首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Follistatin (Fst) functions to bind and neutralize the activity of members of the transforming growth factor-β superfamily. Fst has a well-established role in skeletal muscle, but we detected significant Fst expression levels in interscapular brown and subcutaneous white adipose tissue, and further investigated its role in adipocyte biology. Fst expression was induced during adipogenic differentiation of mouse brown preadipocytes and mouse embryonic fibroblasts (MEFs) as well as in cold-induced brown adipose tissue from mice. In differentiated MEFs from Fst KO mice, the induction of brown adipocyte proteins including uncoupling protein 1, PR domain containing 16, and PPAR gamma coactivator-1α was attenuated, but could be rescued by treatment with recombinant FST. Furthermore, Fst enhanced thermogenic gene expression in differentiated mouse brown adipocytes and MEF cultures from both WT and Fst KO groups, suggesting that Fst produced by adipocytes may act in a paracrine manner. Our microarray gene expression profiling of WT and Fst KO MEFs during adipogenic differentiation identified several genes implicated in lipid and energy metabolism that were significantly downregulated in Fst KO MEFs. Furthermore, Fst treatment significantly increases cellular respiration in Fst-deficient cells. Our results implicate a novel role of Fst in the induction of brown adipocyte character and regulation of energy metabolism.  相似文献   

2.
3.
Regulation of adipocyte differentiation and insulin action with rapamycin   总被引:6,自引:0,他引:6  
Here, we demonstrated that inhibition of mTOR with rapamycin has negative effects on adipocyte differentiation and insulin signaling. Rapamycin significantly reduced expression of most adipocyte marker genes including PPARgamma, adipsin, aP2, ADD1/SREBP1c, and FAS, and decreased intracellular lipid accumulation in 3T3-L1 and 3T3-F442A cells, suggesting that rapamycin would affect both lipogenesis and adipogenesis. Contrary to the previous report that suppressive effect of rapamycin on adipogenesis is limited to the clonal expansion, we revealed that its inhibitory effect persisted throughout the process of adipocyte differentiation. Thus, it is likely that constitutive activation of mTOR might be required for the execution of adipogenic programming. In differentiated 3T3-L1 adipocytes, chronic treatment of rapamycin blunted the phosphorylation of AKT and GSK, which is stimulated by insulin, and reduced insulin-dependent glucose uptake activity. Taken together, these results suggest that rapamycin not only prevents adipocyte differentiation by decrease of adipogenesis and lipogenesis but also downregulates insulin action in adipocytes, implying that mTOR would play important roles in adipogenesis and insulin action.  相似文献   

4.
Divergent selection of chickens for low or high abdominal fat (AF) but similar BW at 63 days of age was undertaken in 1977. The selection programme was conducted over seven successive generations. The difference between lines was then maintained constant at about twice the AF in the fat line as in the lean line. The aims of the first studies on these divergent chicken lines were to describe the growth, body composition and reproductive performance in young and adult birds. The lines were then used to improve the understanding of the relationship between fatness and energy and protein metabolism in the liver, muscle and adipose tissues, as well as the regulation of such metabolism at hormonal, gene and hypothalamic levels. The effects on muscle energy metabolism in relation to meat quality parameters were also described. This paper reviews the main results obtained with these lines.  相似文献   

5.
6.
7.
The ability to ensure continuous availability of energy despite highly variable supplies in the environment is a major determinant of the survival of all species. In higher organisms, including mammals, the capacity to efficiently store excess energy as triglycerides in adipocytes, from which stored energy could be rapidly released for use at other sites, was developed. To orchestrate the processes of energy storage and release, highly integrated systems operating on several physiological levels have evolved. The adipocyte is no longer considered a passive bystander, because fat cells actively secrete many members of the cytokine family, such as leptin, tumor necrosis factor-alpha, and interleukin-6, among other cytokine signals, which influence peripheral fuel storage, mobilization, and combustion, as well as energy homeostasis. The existence of a network of adipose tissue signaling pathways, arranged in a hierarchical fashion, constitutes a metabolic repertoire that enables the organism to adapt to a wide range of different metabolic challenges, such as starvation, stress, infection, and short periods of gross energy excess.  相似文献   

8.
9.
Until quite recently, brown adipose tissue was considered of metabolic significance only in small mammals and human newborns, since it was thought to disappear rapidly after birth in humans. However, nowadays this tissue is known to play a role in the regulation of energy balance not only in rodents, but also in humans. In this review we highlight new features regarding brown adipose tissue origin and function and revise old paradigms about brown adipocyte differentiation.  相似文献   

10.
Mitochondria play an essential role in the ability of brown fat to generate heat, and the PGC-1 coactivators control several aspects of mitochondrial biogenesis. To investigate their specific roles in brown fat cells, we generated immortal preadipocyte lines from the brown adipose tissue of mice lacking PGC-1alpha. We could then efficiently knockdown PGC-1beta expression by shRNA expression. Loss of PGC-1alpha did not alter brown fat differentiation but severely reduced the induction of thermogenic genes. Cells deficient in either PGC-1alpha or PGC-1beta coactivators showed a small decrease in the differentiation-dependant program of mitochondrial biogenesis and respiration; however, this increase in mitochondrial number and function was totally abolished during brown fat differentiation when both PGC-1alpha and PGC-1beta were deficient. These data show that PGC-1alpha is essential for brown fat thermogenesis but not brown fat differentiation, and the PGC-1 coactivators play an absolutely essential but complementary function in differentiation-induced mitochondrial biogenesis.  相似文献   

11.
Adipose tissue performs complex metabolic and endocrine functions. This review will focus on the recent literature on the biology and actions of three adipocyte hormones involved in the control of energy homeostasis and insulin action, leptin, acylation-stimulating protein, and adiponectin, and mechanisms regulating their production. Results from studies of individuals with absolute leptin deficiency (or receptor defects), and more recently partial leptin deficiency, reveal leptin's critical role in the normal regulation of appetite and body adiposity in humans. The primary biological role of leptin appears to be adaptation to low energy intake rather than a brake on overconsumption and obesity. Leptin production is mainly regulated by insulin-induced changes of adipocyte metabolism. Consumption of fat and fructose, which do not initiate insulin secretion, results in lower circulating leptin levels, a consequence which may lead to overeating and weight gain in individuals or populations consuming diets high in energy derived from these macronutrients. Acylation-stimulating protein acts as a paracrine signal to increase the efficiency of triacylglycerol synthesis in adipocytes, an action that results in more rapid postprandial lipid clearance. Genetic knockout of acylation-stimulating protein leads to reduced body fat, obesity resistance and improved insulin sensitivity in mice. The primary regulator of acylation-stimulating protein production appears to be circulating dietary lipid packaged as chylomicrons. Adiponectin increases insulin sensitivity, perhaps by increasing tissue fat oxidation resulting in reduced circulating fatty acid levels and reduced intramyocellular or liver triglyceride content. Adiponectin and leptin together normalize insulin action in severely insulin-resistant animals that have very low levels of adiponectin and leptin due to lipoatrophy. Leptin also improves insulin resistance and reduces hyperlipidemia in lipoatrophic humans. Adiponectin production is stimulated by agonists of peroxisome proliferator-activated receptor-gamma; an action may contribute to the insulin-sensitizing effects of this class of compounds. The production of all three hormones is influenced by nutritional status. These adipocyte hormones, the pathways controlling their production, and their receptors represent promising targets for managing obesity, hyperlipidemia, and insulin resistance.  相似文献   

12.
Fat cells from control and 72 h fasted rats were incubated with increasing concentrations of insulin at 37 degrees C for 10 min. A crude microsomal fraction from these cells was used for the determination of phosphodiesterase activity. Specific activities of the enzyme in fat cells from the fasted rats were higher at overall insulin concentrations. In the fasted rats the curve shifted to the left at the lower concentrations of insulin and the half-maximal dose was lower than in the controls. Specific binding of insulin to the receptor was increased at the lower concentrations of insulin in fat cells from the fasted rats and Scatchard analysis of the data revealed that the change was due to an increase in binding affinity rather than that in receptor number per cell. Therefore, it is feasible that there is a good correlation with alteration of insulin sensitivity and insulin binding. The net amount of maximal response to insulin assessed as enzyme activity per cell was markedly decreased with fasting, however, this seems to be due to a decrease in absolute amount of the enzyme per cell. Since the maximal activation of the enzyme expressed as a percent of the basal remained unchanged, the steps between insulin receptor and the phosphodiesterase may not be altered under these conditions.  相似文献   

13.
Summary The effects of theophylline on insulin receptors and insulin action in isolated rat adipocytes were studied. Theophylline reduced insulin binding by a decrease of receptor affinity. As concentration-response curves revealed, the effect was paralleled by a reduction of the cellular ATP content. Basal as well as insulin-stimulated glucose transport (2-deoxyglucose and 3-O-methylglucose uptake) were inhibited by much smaller theophylline concentrations (0.15–0.6 mM ) than those necessary to reduce insulin binding and to lower ATP levels (1–4.8 mM), or to stimulate lipolysis (0.3-2.4 mM). Insulin fully antagonized the effect of theophylline on lipolysis but failed to reverse the inhibition of glucose transport completely. The results suggest that (a) theophylline impairs insulin action at a post-receptor level and, at higher concentrations, by a decrease of receptor binding, (b) the reduction of insulin receptor affinity probably reflects ATP depletion of the adipocyte, and (c) the xanthine inhibits glucose transport independently from its effects on lipolysis.  相似文献   

14.
15.
16.
Betula platyphylla var. japonica (Betulaceae) has been used traditionally in Asian countries for the treatment of inflammatory diseases. A recent study has reported a phenolic compound, platyphylloside from B. platyphylla, that shows inhibition on adipocyte differentiation and induces lipolysis in 3T3-L1 cells. Based on this finding, we conducted phytochemical analysis of the EtOH extract of the bark of B. platyphylla var. japonica, which resulted in the isolation of phenolic glycosides (14). Treatment of the isolated compounds (14) during adipocyte differentiation of 3T3-L1 mouse adipocytes resulted in dose-dependent inhibition of adipogenesis. In mature adipocytes, arylbutanoid glycosides (24) induced lipolysis related genes HSL and ATGL, whereas catechin glycoside (1) had no effect. Additionally, arylbutanoid glycosides (24) also induced GLUT4 and adiponectin mRNA expression, indicating improvement in insulin signaling. This suggests that the isolates from B. platyphylla var. japonica exert benefial effects in regulation of adipocyte differentiation as well as adipocyte metabolism.  相似文献   

17.
Adipose tissue exerts multiple vital functions that critically maintain energy balance, including storing and expending energy, as well as secreting factors that systemically modulate nutrient metabolism. Since lipids are the major constituents of the adipocytes, it is unsurprising that the lipid composition of these cells plays a critical role in maintaining their functions and communicating with other organs and cells. In both positive and negative energy balance conditions, lipids and free fatty acids secreted from adipocytes exert either beneficial or detrimental effects in other tissues, such as the liver, pancreas and muscle. The way the adipocytes communicate with other organs tightly depends on the nature of their lipidome composition. Notwithstanding, the lipidome composition of the adipocytes is affected by physiological factors such as adipocyte type, gender and age, but also by environmental cues such as diet composition, thermal stress and physical activity. Here we provide an updated overview on how the adipose tissue lipidome profile is shaped by different physiological and environmental factors and how these changes impact the way the adipocytes regulate whole-body energy metabolism.  相似文献   

18.
Using cell specific anti-adipocyte sera and an immuno-precipitation procedure, the nature of the cell surface antigens characterizing adipocytes from rat brown adipose tissue was investigated. Initially the ability of anti-sera, raised against adipose plasma membrane preparations of white or brown adipose tissue, to distinguish between membrane preparations derived from either tissue was confirmed. Analysis of the plasma membranes derived from brown adipose and similar preparations labelled with 125I revealed the presence of specific externally disposed mature brown adipocyte-specific antigens. The specifically immunoprecipated antigens had molecular weights of 70,000, 56,000 and 23,000. None of these antigens were cross immunoprecipated by antisera to mature white adipocyte membranes. The presence of the brown adipose specific antigens on the surface of differentiating adipocyte precursor cells derived from rat brown adipose tissue was demonstrated using a labelled-secon antibody cellular immunoassay. The expression of the immunoreactivity associated with these antigens was shown to be an early event in the differentiation programme of the cells in vitro. The functional identity and possible roles of these antigens in the control of brown adipocyte differentiation now becomes accessible to further experimental investigation.  相似文献   

19.
The vascular system controls the delivery of nutrients and hormones to muscle, and a number of hormones may act to regulate muscle metabolism and contractile performance by modulating blood flow to and within muscle. This review examines evidence that insulin has major hemodynamic effects to influence muscle metabolism. Whole body, isolated hindlimb perfusion studies and experiments with cell cultures suggest that the hemodynamic effects of insulin emanate from the vasculature itself and involve nitric oxide-dependent vasodilation at large and small vessels with the purpose of increasing access for insulin and nutrients to the interstitium and muscle cells. Recently developed techniques for detecting changes in microvascular flow, specifically capillary recruitment in muscle, indicate this to be a key site for early insulin action at physiological levels in rats and humans. In the absence of increases in bulk flow to muscle, insulin may act to switch flow from nonnutritive to the nutritive route. In addition, there is accumulating evidence to suggest that insulin resistance of muscle in vivo in terms of impaired glucose uptake could be partly due to impaired insulin-mediated capillary recruitment. Exercise training improves insulin-mediated capillary recruitment and glucose uptake by muscle.  相似文献   

20.
Various kinds of hormones including insulin, triiodothyronine (T(3)) and fat-soluble vitamins have been proposed as mediators of adipocyte differentiation in mammals. To investigate the factors which are responsible for fish adipocyte differentiation, we developed a serum-free culture system of stromal-vascular cells of red sea bream adipose tissue and examined the effects of bovine insulin, T(3), and fat-soluble vitamins (all-trans retinoic acid, retinyl acetate and 1,25-dihydroxyvitamin D(3)) on the differentiation-linked expression of the lipoprotein lipase (LPL) gene. As assessed by the increase in LPL gene expression after 3 day cultivation, like in mammalian adipocytes, insulin enhanced the adipocyte differentiation in a concentration-dependent manner. During 2 week cultivation, bovine insulin promoted lipid accumulation in differentiating adipocytes concentration-dependently until the terminal differentiation. These results indicate that the differentiation of fish adipocytes is inducible by insulin alone. T(3) alone had no effect but enhanced the differentiation-linked LPL gene expression in the presence of insulin. Fat-soluble vitamins, unlike in mammalian adipocytes, did not show any significant effects. The method developed in this study should be of interest for the characterization of factors involved in fish adipocyte differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号