首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electron spin resonance techniques were used to study the gamma-radiation-induced free radicals in single crystals of glutaric acid in the temperature range from 77 K to 300 K. Three different radicals are stabilized at 77 K. The decarboxylation radical is the dominant species and the other two radicals are assigned to the anion and to the substituted acetyl sigma-radical. When the temperature of the crystal is raised, these radicals disappear and the previously studied room temperature radicals appear. E.S.R.-data and the results from semi-empirical INDO-MO calculations were compared in order to elucidate the structures of the various radicals.  相似文献   

2.
3.
4.
5.
The radicals produced in several polycrystalline amino acids, N-acetyl amino acids and dipeptides by gamma-radiolysis at room temperature were investigated by spin-trapping. After irradiation in the solid state, the samples were dissolved in aqueous solutions f t-nitrosobutane and the trapped radicals identified by e.s.r. For alpha-amino acids, deamination radicals were found, and in some cases H-abstraction radicals were also observed. No decarboxylation radicals could be detected. For N-acetyl amino acids, except for N-acetylglycine, the major radical was the decarboxylation radical. For N-acetyglycine the H-abstraction radical from the glycine residue was observed. For dipeptides of the x-glycine, the radical formed by removal of H from the alpha-carbon of the carboxyl-terminal residue was always spin-trapped. Some primary deamination radicals and minor amounts of decarboxylation radicals could also be observed. For dipeptides of the type x-alanine, glycine-x and alanine-x, the decarboxylation radical was always the major spin-trapped radical. Some primary and secondary deamination radicals were also detected.  相似文献   

6.
The radicals produced by reactions of hydroxyl radicals with alkyl substituted ureas and amides in aqueous solutions have been investigated. Hydroxyl radicals were produced by U.V. photolysis of H2O2 and the short-lived amide and urea radicals were spin-trapped by t-nitrosobutane and identified by e.s.r. For all N-alkyl derivatives of urea and acetamide, and for N,N-dimethyl propionamide and N,N-diethyl formamide, only radicals centred on N-alkyl groups were detected. Radicals situated only on alkyl groups attached to the carbonyl carbon were observed for dimethyl acetamide, trimethyl acetamide and butyramide. However, for N,N-dimethyl butyramide, N, N-diethyl butyramide, N-methyl propionamide and N, N-diethyl propionamide, free radicals were formed which were localized on the alkyl group attached to the amide carbon as well as those attached to nitrogen. The hydrogen atom bound to the carbonyl carbon was abstracted in N-ethyl formamide. Acyl radicals formed by C-N scission due to direct U.V. photolysis of N, N-dimethyl butyramide and N,N-dimethyl propionamide were also detected.  相似文献   

7.
8.
The hydrogen-deuterium exchange reactions in gamma-irradiated DL-alanine in the solid state were investigated by spin-trapping and electron spin resonance (e.s.r) using selectively deuterated DL-alanine. Subsequent to gamma-radiolysis at 30 degrees C, polycrystalline DL-alanine was dissolved in aqueous solutions of 2-methyl-2-nitrosopropane and the extent of H-D exchange of the deamination radicals was followed by e.s.r. After formation of the deamination radicals, four exchange reactions were found to occur between the radicals and the surrounding undamaged molecules. The first reaction, which occurs between the hydrogens of the C-2 carbon of the radicals and those of the methyl groups of the neighbouring molecules, can be followed at room temperature. The three other reactions could be conveniently monitored in gamma-irradiated polycrystalline alanine at 110 degrees C. The first of the other three reactions takes place between the methyl hydrogens of the radicals and the C-2 hydrogens of nearby molecules, while the remaining processes involve exchange between the hydrogen atoms of the amino group and those on the C-2 and C-3 carbon atoms of the deamination radical.  相似文献   

9.
The gamma-radiolysis of de-aerated neutral aqueous solutions of uracil, thymine, cytosine and of the corresponding nucleosides and nucleotides and of calf-thymus DNA was investigated. For uracil and thymine, the U.V. photolysis of aqueous solutions containing H2O2 was also studied. The short-lived radicals were spin-trapped by tert-nitrosobutane and identified by electron-spin-resonance spectroscopy. For all compounds two or more radicals were observed, and these could be distinguished by following the thermal decay of the spin adducts. Radicals formed by the addition of H or OH at the C(5) or C(6) positions of the pyrimidine derivatives were observed in all cases. Sodium formate was used as a scavenger for H and OH to identify the radicals formed by eaq-. Spin-trapped radicals in gamma-irradiated aqueous solutions of polynucleotides exhibited broad e.s.r. lines. For DNA gel, additional narrow lines due to scission products were also found.  相似文献   

10.
The quantitative aspects of determining free radicals in polycrystalline amino acids gamma-irradiated at room temperature and subsequently dissolved in spin-trap solutions were investigated. The deamination radical in DL-alanine was used for detailed studies and 2-methyl-2-nitrosopropane (MNP) was employed as the spin-trap. The spin-trapping efficiency (the number of radicals spin-trapped in solution divided by the number of radicals initially present in the gamma-irradiated solid) was found to be in the range 1 to 10 per cent for aqueous solutions depending on the experimental conditions. The effects of dose, particle size, pH, spin-trap concentration, age of spin-trap solution, MNP monomer to dimer ratio and the presence of organic solvents were investigated. Several reactions were found to decrease the spin-trapping efficiency; radical-radical recombination, the competition between the spin-adduct and the spin-trap for radicals and the reaction of radicals with the MNP dimer. The reaction of intact DL-alanine molecules with deamination radicals to produce H-abstraction radicals which are not spin-trapped does not significantly lower the spin-trapping efficiency. The results obtained with compounds such as glycine, glycylglycine, L-valine and L-proline suggest that the low spin-trapping efficiency found for DL-alanine may be representative of polycrystalline amino acids.  相似文献   

11.
For the 5-thymyl radical, minor couplings additional to beta-protons bonded to C6 and C7 are observed in single crystals of 1-methylthymine. Hyperfine coupling tensors are given of the N3 nitrogen (+3.5/0.0/0.0 G) and of the exchangeable proton (-4.1/-2.5/-0.9 G) bonded to it. In single crystals of thymine . anhydrate, thymine . monohydrate and 5,6-dihydrothymine these additional couplings are unresolved, but are also present. INDO-calculations were performed to reproduce consistently both beta-coupling constants and additional couplings from N3 and H(N3). Comparison of experimental and calculated values to the conclusion that the 5-thymyl radical is protonated at 04 in all single crystals of thymine derivatives investigated.  相似文献   

12.
Studies of the temperature dependence of the areas under the e.s.r. absorption spectra of X-ray-induced free radicals in amino acids at various power levels and of power saturation at different temperatures are reported. They indicate that power saturation is responsible for the anomalous Curie--Weiss behaviour previously reported. The consequences of power saturation to the e.s.r. determination of radical yields are discussed. The effect of impurity e.s.r. signals in amino acids on quantitative e.s.r. determinations is also discussed.  相似文献   

13.
The post-irradiation growth of the spin-adduct nitroxide radical produced by the addition of the thymine--OD radical to t-nitrosobutane (tNB) in gamma-irradiated, de-aerated D2O solutions was investigated by e.s.r. The thymine--OD radical was formed by the addition of an OD radical to the C(5) position of thymine. Growth reached a greater maximum value and was more rapid with increasing dose. At a fixed dose, growth was also greater and more rapid if oxygen was present after gamma-radiolysis. The addition of a second radical to the spin-adduct nitroxide during radiolysis to give a diamagnetic intermediate, which can regenerate the spin-adduct radical during storage in air-free and in air-saturated solutions at room temperature, was inferred to be responsible for post-irradiation growth. U.V. photolysis at 260-280 nm of a solution containing the diamagnetic intermediate rapidly regenerates the spin-adduct nitroxide. The longer lifetime of the diamagnetic intermediate in oxygen-free solutions may be relevant to an understanding of the anoxic sensitization by nitroxides in cellular systems.  相似文献   

14.
Reactions of the SO4- radical, generated by U.V. photolysis of Na2S2O8, were studied in aqueous solutions of amino acids, dipeptides, nucleic acid bases, nucleosides and nucleotides. The transient free radicals so formed were spin-trapped by t-nitrosobutane and identified by e.s.r. spectroscopy. The amino acids primarily undergo oxidative decarboxylation. The pKs of the ammonium groups of the spin-trapped decarboxylated radicals of glycine and alanine in D2O were determined to be 8.3 +/- 0.2. An oxidation product, which is the precursor of the decarboxylated radical, is tentatively identified for alanine, valine and isoleucine. Radicals formed by hydrogen abstraction by SO-4 are identified for leucine, serine, phenylalanine and 4-hydroxyproline. In dipeptides, SO-4 produces decarboxylation of the amino acid located at the carboxylate terminal residue. For gly-ala and ala-ala, radicals generated by hydrogen abstraction from the carboxylate terminal residue alanine were also characterized. Radicals centered on the C(5) carbon were observed for uracil, cytosine and thymine. For nucleosides and nucleotides, radicals situated on the base and/or the sugar moiety were assigned.  相似文献   

15.
Using the spin-trapping technique, irradiation with visible light of complexes between DNA and proflavine was shown to generate OH radicals. The characteristic spectra were not obtained when proflavine or DNA were irradiated alone, nor when oxygen was absent. Using DMPO as a spin trap we found that the intensity of the DMPO-OH e.p.r. signal was enhanced when the molar ratio between bound proflavine and the DNA phosphorus increased up to a value of 0.15 demonstrating the efficiency of the intercalated dye molecules. A strong decrease of the e.p.r. signal was observed in the presence of various OH. scavengers like t-butanol, isopropanol or sodium benzoate. The OH. production was also decreased when the irradiation was made in the presence of SOD, ceruloplasmin or catalase and after addition of Chelex 100 resin.  相似文献   

16.
17.
E.s.r. Experiments employing a flow system in conjunction with the TiIII-H2O2 couple show that dextrans react with the hydroxyl radical (HO.) via indiscriminate attack (except that abstraction of hydrogen atoms from carbons which are both linked by glycosidic bonds and included in the pyranose ring may be inhibited, possibly for steric reasons). Acid- and base-catalysed transformations of first-formed radicals have been demonstrated; the suggestion that such reactions can lead to glycosidic cleavage is supported by viscosity studies which confirm the pH-dependence of radical-initiated degradation. For galacturonan and related compounds, e.s.r. results indicate that reaction with HO. proceeds preferentially via abstraction of the hydrogen on the carbon adjacent to the carboxyl group. The crucial step in the subsequent degradation pathway probably involves a pH-independent rearrangement.  相似文献   

18.
Single crystals of 2'-deoxyguanosine 5'-monophosphate were X-irradiated at 10 K and at 65 K, receiving doses between 4.5 and 200 kGy, and studied using K-band EPR, ENDOR, and field-swept ENDOR (FSE) spectroscopy. Evidence for five base-centered and more than nine sugar-centered radicals was found at 10 K following high radiation doses. The base-centered radicals were the charged anion, the N10-deprotonated cation, the C8 H-addition radical, a C5 H-addition radical, and finally a stable radical so far unidentified but with parameters similar to those expected for the charged cation. The sugar-centered radicals were the H-abstraction radicals centered at C1', C2', C3', and C5', an alkoxy radical centered at O3', a C5'-centered radical in which the C5'-O5' phosphoester bond appears to be ruptured, a radical tentatively assigned to a C4'-centered radical involving a sugar-ring opening, as well as several additional unidentified sugar radicals. Most radicals were formed regardless of radiation doses. All radicals formed following low doses (4.5-9 kGy) were also observed subsequent to high doses (100-200 kGy). The relative amount of some of the radicals was dose dependent, with base radicals dominating at low doses, and a larger relative yield of sugar radicals at high doses. Above 200 K a transformation from a sugar radical into a base radical occurred. Few other radical transformations were observed. In the discussion of primary radicals fromed in DNA, the presence of sugar-centered radicals has been dismissed since they are not apparent in the EPR spectra. The present data illustrate how radicals barely traceable in the EPR spectra may be identified due to strong ENDOR resonances. Also, the observation of a stable radical with parameters similar to those expected for the charge guanine cation is interesting with regard to the nature of the primary radicals stabilized in X-irradiated DNA.  相似文献   

19.
The radicals produced by reactions of hydroxyl radicals with amino acids in aqueous solutions have been investigated. Hydroxyl radicals were formed by U.V.-photolysis of hydrogen peroxide and the short-lived amino acid radicals were spin-trapped by tert-nitrosobutane and identified by electron spin resonance spectroscopy. Nineteen amino acids were studied, and several radicals were identified which have not been observed previously by other methods. Only side-chain radicals were identified for alanine, threonine, aspartic acid, asparagine, lysine, phenylalanine, tyrosine, proline and hydroxyproline; whereas for glycine the C(2) carbon radical was spin-trapped. Both C(2) carbon radicals and side-chain radicals were assigned to valine, leucine, isoleucine, serine, glutamic acid, glutamine, arginine and methionine.  相似文献   

20.
Hydroxyapatite is used as a model for studying radical formation in the mineral compartment of irradiated calcified tissues. Treating this material with 13C-enriched CO2 confirms that radiogenic long-lived radicals correspond to carbon centred species. It is shown, however, that these radicals are not located on the carbonate ions which substitute either the phosphate or the hydroxyl groups. The conditions which allow the formation and the trapping of these radicals are investigated (role of humidity, CO2 and temperature) and this paramagnetic species is identified as CO-2 adsorbed at the surface of apatite crystallites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号