首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Singh KK  Chen C  Gibbs M 《Plant physiology》1993,101(4):1289-1294
The photoregulation of chloroplastic respiration was studied by monitoring in darkness and in light the release of 14CO2 from whole chloroplasts of Chlamydomonas reinhardtii F-60 and spinach (Spinacia oleracea L.) supplied externally with [14C] glucose and [14C]-fructose, respectively. CO2 release was inhibited more than 90% in both chloroplasts by a light intensity of 4 W m-2. Oxidants, oxaloacetate in Chlamydomonas, nitrite in spinach, and phenazine methosulfate in both chloroplasts, reversed the inhibition. The onset of the photoinhibitory effect on CO2 release was relatively rapid compared to the restoration of CO2 release following illumination. In both darkened chloroplasts, dithiothreitol inhibited release. Of the four enzymes (fructokinase, phosphoglucose isomerase, glucose-6-P dehydrogenase, and gluconate-6-P dehydrogenase) in the pathway catalyzing the release of CO2 from fructose, only glucose-6-P dehydrogenase was deactivated by light and by dithiothreitol.  相似文献   

2.
Singh KK  Chen C  Gibbs M 《Plant physiology》1992,100(1):327-333
The role of an electron transport pathway associated with aerobic carbohydrate degradation in isolated, intact chloroplasts was evaluated. This was accomplished by monitoring the evolution of 14CO2 from darkened spinach (Spinacia oleracea) and Chlamydomonas reinhardtii chloroplasts externally supplied with [14C]fructose and [14C]glucose, respectively, in the presence of nitrite, oxaloacetate, and conventional electron transport inhibitors. Addition of nitrite or oxaloacetate increased the release of 14CO2, but it was shown that O2 continued to function as a terminal electron acceptor. 14CO2 evolution was inhibited up to 30 and 15% in Chlamydomonas and spinach, respectively, by 50 μm rotenone and by amytal, but at 500- to 1000-fold higher concentrations, indicating the involvement of a reduced nicotinamide adenine dinucleotide phosphate-plastoquinone oxidoreductase. 14CO2 release from the spinach chloroplast was inhibited 80% by 25 μm 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone. 14CO2 release was sensitive to propylgallate, exhibiting approximately 50% inhibition in Chlamydomonas and in spinach chloroplasts of 100 and 250 μm concentrations, respectively. These concentrations were 20- to 50-fold lower than the concentrations of salicylhydroxamic acid (SHAM) required to produce an equivalent sensitivity. Antimycin A (100 μm) inhibited approximately 80 to 90% of 14CO2 release from both types of chloroplast. At 75 μm, sodium azide inhibited 14CO2 evolution about 50% in Chlamydomonas and 30% in spinach. Sodium azide (100 mm) combined with antimycin A (100 μm) inhibited 14CO2 evolution more than 90%. 14CO2 release was unaffected by uncouplers. These results are interpreted as evidence for a respiratory electron transport pathway functioning in the darkened, isolated chloroplast. Chloroplast respiration defined as 14CO2 release from externally supplied [1-14C]glucose can account for at least 10% of the total respiratory capacity (endogenous release of CO2) of the Chlamydomonas reinhardtii cell.  相似文献   

3.
Disalicylidenepropanediamine (DSPD) at 0.1 to 1 mm levels inhibited light-dependent (14)CO(2) assimilation in intact spinach chloroplasts about 50 to 80%, and this inhibition was accompanied by an increased ratio of (14)C-glycerate 3-phosphate to (14)C-glyceraldehyde 3-phosphate. Enzymatic analysis established that DSPD also inhibited the light-dependent reduction of glycerate 3-phosphate in intact spinach chloroplasts. DSPD at 0.5 mm did not inhibit ribose 5-phosphate isomerase, ribulose 5-phosphate kinase, glycerate 3-phosphate kinase, NADP(+)-linked glyceraldehyde 3-phosphate dehydrogenase or ribulose 1,5-diphosphate carboxylase. The inhibition of chloroplast (14)CO(2) assimilation by DSPD appeared to be related to the inhibition of the photosynthetic electron transport chain. These observations are consistent with experimental results which demonstrated that DSPD inhibited directly the chloroplast lamellar membrane-mediated, light-dependent reduction of ferredoxin (Trebst, A. and M. Burba, 1967, Z. Pflanzenphysiol. 57: 419-433 and Ben-Amotz, A. and M. Avron, 1972, Plant Physiol. 49: 244-248).  相似文献   

4.
The light-dependent synthesis of glycolate derived from fructose 1,6-diphosphate, ribose 5-phosphate, or glycerate 3-phosphate was studied in the intact spinach (Spinacia oleracea) chloroplasts in the absence of CO(2). Glycolate yield increased with an elevation of O(2), pH, and the concentration of the phosphorylated compound supplied. No pH optimum was observed as the pH was increased from 7.4 to 8.5. The average maximal rate of glycolate synthesis was 50 mumoles per milligram chlorophyll per hour while the highest rate observed was 92 with 2.5 mm fructose 1,6-diphosphate in 100% O(2). The highest yields of glycolate synthesized from fructose 1,6-diphosphate, ribose 5-phosphate, or glycerate 3-phosphate were 0.14, 0.24, and 0.30, respectively, on a molar basis.  相似文献   

5.
At a concentration of 1 mM, fructose 1-phosphate stimulated about twofold, and glucose 6-phosphate inhibited by about 30%, the phosphorylation of 5 mM glucose in high-speed supernatants prepared from rat liver or from isolated hepatocytes, but did not affect, or barely so, the activity of a partially purified preparation of glucokinase. Anion-exchange chromatography of liver extracts separated glucokinase from a fructose-6-phosphate-sensitive and fructose-1-phosphate-sensitive inhibitor of that enzyme. This inhibitor could be further purified by chromatography on phospho-Ultrogel. It was destroyed by trypsin and was heat-labile. It inhibited glucokinase competitively with respect to glucose and its inhibitory effect was greatly reinforced by fructose 6-phosphate although not by glucose 6-phosphate. Fructose 1-phosphate relieved the enzyme of the inhibitory effect of the regulator and antagonised the effect of fructose 6-phosphate in a competitive manner. It is concluded that the regulator plays a role in the physiological control of the activity of glucokinase, particularly with respect to the stimulatory effect of fructose in isolated hepatocytes (see preceding paper in this journal).  相似文献   

6.
A systematic study of adenosine triphosphate (ATP)-dependent hexose kinases among microorganisms has been undertaken. Sixteen hexose kinases of five major types were partially purified from 12 microorganisms and characterized with respect to specificity for sugar and nucleotide substrates and Michaelis constants for the sugar substrates. Glucokinase activities that phosphorylate glucose and glucosamine are inhibited by N-acetyl-glucosamine and xylose, were found to be present in the non-sulphur photosynthetic bacteria Rhodospirillum rubrum, the blue-green algae Anacystis montana, and the protists Chlorella pyrenoidosa and Chlamydomonas reinhardtii (green algae), Hypochytrium catenoides (Hypochytridiomycete) and Saprolegnia Iitoralis (Oomycete). The myxobacteria Stigmatella aurantiaca contains a glucokinase activity with a different specificity pattern. Anacystis and Chlorella, besides their glucokinase activities, contain highly specific fructokinases, although that from Anacystis can also phosphorylate fructosamine; fructokinase from Anacystis has a molecular weight of 20 000, and exhibits a sigmoidal saturation curve for ATP when the Mg2+/ATP ratio is 2; this curve is transformed to a Michaelian one when under the same conditions an excess of Mg2+ (5 mM) is added. Saprolegnia however, besides the glucokinase, contains a mannofructokinase activity that phosphorylates mannose (Km 0.06 mM) and fructose (1 mM). On the other hand, hexokinase, a low specificity enzyme, was detected in the protist Allomyces arbuscula (Chytridiomycete) and in fungi Mucor hiemalis and Phycomyces blakesleeanus (Zygomycetes), and Schizophyllum commune (Basidiomycete). Schizophyllum contains a glucomannokinase activity together with hexokinase activity. The pattern of distribution of ATP-dependent hexose kinases among microorganisms seems to parallel that reported for biosynthetic pathways for lysine. The correlation with other biochemical parameters is also considered.  相似文献   

7.
Chloroplast fructose-1,6-bisphosphatase (D-fructose 1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) isolated from spinach leaves, was activated by preincubation with fructose 1,6-bisphosphate. The rate of activation was slower than the rate of catalysis, and dependent upon the temperature and the concentration of fructose 1,6-bisphosphate. The addition of other sugar diphosphates, sugar monophosphates or intermediates of the reductive pentose phosphate cycle neither replaced fructose 1,6-bisphosphate nor modified the activation process. Upon activation with the effector the enzyme was less sensitive to trypsin digestion and insensitive to mercurials. The activity of chloroplast fructose-1,6-bisphosphatase, preincubated with fructose 1,6-bisphosphate, returned to its basal activity after the concentration of the effector was lowered in the preincubation mixture. The results provide evidence that fructose-1,6-bisphosphatase resembles other regulatory enzymes involved in photosynthetic CO2 assimilation in its activation by chloroplast metabolites.  相似文献   

8.
Thus far all attempts to isolate CO, fixing chloroplasts from pine have failed. In this paper it is proposed that resin acids present in pine needles partition into membranes during chloroplast isolation and interfere with specific reactions of the Calvin cycle. CO, fixation by isolated spinach chloroplasts was strongly inhibited by the introduction of a suspension of chloroplasts isolated from Pinus sylvestris L. A partially purified organic extract obtained from chloroplasts of this pine species also strongly inhibited CO, fixation by the spinach chloroplasts. The major inhibitory compounds from the organic extract were identified as a mixture of resin acids by gas-liquid chromatography and mass spectrometry. Two resin acids, abietic acid and dehydroabietic acid, were tested for inhibitory activity. Both resin acids were potent inhibitors of photosynthetic CO2fixation, with dehydroabietic acid being about three times more potent than abietic acid.  相似文献   

9.
Changes in the cytosotic (soluble) and the non-cytosolic (particulate) isozyme composition of hexokinases and in their properties were studied by ion exchange chromatography on DEAE cellulose after the subcellular fractionation both in the healthy and the tobacco mosaic virus (TMV) infected tobacco leaves. Three main isozyme complexes were obtained: one particulate fraction (the particulate hexokinase phosphorylating both glucose and fructose, EC 2.7.1.1), and two soluble fractions (the soluble hexokinase phosphorylating both the glucose and the fructose, and the soluble fructokinase, which phosphorylates primarily fructose, EC 2.7.1.4). The total fructokinase activities were nearly twice higher than the total glucokinase activities (188.6 % of glucokinase activity in healthy plants and 181.3 % in infected plants). The total particulate glucokinase activity was increased to 120.6 % and the fructokinase to 118.9 % in TMV infected tissue when compared with healthy control. The similar pattern of activity was observed for soluble hexokinase isozymes - the sum of soluble glucokinase activity was increased to 175.4 % and of fructokinase activity to 131.2 % in TMV infected tissue. The isozymes isolated both from the healthy control and TMV-infected leaves had the similar elution profiles, displayed Michaelis-Menten kinetics, showed the identical profiles of pH optima and were Mg2+ dependent with the highest enzyme activity at equimolar Mg2+ and ATP concentration. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Rat liver 'glucokinase' (hexokinase D) catalyses the phosphorylation of fructose with a maximal velocity about 2.5-fold higher than that for the phosphorylation of glucose. The saturation function is hyperbolic and the half-saturation concentration is about 300 mM. Fructose is a competitive inhibitor of the phosphorylation of glucose with a Ki of 107 mM. Fructose protects hexokinase D against inactivation by 5,5'-dithiobis-(2-nitrobenzoic acid), and the apparent dissociation constants are about 300 mM in the presence of different concentrations of the inhibitor. The co-operativity of the enzyme in the phosphorylation of glucose can be abolished by addition of fructose to the reaction medium. Fructose appears to be no better as a substrate for the other mammalian hexokinases than it is for hexokinase D. It is proposed that the name 'glucokinase' ought to be reserved for enzymes that are truly specific for glucose, such as those of micro-organisms and invertebrates, and that liver glucokinase must be called hexokinase D (or hexokinase IV) within the classification EC 2.7.1.1.  相似文献   

11.
Thiol-treated spinach (Spinacia oleracea) chloroplast fructose bisphosphatase is powerfully inhibited by Ca2+ non-competitively with respect to its substrate, fructose 1,6-bisphosphate. 500 microM-Ca2+ causes virtually complete inhibition and the Ki is 40 microM. Severe inhibition of sedoheptulose bisphosphatase is also caused by Ca2+. A role for Ca2+ in regulation of the Calvin cycle in spinach chloroplasts is proposed.  相似文献   

12.
3-(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU) inhibition of (14)CO(2) fixation in isolated intact spinach (Spinacia oleracea L.) chloroplasts was reversed (by about 34%) by l-malate but not by oxaloacetate (OAA). However, OAA reversed the DCMU inhibition in spinach protoplasts indicating an extrachloroplastic enzyme requirement. Extrachloroplastic OAA reduction was coupled with external dihydroxyacetone phosphate (DHAP) oxidation, and the malate formed from such coupling might then enter the chloroplasts. Evidence was presented using ruptured protoplasts that the export of recently formed 3-phosphoglyceric acid (PGA) out of chloroplasts in exchange for external DHAP was reversed by excess OAA. The PGA/DHAP shuttle across the chloroplast envelope was found to be regulated by the external concentrations of DHAP and OAA.  相似文献   

13.
Rogosa, M., (National Institutes of Health, Bethesda, Md.), M. I. Krichevsky, and F. S. Bishop. Truncated glycolytic system in Veillonella. J. Bacteriol. 90:164-171. 1965.-Intact Veillonella cells do not utilize carbohydrates for growth, nor are carbohydrates fermented. In cell extracts, there is no detectable glucokinase or fructokinase. Cell extracts do not degrade glucose or fructose unless supplemented with yeast hexokinase. Under these conditions, triose phosphates are formed in the presence of a hydrazine trap. When glucose-C(14) plus added hexokinase or fructose-1,6-diphosphate-C(14) was incubated with cell extracts, the production of CO(2), acetate, pyruvate, propionate, and lactate was detected. It is concluded that, except for a hexokinase, all the activities required for a glycolytic system are present.  相似文献   

14.
Inhibition of chloroplastic respiration by osmotic dehydration   总被引:1,自引:1,他引:0       下载免费PDF全文
The respiratory capacity of isolated spinach (Spinacia oleracea L.) chloroplasts, measured as the rate of 14CO2 evolved from the oxidative pentose phosphate cycle in darkened chloroplasts exogenously supplied with [14C]glucose, was progressively diminished by escalating osmotic dehydration with betaine or sorbitol. Comparing the inhibitions of CO2 evolution generated by osmotic dehydration in chloroplasts given C-1 and C-6 labeled glucose, 54% and 84% respectively, indicates that osmotic dehydration effects to a greater extent the recycling of the oxidative pentose phosphate intermediates, fructose-6P and glyceraldehyde-3P. Respiratory inhibition in the darkened chloroplast could be alleviated by addition of NH4Cl (a stromal alkylating agent), iodoacetamide) an inhibitor of glyceraldehyde-3P dehydrogenase), or glycolate-2P (an inhibitor of phosphofructokinase). It is concluded that the site which primarily mediates respiratory inhibition in the darkened chloroplast occurs at the fructose 1,6-bisphosphatase/phosphofructokinase junction.  相似文献   

15.
Zucker diabetic fatty rats develop type 2 diabetes concomitantly with peripheral insulin resistance. Hepatocytes from these rats and their control lean counterparts have been cultured, and a number of key parameters of glucose metabolism have been determined. Glucokinase activity was 4.5-fold lower in hepatocytes from diabetic rats than in hepatocytes from healthy ones. In contrast, hexokinase activity was about 2-fold higher in hepatocytes from diabetic animals than in healthy ones. Glucose-6-phosphatase activity was not significantly different. Despite the altered ratios of glucokinase to hexokinase activity, intracellular glucose 6-phosphate concentrations were similar in the two types of cells when they where incubated with 1-25 mM glucose. However, glycogen levels and glycogen synthase activity ratio were lower in hepatocytes from diabetic animals. Total pyruvate kinase activity and its activity ratio as well as fructose 2,6-bisphosphate concentration and lactate production were also lower in cells from diabetic animals. All of these data indicate that glucose metabolism is clearly impaired in hepatocytes from Zucker diabetic fatty rats. Glucokinase overexpression using adenovirus restored glucose metabolism in diabetic hepatocytes. In glucokinase-overexpressing cells, glucose 6-phosphate levels increased. Moreover, glycogen deposition was greatly enhanced due to the activation of glycogen synthase. Pyruvate kinase was also activated, and fructose-2,6-bisphosphate concentration and lactate production were increased in glucokinase-overexpressing diabetic hepatocytes. Overexpression of hexokinase I did not increase glycogen deposition. In conclusion, hepatocytes from Zucker diabetic fatty rats showed depressed glycogen and glycolytic metabolism, but glucokinase overexpression improved their glucose utilization and storage.  相似文献   

16.
1. Lactic acid formation in supernatant fractions of homogenates of cat or rat small-intestinal mucosa was measured under optimum conditions with glucose, fructose, glucose 6-phosphate, fructose 1,6-diphosphate or 3-phosphoglycerate as substrate. 2. Between 80 and 107% of the glycolytic activity of the homogenate was recovered in these particle-free preparations when glucose, fructose, glucose 6-phosphate or fructose 1,6-diphosphate was used as substrate. 3. Evidence was obtained that hexokinase and phosphofructokinase were the rate-limiting enzymes in the initial sequence of glycolytic reactions. The limitation of rate by hexokinase was much more pronounced in preparations from the cat than in those from the rat. 4. With subcellular preparations from cat or rat small intestine lactic acid was also formed from ribose 5-phosphate and at rates similar to those observed with glucose. 5. A higher rate of glycolysis was observed with glucose 6-phosphate as substrate with preparations from the proximal half of the small intestine of the rat as compared with the distal half. 6. Mucosal preparations from rats starved for 24-48hr. exhibited only about one-quarter of the glycolytic activity of those of fed control groups. The decreased rate of formation of lactic acid from either glucose or fructose was mainly due to a decrease in the activity of hexokinase(s). The activities of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase and a number of other enzymes were not significantly decreased by starvation. 7. The results are discussed in relation to metabolic control of glycolysis in other mammalian tissues.  相似文献   

17.
Because the envelope phosphatidate phosphatase plays a pivotal role in chloroplast glycerolipid metabolism, we have analyzed whether diacylglycerol could be a regulatory factor of the enzyme. Using isolated envelope membranes in which the level of diacylglycerol was modified by thermolysin treatment of intact chloroplasts to destroy the galactolipid:galactolipid galactosyltransferase, we have demonstrated that phosphatidate phosphatase activity was reduced when the membrane was enriched in diacylglycerol. All 1,2-diacylglycerol molecular species assayed were demonstrated to inhibit the enzyme to about the same extent. Kinetic studies with envelope from thermolysin-treated chloroplasts were performed in the absence and presence of diacylglycerol, and diacylglycerol was shown to be a powerful competitive inhibitor of the reaction. Finally, using isolated intact spinach chloroplasts, we have demonstrated that in situ phosphatidate phosphatase activity can be modulated by the level of diacylglycerol present in the membrane. The relevance of phosphatidate phosphatase inhibition by diacylglycerol in the regulation of chloroplast glycerolipid biosynthesis is discussed.  相似文献   

18.
Two glucose-phosphorylating enzymes, a hexokinase phosphorylating both glucose and fructose, and a glucose-specific glucokinase were electrophoretically separated in the methylotrophic yeastHansenula polymorpha. Hexokinase-negative mutants were isolated inH. polymorpha by using mutagenesis, selection and genetic crosses. Regulation of synthesis of the sugar-repressed alcohol oxidase, catalase and maltase was studied in different hexose kinase mutants. In the wild type and in mutants possessing either hexokinase or glucokinase, glucose repressed the synthesis of maltase, alcohol oxidase and catalase. Glucose repression of alcohol oxidase and catalase was abolished in mutants lacking both glucose-phosphorylating enzymes (i.e. in double kinase-negative mutants). Thus, glucose repression inH. polymorpha cells requires a glucose-phosphorylating enzyme, either hexokinase or glucokinase. The presence of fructose-phosphorylating hexokinase in the cell was specifically needed for fructose repression of alcohol oxidase, catalase and maltase. Hence, glucose or fructose has to be phosphorylated in order to cause repression of the synthesis of these enzymes inH. polymorpha suggesting that sugar repression in this yeast therefore relies on the catalytic activity of hexose kinases.  相似文献   

19.
Carbon dioxide-dependent O(2) evolution by isolated pea (Pisum sativum) chloroplasts was inhibited by inorganic pyrophosphate (PPi). Oxygen evolution was also inhibited by high concentrations of orthophosphate (Pi) and the inhibition was relieved by 3-phosphoglycerate. In contrast, the inhibition by PPi was not relieved by 3-phosphoglycerate, indicating that hydrolysis of PPi and accumulation of inhibitory concentrations of Pi were not occurring. In agreement with this suggestion, the percentage of (14)C-labeled products diffusing out of the chloroplasts was increased by Pi but not by PPi. The inhibition of O(2) evolution by PPi was reversed by ATP. The concentration of PPi required for 50% inhibition was 1.2 to 1.4 mm and the subsequent stimulation by ATP was half-maximal at 16 to 25 mum. Carbon dioxide-dependent O(2) evolution by spinach chloroplasts, or chloroplasts isolated from older pea plants, was not significantly inhibited by PPi.Chloroplasts were preloaded with (14)C-ATP and release of the labeled nucleotides was measured to assess the activity of adenine nucleotide transport across the inner chloroplast envelope membrane. A rapid exchange was promoted by the addition of exogenous ATP. Addition of PPi also resulted in a release of endogenous nucleotides. We suggest that PPi inhibits CO(2) fixation by entering the chloroplast in exchange for endogenous adenine nucleotides via the transporter on the inner envelope membrane. The subsequent depletion of the internal adenine nucleotide pool would result in decreased CO(2) fixation due to insufficient ATP. Addition of ATP to PPi-inhibited chloroplasts apparently results in uptake of catalytic amounts of ATP and restoration of the internal adenine nucleotide pool thus relieving the inhibition of CO(2) fixation.  相似文献   

20.
1. Mesophyll and parenchyma-sheath chloroplasts of maize leaves were separated by density fractionation in non-aqueous media. 2. An investigation of the distribution of photosynthetic enzymes indicated that the mesophyll chloroplasts probably contain the entire leaf complement of pyruvate,P(i) dikinase, NADP-specific malate dehydrogenase, glycerate kinase and nitrite reductase and most of the adenylate kinase and pyrophosphatase. The fractionation pattern of phosphopyruvate carboxylase suggested that this enzyme may be associated with the bounding membrane of mesophyll chloroplasts. 3. Ribulose diphosphate carboxylase, ribose phosphate isomerase, phosphoribulokinase, fructose diphosphate aldolase, alkaline fructose diphosphatase and NADP-specific ;malic' enzyme appear to be wholly localized in the parenchyma-sheath chloroplasts. Phosphoglycerate kinase and NADP-specific glyceraldehyde phosphate dehydrogenase, on the other hand, are distributed approximately equally between the two types of chloroplast. 4. After exposure of illuminated leaves to (14)CO(2) for 25sec., labelled malate, aspartate and 3-phosphoglycerate had similar fractionation patterns, and a large proportion of each was isolated with mesophyll chloroplasts. Labelled fructose phosphates and ribulose phosphates were mainly isolated in fractions containing parenchyma-sheath chloroplasts, and dihydroxyacetone phosphate had a fractionation pattern intermediate between those of C(4) dicarboxylic acids and sugar phosphates. 6. These results indicate that the mesophyll and parenchyma-sheath chloroplasts have a co-operative function in the operation of the C(4)-dicarboxylic acid pathway. Possible routes for the transfer of carbon from C(4) dicarboxylic acids to sugars are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号