首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutathione disulfide stimulates the activity of rat liver microsomal glutathione S-transferase 2-fold after incubation at 25 degrees C for 10 min. When the microsomes were incubated with the disulfide for over 20 min, the transferase activity increased to the same extent as in the case of N-ethylmaleimide (6-fold). Even in the presence of reduced glutathione, some enhancement of the transferase activity was observed. The data presented here are evidence that increase in glutathione disulfide level, e.g. by lipid peroxidation, on endoplasmic reticulum causes the upregulation of microsomal glutathione S-transferase activity.  相似文献   

2.
The single glutathione S-transferase (EC 2.5.1.18) present in rat erythrocytes was purified to apparent homogeneity by affinity chromatography on glutathione-Sepharose and hydroxyapatite chromatography. Approx. 1.86 mg enzyme is found in 100 ml packed erythrocytes and accounts for about 0.01% of total soluble protein. The native enzyme (Mr 48 000) displays a pI of 5.9 and appears to possess a homodimeric structure with a subunit of Mr 23 500. Enzyme activities with ethacrynic acid and cumene hydroperoxide were 24 and 3%, respectively, of that with 1-chloro-2,4-dinitrobenzene. The Km values for 1-chloro-2,4-dinitrobenzene and glutathione were 1.0 and 0.142 mM, respectively. The concentrations of certain compounds required to produce 50% inhibition (I50) were as follows: 12 μM bromosulphophthalein, 34 μM S-hexylglutathione, 339 μM oxidized glutathione and 1.5 mM cholate. Bromosulphophthalein was a noncompetitive inhibitor with respect to 1-chloro-2,4-dinitrobenzene (Ki = 8 μM) and glutathione (Kis = 4 μM; Kii = 11.5 μM) while S-hexylglutathione was competitive with glutathione (Ki = 5 μM).  相似文献   

3.
Selective induction of Phase II over Phase I drug-metabolizing enzymes has been proposed as a mechanism for reduction of chemical carcinogenesis. Enzymes likely to play a role in this amelioration include the glutathione S-transferases (GSTs) and among compounds that selectively induce key GSTs are tert-butylhydroquinone (tBHQ) and oltipraz [4-methyl-5-(2-pyrazinyl)-3H-1,2-dithiole-3-thione]. In vivo, and in hepatoma cells (H4IIE), these two agents induce rat GSTA2 mRNA to a similar extent. However, with a luciferase reporter construct containing 1651 bp of the proximal 5' flanking region of the rGSTA2 gene in the same cell line and under similar conditions, luciferase activity was induced to a much greater extent by tBHQ than by oltipraz. A similar large intercompound differential was seen with reporter constructs containing either the rGSTA2 ARE enhancer and HNF1 site (-872 to -582) or XRE enhancer and HNF1 site (-1110 to -812). In H4IIE cells, the rGSTA2 mRNA response to each agent was completely inhibited by 1 microM actinomycin-D cotreatment. With 1 microM cycloheximide cotreatment however, some induction by tBHQ remained, while induction by oltipraz was completely abolished. The induction response to tBHQ but not oltipraz was augmented by pretreatment with PD98059, a MEK1/2 specific inhibitor. Notwithstanding induction characteristics in common, oltipraz, and tBHQ have sufficient dissimilarities to indicate that rGSTA2 upregulation by the two agents is not identical.  相似文献   

4.
5.
Subcellular distribution of glutathione S-transferase activity was investigated as stimulated form by N-ethylmaleimide in rat liver. The stimulated glutathione S-transferase activity was localized in mitochondrial and lysosomal fractions besides microsomes. Among N-ethylmaleimide-treated submitochondrial fractions, glutathione S-transferase activity was stimulated only in outer mitochondrial membrane fraction. In lysosomal fraction, it was suggested that glutathione S-transferase activity in peroxisomes, which is immunochemically related to microsomal transferase, was also stimulated, but not in lysosomes.  相似文献   

6.
7.
The in vitro effect of the toxin and teratogen, acrolein, on the fetal rat liver glutathione S-transferase isoenzyme, YcYfetus, was investigated and compared with acrolein's effect on some of the adult rat liver glutathione S-transferase isoenzymes. Acrolein was found to inhibit all the isoenzymes investigated and double-reciprocal plots suggest that inhibition is either noncompetitive or mixed-type noncompetitive. It is therefore attractive to suggest that should a similar situation arise in vivo, it may provide one mechanism for the teratogenicity of acrolein.  相似文献   

8.
One of the major problems in the treatment of human cancer is the phenomenon of drug resistance. Increased glutathione (gamma-glutamylcysteinylglycine, GSH) conjugation (inactivation) due to elevated level of cytosolic glutathione S-transferase (GST) is believed to be an important mechanism in tumor cell resistance. However, the potential involvement of microsomal GST in the establishment of acquired drug resistance (ADR) remains uncertain. In our experiments, a combination of liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was employed for structural characterization of the resulting conjugates between GSH and melphalan, one of the alkylating agents. The spontaneous reaction of 1mM melphalan with 5mM GSH at 37 degrees C in aqueous phosphate buffer for 1h gave primarily the monoglutathionyl and diglutathionyl melphalan derivatives, with small amounts of mono- and dihydroxy melphalan derivatives. We demonstrated that rat liver microsomal GST presented a strong catalytic effect on the reaction as determined by the increase of monoglutathionyl and diglutathionyl melphalan derivatives and the decrease of melphalan. We showed that microsomal GST was activated by melphalan in a concentration- and time-dependent manner. Microsomal GST which was stimulated approximately 1.5-fold with melphalan had a stronger catalytic effect. Thus microsomal GST may play a potential role in the metabolism of melphalan in biological membranes, and in the development of ADR.  相似文献   

9.
Clinical efficacy of alkylating anticancer drugs, such as chlorambucil (4-[p-[bis [2-chloroethyl] amino] phenyl]-butanoic acid; CHB), is often limited by the emergence of drug resistant tumor cells. Increased glutathione (gamma-glutamylcysteinylglycine; GSH) conjugation (inactivation) of alkylating anticancer drugs due to overexpression of cytosolic glutathione S-transferase (GST) is believed to be an important mechanism in tumor cell resistance to alkylating agents. However, the potential involvement of microsomal GST in the establishment of acquired drug resistance (ADR) to CHB remains uncertain. In our experiments, a combination of lipid chromatography/electrospray ionization mass spectrometry (LC/ESI/MS) was employed for structural characterization of the resulting conjugates between CHB and GSH. The spontaneous reaction of 1mM CHB with 5 mM GSH at 37 degrees C in aqueous phosphate buffer for 1 h gave primarily the monoglutathionyl derivative, 4-[p-[N-2-chloroethyl, N-2-S-glutathionylethyl] amino]phenyl]-butanoic acid (CHBSG) and the diglutathionyl derivative, 4-[p-[2-S-glutathionylethyl] amino]phenyl]-butanoic acid (CHBSG2) with small amounts of the hydroxy-derivative, 4-[p-[N-2-S-glutathionylethyl, N-2-hydroxyethyl] amino]phenyl]-butanoic acid (CHBSGOH), 4-[p-[bis[2-hydroxyethyl] amino]phenyl]-butanoic acid (CHBOH2), 4-[p-[N-2-chloroethyl, N-2-S-hydroxyethyl]amino]phenyl]-butanoic acid (CHBOH). We demonstrated that rat liver microsomal GST presented a strong catalytic effect on these reactions as determined by the increase of CHBSG2, CHBSGOH and CHBSG and the decrease of CHB. We showed that microsomal GST was activated by CHB in a concentration and time dependent manner. Microsomal GST which was stimulated approximately two-fold with CHB had a stronger catalytic effect. Thus, microsomal GST may play a potential role in the metabolism of CHB in biological membranes, and in the development of ADR.  相似文献   

10.
11.
12.
A cDNA library prepared from poly(A)+ RNA of 2-acetylaminofluorene (AAF) induced rat hepatocellular carcinoma was screened by synthetic DNA probes deduced from a partial amino acid sequence of glutathione S-transferase P subunit that had been isolated from the tumor by two-dimensional gel electrophoresis. One of the four clones analyzed contained an mRNA region encoding the total amino acid sequence of this enzyme subunit and the complete 3'-noncoding region. The nucleotide sequence indicates that this enzyme subunit has 209 amino acids (calculated Mr=23,307) distinct from other glutathione S-transferase subunits such as Ya and Yc. Comparison of the amino acid sequences between these proteins indicates that glutathione S-transferase P subunit gene has been evolved from the ancestral gene at an earlier stage than the separation of Ya and Yc and that there are at least three domains having a considerable homology with each other in these enzymes. The very large increase of this mRNA in chemically induced hepatocellular carcinoma suggests a characteristic derepression of this gene during hepatocarcinogenesis.  相似文献   

13.
14.
Three cationic glutathione S-transferase forms isolated from rat liver were characterized as dimers that originated from different combinations of two subunit types, Ya and Yc. The cationic forms were purified using lysyl glutathione affinity matrices and were chromatographically resolved from anionic glutathione S-transferases that contain Yb subunits. The three classes of cationic transferase exhibited similar specific activities with 1-chloro-2,4-dinitrobenzene as a substrate, all forms cross-reacted with antibodies to glutathione S-transferase B, and all had comparable secondary structures and tryptophan fluorescence properties. In spite of those similarities, the Yc-containing forms were clearly distinguishable from Ya forms on the basis of characteristic differences in circular dichroic patterns associated with their aromatic side chains. All cationic transferases bound bilirubin with stoichiometric ratios of 1 mol/dimeric protein molecule, but discrete differences in mode of binding were ascribed to forms containing Ya subunits as compared to Yc dimers. Binding to Yc forms was of lower affinity and may be associated with the catalytic region of the protein since glutathione effectively displaced bilirubin from the Yc component.  相似文献   

15.
Feeding male weanling rats on a vitamin A-deficient diet for 6 weeks resulted in significant increases (44-57%) in glutathione S-aryl-, S-aralkyl- S-alkyl- and S-epoxidetransferase activities in the liver cytosol. Only the S-aralkyl- (27%) and S-alkyltransferase (14%) activities were significantly increased in the kidney as a result of deficiency. There was no effect on any of the pulmonary glutathione S-transferase activities. The increases in hepatic transferase activities were due primarily to increases (25-96%) in the apparent Vmax. There were no changes in the apparant Km of any of the four drug substrates employed. With 3,4-dichloronitrobenzene as the second substrate, the apparent Km for glutathione was increased by over 2-fold in vitamin A-deficient livers as compared with controls. The relationship between these results and enhanced susceptibility to chemical carcinogens in vitamin A deficiency is briefly discussed, and comparison is made between the effects of this nutritional state and pretreatment with drug inducers on the glutathione S-transferases.  相似文献   

16.
Glutathione S-transferases (GSTs) constitute a large family of enzymes that catalyze the addition of glutathione to endogenous, or xenobiotic, often toxic electrophilic compounds. The effect of this enzyme in facilitating polychlorinated biphenyls degradation has been studied previously. Here the effects of induced cell-free extracts of Acinetobacter calcoaceticus and Pseudomonas aeruginosa (grown on hexadecane), and E. coli BL21 (induced with pGEX-2T plasmid on isothiopropylgalactoside) were recruited to facilitate morpholine degradation by Mycobacterium and were compared with non-induced strains. The results showed that all induced strains had significantly more GST activity compared to non-induced ones, and the strain with most GST activity, A. calcoaceticus BS, removed morpholine faster. Eukaryotic GST gene expressed in E. coli BL21 also could facilitate morpholine degradation by Mycobacterium, The same experiments performed with cell-free extracts of non-induced cells did not show any significant effects on morpholine removal. These results showed that there is a correlation between GST activity and acceleration of morpholine degradation.  相似文献   

17.
mRNA levels of glutathione S-transferase (GST) subunits 3 and 4 were measured with a specific cDNA probe in adult rat hepatocytes maintained either in conventional culture or in coculture with rat liver epithelial cells. Four media conditions were used, i.e. with or without fetal calf serum (FCS) and with nicotinamide or dimethylsulfoxide (DMSO). When FCS was present in the culture medium, GST subunit 3 and 4 mRNAs were expressed at a level close to that found in freshly isolated hepatocytes during the whole culture period both in conventional culture and in coculture. All other culture conditions resulted in an increase of GST 3 and 4 mRNA levels. After exposure to phenobarbital an increase in GST 3 and 4 mRNA levels was demonstrated in both culture systems. Comparison with previous findings on the expression of GST subunits 1, 2 and 7 in the same culture conditions indicates that the different classes of GST are regulated independently.  相似文献   

18.
Testis cytosol is shown to contain the Yb2Yb2 -homodimer glutathione S-transferase D in addition to the previously described glutathione S-transferases A ( Yb1Yb1 ) and C ( Yb1Yb2 ). Treatment of rats with phenobarbital induces the level of glutathione S-transferase D in testis with no increase in the activities of glutathione S-transferases A and C. This result indicates a specific induction of the Yb2 subunit in testis, in contrast with the situation in rat liver, where phenobarbital specifically induces the Yb1 subunit.  相似文献   

19.
Selenium (Se) deficiency in rats produced significant increases in the activity of hepatic glutathione S-transferase (GST) with 1-chloro-2,4-dinitrobenzene as substrate and in various GST isoenzymes when determined by radioimmunoassay. These changes is GST activity and concentration were associated with Se deficiency that was severe enough to provoke decreases of over 98% in hepatic Se-containing glutathione peroxidase activity (Se-GSHpx). However, decreases in hepatic Se-GSHpx of 60% induced by copper (Cu) deficiency had no effect on GST activity or concentration. Increased GST activity in Se deficiency has previously been postulated to be a compensatory response to loss of Se-GSHpx, since some GSTs have a non-Se-glutathione peroxidase (non-Se-GSHpx) activity. However, the GST isoenzymes determined in this study, GST Yb1Yb1, GST YcYc and GST YaYa, are known to have up to 30-fold differences in non-Se-GSHpx activity, but they were all significantly increased to a similar extent in the Se-deficient rats.  相似文献   

20.
The effect of phenolic antioxidants on the rat liver microsomal glutathione S-transferase (MGST1) was investigated in vitro. When microsomes were incubated with various polyphenolic antioxidants, gallic acid (3,4,5-trihydroxybenzoic acid) markedly increased MGST1 activity and the increase was prevented in the presence of superoxide dismutase (SOD) or catalase. The MGST1 activity increased by gallic acid was decreased by further incubation with sodium arsenite, a sulfenic acid reducing agent, but was not with dithiothreitol, a disulfide bond reducing agent. The incubation of microsomes with gallic acid in the presence of the NADPH generating system which generates reactive oxygen species (ROS) through cytochrome P-450 system increased the MGST1activity in spite of scavenging the ROS and the increase was also depressed by SOD/catalase. The increase of MGST1 activity by gallic acid was prevented by co-incubation with a stable radical, 1,1-diphenyl-2-picrylhydrazyl or ferric chloride. These results suggest that the gallic acid acts as a pro-oxidant and activates MGST1 through oxidative modification of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号