首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 950 毫秒
1.
Telomere dynamics in an immortal human cell line.   总被引:36,自引:3,他引:33       下载免费PDF全文
The integration of transfected plasmid DNA at the telomere of chromosome 13 in an immortalized simian virus 40-transformed human cell line provided the first opportunity to study polymorphism in the number of telomeric repeat sequences on the end of a single chromosome. Three subclones of this cell line were selected for analysis: one with a long telomere on chromosome 13, one with a short telomere, and one with such extreme polymorphism that no distinct band was discernible. Further subcloning demonstrated that telomere polymorphism resulted from both gradual changes and rapid changes that sometimes involved many kilobases. The gradual changes were due to the shortening of telomeres at a rate similar to that reported for telomeres of somatic cells without telomerase, eventually resulting in the loss of nearly all of the telomere. However, telomeres were not generally lost completely, as shown by the absence of polymorphism in the subtelomeric plasmid sequences. Instead, telomeres that were less than a few hundred base pairs in length showed a rapid, highly heterogeneous increase in size. Rapid changes in telomere length also occurred on longer telomeres. The frequency of this type of change in telomere length varied among the subclones and correlated with chromosome fusion. Therefore, the rapid changes in telomere length appeared occasionally to result in the complete loss of telomeric repeat sequences. Rapid changes in telomere length have been associated with telomere loss and chromosome instability in yeast and could be responsible for the high rate of chromosome fusion observed in many human tumor cell lines.  相似文献   

2.
Effect of telomere length on telomeric gene expression.   总被引:3,自引:0,他引:3       下载免费PDF全文
Telomeres gradually shorten as human somatic cells divide and a correlation has been observed between the average telomere length and cell senescence. It has been proposed that the genes responsible for cell senescence are located near the telomere and are activated when telomere length reaches a critical point. This is consistent with evidence from Saccharomyces cerevisiae, in which genes are regulated differently depending on their distance from the telomere. We investigated the possibility that differential gene expression is conferred by telomere length in human cells. A plasmid containing the neomycin phosphotransferase (neo) gene was transfected into the SV40-transformed human fibroblast cell line LM217. In one transfectant the plasmid was integrated at the telomere of chromosome 13. Subclones of this cell line that had various lengths of telomeric repeat sequences on the end of this chromosome were isolated. No effect on neo gene expression was found when the length of the telomere varied between 25 and 0.5 kb, as demonstrated by colony forming ability, growth rates and RNA blot analysis. These results therefore suggest that putative chromatin structural differences conferred by telomere length do not affect the expression of genes located near telomeres.  相似文献   

3.
One of the functions of telomeres is to counteract the terminal nucleotide loss associated with DNA replication. While the vast majority of eukaryotic organisms maintain their chromosome ends via telomerase, an enzyme system that generates short, tandem repeats on the ends of chromosomes, other mechanisms such as the transposition of retrotransposons or recombination can also be used in some species. Chromosome end regression and extension were studied in a medically important mosquito, the malaria vector Anopheles gambiae, to determine how this dipteran insect maintains its chromosome ends. The insertion of a transgenic pUChsneo plasmid at the left end of chromosome 2 provided a unique marker for measuring the dynamics of the 2L telomere over a period of about 3 years. The terminal length was relatively uniform in the 1993 population with the chromosomes ending within the white gene sequence of the inserted transgene. Cloned terminal chromosome fragments did not end in short repeat sequences that could have been synthesized by telomerase. By late 1995, the chromosome ends had become heterogeneous: some had further shortened while other chromosomes had been elongated by regenerating part of the integrated pUChsneo plasmid. A model is presented for extension of the 2L chromosome by recombination between homologous 2L chromosome ends by using the partial plasmid duplication generated during its original integration. It is postulated that this mechanism is also important in wild-type telomere elongation.  相似文献   

4.
Although most telomere repeat sequences are found at the ends of chromosomes, some telomeric repeat sequences are also found at intrachromosomal locations in mammalian cells. Several studies have found that these interstitial telomeric repeat sequences can promote chromosome instability in rodent cells, either spontaneously or following ionizing radiation. In the present study we describe the extensive cytogenetic analysis of three different human cell lines with plasmids containing telomeric repeat sequences integrated at interstitial sites. In two of these cell lines, Q18 and P8SX, instability has been detected in the chromosome containing the integrated plasmid, involving breakage/fusion/bridge cycles or amplification of the plasmid DNA, respectively. However, the data suggest that the instability observed is characteristic of the general instability in these cell lines and that the telomeric repeat sequences themselves are not responsible. Consistent with this interpretation, the chromosome containing an integrated plasmid with 500 bp of telomeric repeat sequences is highly stable in the third cell line, SNG28, which has a relatively stable genome. The stability of the chromosome containing the integrated plasmid sequences in SNG28 makes this an excellent cell line to study the effect of ionizing radiation on the stability of interstitial telomeric sequences in human cells.  相似文献   

5.
Telomeres play an important role in protecting the ends of chromosomes and preventing chromosome fusion. We have previously demonstrated that double-strand breaks near telomeres in mammalian cells result in either the addition of a new telomere at the site of the break, termed chromosome healing, or sister chromatid fusion that initiates chromosome instability. In the present study, we have investigated the role of telomerase in chromosome healing and the importance of chromosome healing in preventing chromosome instability. In embryonic stem cell lines that are wild type for the catalytic subunit of telomerase (TERT), chromosome healing at I-SceI-induced double-strand breaks near telomeres accounted for 22 of 35 rearrangements, with the new telomeres added directly at the site of the break in all but one instance. In contrast, in two TERT-knockout embryonic stem cell lines, chromosome healing accounted for only 1 of 62 rearrangements, with a 23 bp insertion at the site of the sole chromosome-healing event. However, in a third TERT-knockout embryonic stem cell line, 10PTKO-A, chromosome healing was a common event that accounted for 20 of 34 rearrangements. Although this chromosome healing also occurred at the I-SceI site, differences in the microhomology at the site of telomere addition demonstrated that the mechanism was distinct from that in wild-type embryonic stem cell lines. In addition, the newly added telomeres in 10PTKO-A shortened with time in culture, eventually resulting in either telomere elongation through a telomerase-independent mechanism or loss of the subtelomeric plasmid sequences entirely. The combined results demonstrate that chromosome healing can occur through both telomerase-dependent and -independent mechanisms, and that although both mechanisms can prevent degradation and sister chromatid fusion, neither mechanism is efficient enough to prevent sister chromatid fusion from occurring in many cells experiencing double-strand breaks near telomeres.  相似文献   

6.
We have cloned a telomere and adjacent sequences from rat-derived Pneumocystis carinii using the ability of foreign telomeres to complement a yeast artificial chromosome (YAC) deficient by one telomere in Saccharomyces cerevisiae . Characterization of the cloned DNA in the recombinant YAC demonstrated that it was a chimera of two P. carinii sequences, namely a 13.5 kb fragment of mitochondrial DNA and an 8.3 kb distal portion consisting of subtelomeric DNA. The P. carinii telomere repeat was demonstrated to be TTAGGG, the most common telomere repeat found in organisms from the animal and fungal kingdoms. Karyotype analysis confirmed that this sequence was present on all the P. carinii chromosomes. Sequence adjacent to the telomere repeats was shown by Bal 31 exonuclease digestion to be located at the chromosome ends. Analysis of the subtelomeric fragment revealed homology to the gene encoding the major surface glycoprotein of P. carinii  相似文献   

7.
Relocation into the nucleus of the yeast cytoplasmic linear plasmids was studied using a monitor plasmid pCLU1. InSaccharomyces cerevisiae, the nuclearly-relocated pCLU1 replicated in a linear form (termed pTLU-type plasmid) which carried the host telomeric repeats TG1–3 of 300–350 bp at both ends. The telomere sequences mainly consisted of a major motif TGTGTGGGTGTGG which was complementary to part of the RNA template of yeast telomerase and were directly added to the very end of the pCLU1-terminal element ITR (inverted terminal repeat), suggesting that the ITR end played a role as a substrate of telomerase. The telomere sequences varied among isolated pTLU-type plasmids, but the TG1–3 organization was symmetrically identical on both ends of any one plasmid. During cell growth under non-selective condition, the telomeric repeat sequences were progressively rearranged on one side, but not on the opposite side of pTLU plasmid ends. This indicates that the mode of telomeric DNA replication or repair differed between both ends. Clonal analysis showed that the intense rearrangement of telomeric DNA was closely associated with extreme instability of pTLU plasmids. Published: February 17, 2003  相似文献   

8.
Murnane JP 《Mutation research》2012,730(1-2):28-36
The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is therefore important for understanding chromosome instability in human cancer.  相似文献   

9.
Structure and variability of human chromosome ends.   总被引:77,自引:8,他引:69       下载免费PDF全文
Mammalian telomeres are thought to be composed of a tandem array of TTAGGG repeats. To further define the type and arrangement of sequences at the ends of human chromosomes, we developed a direct cloning strategy for telomere-associated DNA. The method involves a telomere enrichment procedure based on the relative lack of restriction endonuclease cutting sites near the ends of human chromosomes. Nineteen (TTAGGG)n-bearing plasmids were isolated, two of which contain additional human sequences proximal to the telomeric repeats. These telomere-flanking sequences detect BAL 31-sensitive loci and thus are located close to chromosome ends. One of the flanking regions is part of a subtelomeric repeat that is present at 10 to 25% of the chromosome ends in the human genome. This sequence is not conserved in rodent DNA and therefore should be a helpful tool for physical characterization of human chromosomes in human-rodent hybrid cell lines; some of the chromosomes that may be analyzed in this manner have been identified, i.e., 7, 16, 17, and 21. The minimal size of the subtelomeric repeat is 4 kilobases (kb); it shows a high frequency of restriction fragment length polymorphisms and undergoes extensive de novo methylation in somatic cells. Distal to the subtelomeric repeat, the chromosomes terminate in a long region (up to 14 kb) that may be entirely composed of TTAGGG repeats. This terminal segment is unusually variable. Although sperm telomeres are 10 to 14 kb long, telomeres in somatic cells are several kilobase pairs shorter and very heterogeneous in length. Additional telomere reduction occurs in primary tumors, indicating that somatic telomeres are unstable and may continuously lose sequences from their termini.  相似文献   

10.
Telomeric repeat sequences, located at the end of eukaryotic chromosomes, have been detected at intrachromosomal locations in many species. Large blocks of telomeric sequences are located near the centromeres in hamster cells, and have been reported to break spontaneously or after exposure to ionizing radiation, leading to chromosome aberrations. In human cells, interstitial telomeric sequences (ITS) can be composed of short tracts of telomeric repeats (less than twenty), or of longer stretches of exact and degenerated hexanucleotides, mainly localized at subtelomeres. In this paper, we analyzed the radiation sensitivity of a naturally occurring short ITS localized in 2q31 and we found that this region is not a hot spot of radiation-induced chromosome breaks. We then selected a human cell line in which approximately 800 bp of telomeric DNA had been introduced by transfection into an internal euchromatic chromosomal region in chromosome 4q. In parallel, a cell line containing the plasmid without telomeric sequences was also analyzed. Both regions containing the transfected plasmids showed a higher frequency of radiation-induced breaks than expected, indicating that the instability of the regions containing the transfected sequences is not due to the presence of telomeric sequences. Taken together, our data show that ITS themselves do not enhance the formation of radiation-induced chromosome rearrangements in these human cell lines.  相似文献   

11.
The prophage of coliphage N15 is not integrated into the bacterial chromosome but exists as a linear plasmid molecule with covalently closed ends. Upon infection of an Escherichia coli cell, the phage DNA circularises via cohesive ends. A phage-encoded enzyme, protelomerase, then cuts at another site, telRL, and forms hairpin ends (telomeres). We demonstrate that this enzyme acts in vivo on specific substrates, and show that it is necessary for replication of the linear prophage. We show that protelomerase is an end-resolving enzyme responsible for processing of replicative intermediates. Removal of protelomerase activity resulted in accumulation of replicative intermediates that were found to be circular head-to-head dimers. N15 protelomerase and its target site constitute a functional unit acting on other replicons independently of other phage genes; a mini-F or mini-P1 plasmid carrying this unit replicates as a linear plasmid with covalently closed ends. Our results suggest the following model of N15 prophage DNA replication. Replication is initiated at an internal ori site located close to the left end of plasmid DNA and proceeds bidirectionally. After replication of the left telomere, protelomerase cuts this sequence and forms two hairpin loops telL. After duplication of the right telomere (telR) the same enzyme resolves this sequence producing two linear plasmids. Alternatively, full replication of the linear prophage to form a circular head-to-head dimer may precede protelomerase-mediated formation of hairpin ends.  相似文献   

12.
Telomeres are specialized structures at the ends of linear chromosomes that were originally defined functionally based on observations first by Muller (1938) and subsequently by McClintock (1941) that naturally occurring chromosome ends do not behave as double-stranded DNA breaks, in spite of the fact that they are the physical end of a linear, duplex DNA molecule. Double-stranded DNA breaks are highly unstable entities, being susceptible to nucleolytic attack and giving rise to chromosome rearrangements through end-to-end fusions and recombination events. In contrast, telomeres confer stability upon chromosome termini, as evidenced by the fact that chromosomes are extraordinarily stable through multiple cell divisions and even across evolutionary time. This protective function of telomeres is due to the formation of a nucleoprotein complex that sequesters the end of the DNA molecule, rendering it inaccessible to nucleases and recombinases as well as preventing the telomere from activating the DNA damage checkpoint pathways. The capacity of a functional end-protective complex to form is dependent upon maintenance of sufficient telomeric DNA. We have learned a great deal about telomere structure and how this specialized nucleoprotein complex confers stability on chromosome ends since the original observations that defined telomeres were made. This review summarizes our current understanding of mammalian telomere replication, structure and function.  相似文献   

13.
Telomere instability in a human cancer cell line.   总被引:6,自引:0,他引:6  
Telomere maintenance is essential in immortal cancer cells to compensate for DNA lost from the ends of chromosomes, to prevent chromosome fusion, and to facilitate chromosome segregation. However, the high rate of fusion of chromosomes near telomeres, termed telomere association, in many cancer cell lines has led to the proposal that some cancer cells may not efficiently perform telomere maintenance. Deficient telomere maintenance could play an important role in cancer because telomere associations and nondisjunction have been demonstrated to be mechanisms for genomic instability. To investigate this possibility, we have analyzed the telomeres of the human squamous cell carcinoma cell line SQ-9G, which has telomere associations in approximately 75% of the cells in the population. The absence of detectable telomeric repeat sequences at the sites of these telomere associations suggests that they result from telomere loss. The analysis of telomere length by quantitative in situ hybridization demonstrated that, compared to the human squamous cell carcinoma cell line SCC-61 which has few telomere associations, SQ-9G has more extensive heterogeneity in telomere length and more telomeres without detectable telomeric repeat sequences. The dynamics of the changes in telomere length also demonstrated a higher rate of fluctuation in telomere length, both on individual telomeres and coordinately on all telomeres. These results demonstrate that telomere maintenance can play a role in the genomic instability seen in cancer cells.  相似文献   

14.
Telomeres are specialized caps of nucleoprotein complexes located at the chromosome termini. They consist of short DNA repeats and of an assortment of associated proteins whose function is currently under intense investigation in model systems. These specialized structures protect the linear ends of eukaryotic chromosomes against DNA repair and degradation activities, and serve as the substrate for telomerase, the ribonucleoprotein complex that synthesises the telomere repeats. The pivotal role of the telomeres in the maintenance of cell viability in several model eukaryotes, including humans, greatly promoted research in telomere biology. Studies on telomere structure and function in fungi other than model systems are limited to providing information on the telomeric repeat sequences. Here, we have summarized the current knowledge on the organization of chromosome ends and on the proteins participating in telomere function in model systems including recent information obtained for filamentous fungi. We also describe Ustilago maydis genes that are potential homologs of proteins known from other systems to participate in telomere biology.  相似文献   

15.
The Synechocystis sp. PCC6803 insertion sequence ISY100 (ISTcSa) belongs to the Tc1/mariner/IS630 family of transposable elements. ISY100 transposase was purified and shown to promote transposition in vitro. Transposase binds specifically to ISY100 terminal inverted repeat sequences via an N-terminal DNA-binding domain containing two helix-turn-helix motifs. Transposase is the only protein required for excision and integration of ISY100. Transposase made double-strand breaks on a supercoiled DNA molecule containing a mini-ISY100 transposon, cleaving exactly at the transposon 3' ends and two nucleotides inside the 5' ends. Cleavage of short linear substrates containing a single transposon end was less precise. Transposase also catalysed strand transfer, covalently joining the transposon 3' end to the target DNA. When a donor plasmid carrying a mini-ISY100 was incubated with a target plasmid and transposase, the most common products were insertions of one transposon end into the target DNA, but insertions of both ends at a single target site could be recovered after transformation into Escherichia coli. Insertions were almost exclusively into TA dinucleotides, and the target TA was duplicated on insertion. Our results demonstrate that there are no fundamental differences between the transposition mechanisms of IS630 family elements in bacteria and Tc1/mariner elements in higher eukaryotes.  相似文献   

16.
Cloned DNA fragments of Drosophila miranda which label all chromosome ends show a basic tandem repeat unit of 4.4 kb. The D. miranda telomere specific tandem repeats do not cross-hybridize with genomic D. melanogaster DNA which itself contains telomere repeat units of 3 kb. For a more detailed analysis of the functional criteria of telomere specific sequences we determined the repetition frequency of the tandem repeat units. As a low estimate we found a repetition frequency of 20 for female D. miranda DNA. This is on average equivalent to 2 telomere repeat units per chromosome end in the female D. miranda karyotype. However, a variable number of tandem repeat units per chromosome end would describe more closely the obtained differences in the labeling intensity between the individual chromosomes (X1L-5). For the D. miranda male DNA we determined a repetition frequency of 90. The frequency difference of 70 copies between male and female DNA must be due to the Y-chromosome.  相似文献   

17.
The mechanisms of recombination responsible for random integration of transfected DNA into the genome of normal human cells have been investigated by analysis of plasmid-cell DNA junctions. Cell clones containing integrated plasmid sequences were selected by morphological transformation of primary human fibroblasts after transfection with a plasmid containing simian virus 40 sequences. Nucleotide sequence analysis of the plasmid-cell DNA junctions was performed on cloned DNA fragments containing the integration sites from two of these cell clones. Polymerase chain reaction was then performed with human cell DNA from primary fibroblasts to isolate the cell DNA from the same sites before plasmid integration. Comparison of the sequences at the plasmid-cell DNA junctions with those of both the original plasmid and the cell DNA demonstrated short sequence similarities and additional nucleotides, typical of nonhomologous recombination. Evidence of short deletions in the cell DNA at the plasmid integration sites suggests that integration occurred by a mechanism similar to that used for repair of spontaneous or gamma ray-induced strand breaks. Plasmid integration occurred within nonrepetitive cell DNA with no major rearrangements, although rearrangements of the cell DNA at the integration site occurred in one of the clones after integration.  相似文献   

18.
Spirochetes of the genus Borrelia have double-stranded linear plasmids with covalently closed ends. The physical nature of the terminal connections was determined for the 16-kb linear plasmid of the B31 strain of the Lyme disease agent Borrelia burgdorferi. Native telomeric fragments representing the left and right ends of this plasmid were isolated and subjected to Maxam-Gilbert sequence analysis. At the plasmid ends the two DNA strands formed an uninterrupted, perfectly palindromic, AT-rich sequence. This Borrelia linear plasmid consisted of a continuous polynucleotide chain that is fully base paired except for short single-stranded hairpin loops at each end. The left and right telomeres of the 16-kb plasmid were identical for 16 of the first 19 nucleotide positions and constituted an inverted terminal repeat with respect to each other. The left telomere of the 49-kb plasmid of strain B31 was identical to the corresponding telomere of the 16-kb plasmid. Different-sized plasmids of other strains of B. burgdorferi also contained sequences homologous to the left end of the 16-kb plasmid. When the borrelia telomeres were compared with telomeric sequences of other linear double-stranded DNA replicons, sequence similarities were noted with poxviruses and particularly with the iridovirus agent of African swine fever. The latter virus and a Borrelia sp. share the same tick vector. These findings suggest that the novel linear plasmids of Borrelia originated through a horizontal genetic transfer across kingdoms.  相似文献   

19.
The A6S/2 tumor incited on tobacco by Agrobacterium tumefaciens harboring the octopine-type A6 Ti plasmid contains one insert of Ti-plasmid sequences (the T DNA). This 13 kb insert is derived from a colinear sequence in the Ti plasmid (the T region) and becomes attached to plant DNA in the nucleus of the host cell. We have determined the DNA sequence encompassing the left end of the T region of the A6 Ti plasmid and the corresponding portion of the A6S/2 T DNA. The two sequences are identical for at least 806 bp. To the left of the divergence point, the tumor contains five partially overlapping sequences that are direct or inverted repeats of sequences to the right of the divergence point. The Ti plasmid contains only the right member of each of these repeats. We have also performed heteroduplex studies that indicate that this T DNA has a 520 bp inverted repeat of an internal sequence at the right end near its junction with plant DNA. The repeated sequences near the ends of the T DNA resemble the repeats of adenovirus type 12 sequences found near its junction with host DNA. We discuss data suggesting that the 23 bp to the immediate right of the divergence point of the A6 left junction form a site important in some step in the transfer of T-region DNA from the bacteria to the plant.  相似文献   

20.
We have analyzed the junctions involved in two examples of ectopic integration of plasmids containing the am+ (glutamate dehydrogenase) gene into a strain of Neurospora crassa bearing a complete deletion of the am locus. In one transformed strain a single copy of plasmid DNA had been integrated into linkage group (LG) III DNA without the loss of chromosomal DNA. In contrast, 450 bp had been lost from plasmid sequences at the site of integration. The transforming DNA used was circular, so we postulate that the plasmid was linearized and truncated prior to its integration by end joining into a break in LG III DNA. There was no significant homology between the incoming DNA and DNA at the site of integration. The second transformed strain resulted from transformation with a linearized plasmid. It contained multiple integrated copies of plasmid DNA, one of which was recloned, together with adjacent chromosomal DNA, by plasmid rescue in Escherichia coli. Prior to integration into chromosomal DNA, the linear plasmid had been truncated by 64 bp on one end and 3.2 kbp on the other end. One end of the integrated DNA was adjacent to DNA from the right arm of LG I, while the other end was integrated into a copy of a repetitive sequence. Restriction fragment length polymerism mapping showed that integration was in a copy of the repetitive sequence that is linked to the previously unassigned telomere M11 and is distantly linked to the LG VI marker con-11. Genetic analysis revealed that a long segment of LG I containing all markers from un-1 to the right tip has been translocated to the right end of LG VI. Tetrad analysis showed that the integrated DNA was closely linked to the translocation. We conclude that the transforming DNA was truncated and joined to DNA from two different chromosomes by end joining during the formation of a quasiterminal translocation, T(IR----VIR) UK-T12. We also conclude that the previously unassigned telomere, M11, is the right end of LG VI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号