates it is related, in some way, to the disproportionate decrease in photosynthetic activity in these plants at chilling temperatures.Abbreviations Chl chlorophyll - DPIPH reduced form of 2,6-dichlorophenol-indophenol - DMQ 2,5-dimethyl-p-benzoquinone - MV methyl viologen - 20°-oleander Nerium oleander grown at 20° C - 45°-oleander N. oleander grown at 45° C - PFD photon flux density (photon fluence rate) - PSI and PSII photosystem I and II, respectively  相似文献   

20.
G. Döhler  K. -R. Przybylla 《Planta》1973,110(2):153-158
Summary CO2 exchange, 14CO2 fixation and 14C-products of Anacystis nidulans (strain L 1402-1) were studied during the induction period at temperatures of +15°C and+35°C. At+15°C the stationary rates of CO2 uptake and respiration were reached directly. At+35°C a maximum of CO2 uptake could be observed at the beginning of the illumination period followed by a lower steady rate of photosynthesis. In the following dark period a CO2 gush appeared at+35°C. The magnitude of the CO2 outburst is relatively independent of the photosyntbetic period. The autoradiographic studies showed that the Calvin cycle is the main carboxylation pathway in Anucystis. At a temperature of +35°C serine was labelled after 20 sec of photosynthesis. At+15°C, on the other hand, a low radio-activity appeared in serine after 5 min of photosynthesis. The results show that photorespiration of Anacystis is stimulated by high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号