首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell migration is essential for both organogenesis and tumor progression. Bone morphogenetic proteins (BMPs) are reported to be critical for not only bone formation but also tumor invasion. Here, we found that treatment with recombinant human BMP-2 (rhBMP-2) enhanced the haptotactic response of murine osteoblastic MC3T3-E1 and osteosarcoma Dunn cells to various extracellular matrix (ECM) components, including fibronectin, type I collagen, and laminin-1. Function-blocking antibody against integrin alpha5beta1 partially inhibited haptotaxis to fibronectin, suggesting that the response was propagated via these integrins. rhBMP-2 slightly increased the expression level of integrin beta1, and enhanced the speed of cell spreading on fibronectin, focal adhesion formation and phosphorylation of focal adhesion kinase (FAK) at Tyr397. By means of sucrose gradient flotation, incorporation of integrin beta1 in fractions of detergent (CHAPS) resistant membrane was increased when the cells were treated with rhBMP-2. Further, treatment with methyl-beta-cyclodextrin to deplete membrane cholesterol abrogated the effect of rhBMP-2 on haptotaxis, and exogenously added cholesterol reversed this inhibitory effect. Collectively, these results provide insights into the mechanism by which BMP signaling enhances cell migration by modulating fibronectin-integrin beta1 signaling via cholesterol enriched membrane microdomains, lipid rafts.  相似文献   

2.
Summary In 32-cell stage embryos ofPatella vulgata one of the macromeres contacts the animal micromeres, and as a result is induced to differentiate into the stem cell of the mesodermal cell line. In this study we show the presence of an extracellular matrix (ECM) between these two interacting cell types. The ECM appears to be formed by the micromeres during the 32-cell stage. Staining experiments with alcian blue and tannic acid indicate that in contains glycoconjugates, possibly in the form of proteoglycans. The characteristics of the ECM were examined further by fluorescein isothiocyanate (FITC)-lectin labelling. Of 17 lectins tested, concanavalin A (ConA), succinyl-ConA, LCH-B (Lens culinaris) and PEA (Pisum sativum) showed a positive labelling of the ECM. These results are in accordance with the electron microscopic data. The appearance of the ECM at this specific stage and place suggests that it might play an important role in the induction of the mesodermal cell line.  相似文献   

3.
Cell surface activation of progelatinase A (proMMP—2) and cell migration   总被引:15,自引:1,他引:15  
Gelatinase A (MMP-2) is considered to play a critical role in cell migration and invasion.The proteinase is cerceted from the cell as an inactive zymogen.In vivo it is postulated that activation of progelationase A (proMMP-2) takes place on the cell surface mediated by membrane-type matrix metalloproteinases (MT-MMPs).Recent studies have demonstrated that proMMP-2 is recruited to the cell surface by interacting with tissue inhibitor of metalloproteinases-2 (TIMP-2) bound to MT1-MMP by forming a ternary complex.Free MT1-MMP closely located to the ternary complex then activates proMMP-2 on the cell surface.MT1-MMP is found in cultured invasive cancer cells at the invadopodia.The MT-MMP/TIMP-2/MMP-2 system thus provides localized expression of proteolysis of the extracellular matrix required for cell migration.  相似文献   

4.
Cell adhesion and cell migration are two primary cellular phenomena to be approached in vitro in order to allow for the effective dissection of the individual events and the unravelling of their underlying molecular mechanisms. The use of assays dedicated to the analysis of cell adhesion and migration in vitro also affords an efficient way of conducting larger basic and applied research screenings of the conditions affecting these processes and are potentially exploitable in the context of routine tests in the biological and medical fields. Therefore, there is a substantial interest in devicing more rationale such assays and major contributions in this direction have been provided by the advent of procedures based on fluorescent cell tagging. In this article we describe three fluorescence-based model assays for the qualitative and quantitative assessment of cell adhesion and cell locomotion in static and dynamic conditions. The assays are easily performed, accurate and reproducible, and can be automatized for high-throughput screenings of cell behavior in vitro. Performance of the assays involves the use of certain dedicated disposable accessories, which are commercially available, and a few instruments that, due to their versatility, can be regarded as constituents of a more generic laboratory setup.  相似文献   

5.
The early phase of 3T3 fibroblast interaction with sulfonated styrene copolymer surfaces, of two sulfonic group densities and thus of differing wettability, was studied. The sulfonic groups present on copolymer surfaces affected the behaviour of cells, i.e. they stimulated cell adhesion, activated cell spreading and influenced cytoskeleton reorganization. The relative number of adhering cells correlated, while the number of spreading cells inversely correlated, with the surface density of sulfonic groups. Cell shape and the pattern of distribution of F-actin, alpha-actinin and vinculin in the interacting cells also depend on the surface density of sulfonic groups. On surfaces of high sulfonic group density, highly polarized cells were observed with F-actin bundles. On surfaces of low sulfonic group density, the cells spread with a square-like morphology with F-actin organized in stress fibres. In contrast, the cells spread poorly on nonsulfonated surfaces and cell adhesion was unaffected by surface wettability. The contribution of alpha(5)beta(1), alpha(4), and beta(5)integrins to the cell interaction with fibronectin (FN) and vitronectin (VN) adsorbed from serum-containing medium on polymer surfaces was examined. Our results suggest that surface sulfonic groups influence the conformation of FN and VN adsorbed on polymer surfaces and, in turn, determine the integrins that are involved in cell adhesion.  相似文献   

6.
We characterized β1 integrin subunit expression on three different cultures of benign human nevomelanocytes (NMC) and on four different cell cultures of human dysplastic nevus (DN) cells by flow cytometry analysis and examined their role in mediating cell spreading and migration on collagen type IV (CN IV) and laminin (LN) coated substrates by using a quantitative video image analysis system. The seven human NMC and DNC cultures expressed heterogeneous levels of β1, α2, α3 and α6 integrin subunits. Image analysis showed that a significant increase (P<0.001) in cell spreading and migration of the DN cells was induced on increasing coating concentrations of CN IV and LN. However, the NMC did not show an increase in cell spreading or migration on these substrates when compared to the substrates coated with denatured BSA only. The CN IV-induced cell spreading of the DN cells was significantly inhibited by anti-β1 mAb (AIIB2), anti-α2 mAb (P1E6), or anti-α3 mAb (P1B5), but not by mAb against α6 integrin subunit (GoH3). The DN cell spreading on LN was not significantly inhibited by these mAbs. In contrast, the migration of the DN on CN IV and LN was significantly inhibited by anti-β1 mAb, anti-α2 mAb, anti-α3 mAb and anti-α6 mAb. These data suggest that the α2 and α3 subunit are important for cell spreading of the DN on CN IV, although they are less important in cell spreading on the extracellular matrix component LN. The α2, α3 and α6 integrin subunits are important for the migration of DN cells on both CN IV and LN.  相似文献   

7.
Aberrant migration of smooth muscle cells (SMCs) is a key feature of restenosis. Since extracellular matrix proteins and their receptors of the integrin family play a critical role in this process, it is instrumental to understand their contribution to cell migration and invasive motility of SMC on the molecular level. Therefore, we investigated the role of alpha(v)-containing integrins expressed by primary human coronary artery smooth muscle cells (hCASMCs) in vitronectin (VN)-initiated signaling events and cell migration. In hCASMC plated on VN, alpha(v)-containing integrins were localized at focal adhesion sites. Haptotactic stimulation through VN led to a dose-dependent increase in cell migration and concomitantly to enhanced tyrosine phosphorylation of focal adhesion kinase. Both events were completely blocked by a specific inhibitor of integrin alpha(v). Additionally, the integrin alpha(v) inhibitor abolished PDGF-BB-stimulated chemotactic migration. Confocal microscopy confirmed the increased tyrosine phosphorylation at VN-initiated focal contact sites in hCASMC, that was abolished upon alpha(v) inhibition. In vitro invasion of hCASMC was severely compromised in the presence of the integrin alpha(v) inhibitor paralleled by decreased levels of secreted matrix metalloprotease 2 (MMP-2). Together, integrin alpha(v) inhibition abrogates tyrosine phosphorylation at focal adhesion sites and diminishes MMP-2 secretion leading to reduced migration and invasion of hCASMCs.  相似文献   

8.
Angiopoietin-related growth factor (AGF) is a newly identified member of angiopoietin-related proteins (ARPs)/angiopoietin-like proteins (Angptls). AGF has been considered as a novel growth factor in accelerating cutaneous wound healing, as it is capable of stimulating keratinocytes proliferation as well as angiogenesis. But in our paper, we demonstrate that AGF stimulates keratinocytes proliferation only at high protein concentration, however, it can potently promote adhesion, spreading, and migration of keratinocytes, fibroblasts, and endothelial cells. Furthermore, we confirm that the adhesion and migration cellular events are mediated by RGD-binding integrins, most possibly the alpha(v)-containing integrins, by in vitro inhibition assays using synthetic competitive peptides. Our results strongly suggest that AGF is an integrin ligand as well as a mitogenic growth factor and theoretically participates in cutaneous wound healing in a more complex mechanism.  相似文献   

9.
Only a limited number of techniques are available for assessing the effect of different coating materials on cell adherence to screws. In this study, we describe a simple and inexpensive method for evaluation of cell adhesion on irregular surfaces such as the surgical or implant screws. For this purpose, we prepared semi-submerged screws in the petri dishes using agar. Using BSA- or HA-coated screws, we tested whether BSA or HA could improve cell adherence when used as coating materials. Agar-coated screws were used as internal control. Then the “ratio of cell adherence” was calculated by subtracting the reference RCA value obtained from the agar coated screws (internal control). When compared to that of the non-coated screws both the HA- and BSA-coating improved cell adherence on the screws by 2.34 and 2.72 fold respectively. Similarly, MTT assay data revealed that the metabolic capacities of cells on HA- or BSA-coated screws were improved by 2.36 and 2.86 fold respectively. These findings suggest that this protocol can be used for comparing the ability of cells to attach on irregular surfaces such as dental or orthopedic screws and assessing their viability.  相似文献   

10.
Bone matrix turnover is regulated by matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs), and the plasminogen activation system, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA), and plasminogen activator inhibitor type-1 (PAI-1). We previously demonstrated that 1.0g/cm(2) of compressive force was an optimal condition for inducing bone formation by osteoblastic Saos-2 cells. Here, we examined the effect of mechanical stress on the expression of MMPs, TIMPs, tPA, uPA, and PAI-1 in Saos-2 cells. The cells were cultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum and with or without continuously compressive force (0.5-3.0g/cm(2)) for up to 24h. The levels of MMPs, TIMPs, uPA, tPA, and PAI-1 gene expression were estimated by determining the mRNA levels using real-time PCR, and the protein levels were determined using ELISA. The expression levels of MMP-1, MMP-2, MMP-14, and TIMP-1 markedly exceeded the control levels at 1.0g/cm(2) of compressive force, whereas the expression levels of MMP-3, MMP-13, TIMP-2, TIMP-3, TIMP-4, tPA, uPA, and PAI-1 markedly exceeded the control levels at 3.0g/cm(2). These results suggest that mechanical stress stimulates bone matrix turnover by increasing these proteinases and inhibitors, and that the mechanism for the proteolytic degradation of bone matrix proteins differs with the strength of the mechanical stress.  相似文献   

11.
12.
Regulation of endothelial cell (EC) permeability by bioactive molecules is associated with specific patterns of cytoskeletal and cell contact remodeling. A role for mechanical factors such as shear stress (SS) and cyclic stretch (CS) in cytoskeletal rearrangements and regulation of EC permeability becomes increasingly recognized. This paper examined redistribution of focal adhesion (FA) proteins, site-specific focal adhesion kinase (FAK) phosphorylation, small GTPase activation and barrier regulation in human pulmonary EC exposed to laminar shear stress (15 dyn/cm2) or cyclic stretch (18% elongation) in vitro. SS caused peripheral accumulation of FAs, whereas CS induced randomly distributed FAs attached to the ends of newly formed stress fibers. SS activated small GTPase Rac without effects on Rho, whereas 18% CS activated without effect on Rac. SS increased transendothelial electrical resistance (TER) in EC monolayers, which was further elevated by barrier-protective phospholipid sphingosine 1-phosphate. Finally, SS induced FAK phosphorylation at Y576, whereas CS induced FAK phosphorylation at Y397 and Y576. These results demonstrate for the first time differential effects of SS and CS on Rho and Rac activation, FA redistribution, site-specific FAK phosphorylation, and link them with SS-mediated barrier enhancement. Thus, our results suggest common signaling and cytoskeletal mechanisms shared by mechanical and chemical factors involved in EC barrier regulation.  相似文献   

13.
The effects of serial cell passaging on cell spreading, migration, and cell-surface ultrastructures have been less investigated directly. This study evaluated the effects of long-term serial cell passaging (totally 35 passages) on cultured human umbilical vein endothelial cells which were pre-stored at −80 °C as usual. Percentage- and spread area-based spreading assays, measurements of fluorescently labeled actin filaments, migration assay, and measurements of cell-surface roughness were performed and quantitatively analyzed by confocal microscopy or atomic force microscopy. We found that the abilities of cell spreading and migration first increased at early passages and then decreased after passage 15, in agreement with the changes in average length of actin filaments. Recovery from cold storage and effects of cell passaging were potentially responsible for the increases and decreases of the values, respectively. In contrast, the average roughness of cell surfaces (particularly the nucleus-surrounding region) first dropped at early passages and then rose after passage 15, which might be caused by cold storage- and cell passaging-induced endothelial microparticles. Our data will provide important information for understanding serial cell passaging and implies that for pre-stored adherent cells at −80 °C cell passages 5–10 are optimal for in vitro studies.  相似文献   

14.
Angiogenesis involves sprouting, migration, and proliferation of endothelial cells. The angiomotin-like2 gene (amotl2) has been found in blood vessels in zebrafish embryos, but its function in angiogenesis and underlying mechanisms remain unknown. In this study, we demonstrate that knockdown of amotl2 in zebrafish Tg(fli1:EGFP)(y1) and Tg(fli1:nEGFP)(y7) transgenic embryos impairs the intersegmental vessel growth and suppresses proliferation of endothelial cells. Transplantation experiments indicate that function of amotl2 in intersegmental vessel growth is cell-autonomous. AMOTL2 knockdown in cultured human umbilical vein endothelial cells also inhibits cell proliferation and migration and disrupts cell polarity, ultimately interrupting the formation of vascular tube-like structures. Amotl2 promotes MAPK/ERK activation via c-Src, which is dependent on phosphorylation of tyrosine residue at position 103 but independent of the C-terminal PDZ-binding domain. Taking together, our data indicate that Amotl2 plays a pivotal role in polarity, migration and proliferation of angiogenic endothelial cells.  相似文献   

15.
Pseudopodium-enriched atypical kinase 1 (PEAK1) is a recently described tyrosine kinase that associates with the actin cytoskeleton and focal adhesion (FA) in migrating cells. PEAK1 is known to promote cell migration, but the responsible mechanisms remain unclear. Here, we show that PEAK1 controls FA assembly and disassembly in a dynamic pathway controlled by PEAK1 phosphorylation at Tyr-665. Knockdown of endogenous PEAK1 inhibits random cell migration. In PEAK1-deficient cells, FA lifetimes are decreased, FA assembly times are shortened, and FA disassembly times are extended. Phosphorylation of Tyr-665 in PEAK1 is essential for normal PEAK1 localization and its function in the regulation of FAs; however, constitutive phosphorylation of PEAK1 Tyr-665 is also disruptive of its function, indicating a requirement for precise spatiotemporal regulation of PEAK1. Src family kinases are required for normal PEAK1 localization and function. Finally, we provide evidence that PEAK1 promotes cancer cell invasion through Matrigel by a mechanism that requires dynamic regulation of Tyr-665 phosphorylation.  相似文献   

16.
Titanium dioxide nanoparticles (TiO2‐NPs) are one of the most widely engineered nanoparticles used. The study has been focused on TiO 2‐NPs genotoxic effects on human spermatozoa in vitro. TiO 2‐NPs are able to cross the blood–testis barrier induced inflammation, cytotoxicity, and gene expression changes that lead to impairment of the male reproductive system. This study presents new data about DNA damage in human sperms exposed in vitro to two n‐TiO 2 concentrations (1 µg/L and 10 µg/L) for different times and the putative role of reactive oxygen species (ROS) as mediators of n‐TiO 2 genotoxicity. Primary n‐TiO 2 characterization was performed by transmission electron microscopy. The dispersed state of the n‐TiO 2 in media was spectrophotometrically determined at 0, 24, 48, and 72 hr from the initial exposure. The genotoxicity has been highlighted by different experimental approaches (comet assay, terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL] test, DCF assay, random amplification of polymorphic DNA polymerase chain reaction [RAPD‐PCR]). The comet assay showed a statistically significant loss of sperm DNA integrity after 30 min of exposure. Increased threshold of sperm DNA fragmentation was highlighted after 30 min of exposure by the TUNEL Test. Also, the RAPD‐PCR analysis showed a variation in the polymorphic profiles of the sperm DNA exposed to n‐TiO 2. The evidence from the DCF assay showed a statistically significant increase in intracellular ROS linked to n‐TiO 2 exposure. This research provides the evaluation of n‐TiO 2 potential genotoxicity on human sperm that probably occurs through the production of intracellular ROS.  相似文献   

17.
Lung cancers which show increased vascularization and high microvessel density are considered highly metastatic and with poor prognosis. Growth hormone releasing hormone (GHRH) antagonists are anticancer agents without adverse events in lung cancer tumor models. In the present study we investigated the in vitro effect of GHRH antagonist, MZ-5-156, on focal adhesion kinase (FAK) activity, on the expression of MMP-2 and MMP-9 metalloproteinases, as well as on vascular endothelial growth factor (VEGF) levels in A549 non-small cell lung (NSCLC) cancer cells and H727 bronchial carcinoid cells. We demonstrate for the first time that GHRH antagonist, MZ-5-156, inhibits FAK signaling in lung cancer cells and decreases the expression of additional factors involved in angiogenesis and invasion. In contrast, GHRH itself counteracted these effects. Our study contributes to the further understanding of the processes which govern the mechanism of action of GHRH and its antagonists in cancers.  相似文献   

18.
Although human papillomavirus (HPV) DNA is detected in the majority of squamous intraepithelial lesions (SIL) and carcinoma (SCC) of the uterine cervix, the persistence or progression of cervical lesions suggest that viral antigens are not adequately presented to the immune system. This hypothesis is reinforced by the observation that most SIL show quantitative and functional alterations of Langerhans cells (LC). The aim of this study was to determine whether prostaglandins (PG) may affect LC density in the cervical (pre)neoplastic epithelium. We first demonstrated that the epithelial expression of PGE2 enzymatic pathways, including cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES-1), is higher in SIL and SCC compared to the normal exocervical epithelium and inversely correlated to the density of CD1a-positive LC. By using cell migration assays, we next showed that the motility of immature dendritic cells (DC) and DC partially differentiated in vitro in the presence of PGE2 are differentially affected by PGE2. Immature DC had a lower ability to migrate in the presence of PGE2 compared to DC generated in vitro in the presence of PGE2. Finally, we showed that PGE2 induced a cytokine production profile and phenotypical features of tolerogenic DC, suggesting that the altered expression of PGE2 enzymatic pathways may promote the cervical carcinogenesis by favouring (pre)cancer immunotolerance. M. Herfs and L. Herman contributed equally to this work.  相似文献   

19.
20.
The p53 gene is a tumor suppressor gene. It encodes a nuclear phosphoprotein p53 involved in the regulation of cell cycle arrest and apoptosis to maintain the genomic integrity of the cell. As mutations of p53 gene are found in most human cancers, p53 protein becomes a hot target in the research of anticancer therapy. In the present study, an 11-amino acid domain of TAT protein which has been demonstrated to be able to transduce across cell membranes was fused with p53. The result revealed that the fusion protein His-TAT-p53 accumulated in the nucleus and inhibited the growth of the Saos-2 cells. Besides apoptosis, an increased percentage of G2 phase suggested that the transduction of His-TAT-p53 into cells might be associated with a G2 arrest of cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号