首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND AIM: Atrophic body gastritis (ABG) may be induced by H. pylori infection. It is difficult to diagnose H. pylori infection in this condition, since during progression of body atrophy the bacterium disappears. In 30% of patients with ABG no sign of H. pylori infection is detectable. We aimed to investigate whether patients with ABG, classified as H. pylori-negative by conventional methods (ELISA serology and Giemsa stain histology), have been previously exposed to the infection. METHODS: Case series consisted of 138 outpatients with ABG, of whom 31 are H. pylori negative (histology and ELISA serology), and 107 are H. pylori related (histology and ELISA serology positive: active infection, n = 29; only serology positive: past infection, n = 78). Thirty control subjects who were H. pylori negative at histology and ELISA serology were investigated. Immunoblotting of sera against H. pylori whole-cell protein lysate was performed. RESULTS: None of the control sera recognized CagA, VacA, heat-shock protein B, and urease B, yielding a specificity of 100%. All H. pylori-negative patients with ABG showed immunoblotting seroreactivity, including in each case either CagA or VacA. The concomitant seroreactivity against CagA and VacA was highly prevalent in the H. pylori-negative patients with ABG, comparable to those with active infection (77.4% vs. 86.2%) and with past infection (vs. 61.5%). CONCLUSIONS: Immunoblotting against CagA and VacA is able to prove past exposure to H. pylori infection in all patients with ABG defined as H. pylori-negative by conventional methods, suggesting a hidden role of H. pylori infection in gastric atrophy also in these patients.  相似文献   

2.
Helicobacter pylori is thought to be related to atherosclerosis and aneurysm development. We aimed to detect virulance factors of H. pylori and examine the potential etiopathogenetic relationship between aortic aneurysm and H. pylori, 58 abdominal aortic aneurysm (AAA) and 38 ascending aortic aneurysm (AsAA) cases and 57 Healty control group (HCG) were included. We investigated H. pylori IgG by ELISA and virulance factors by Western-Blot (WB) method. No difference was found between AAA (67.24%), AsAA (73.68%) and HCG (57.89%) for H. pylori IgG (p > 0.05). A significant difference was found between AsAA (78.95%) and HCG (57.89%) for H.pylori IgG (p < 0.05) by ELISA and a significant difference was found only between AsAA (100%) and HCG (37.5%) for H. pylori IgG in the 45-55 age group by WB. A statistically significant difference was found between AAA and AsAA for VacA and CagA + VacA and CagA + VacA + UreA antigens and also a significant difference was found between AsAA and HCG for CagA + UreA antigens (p < 0.05). Finally, we suggest that H. pylori VacA has a more important role than CagA in the development of two aneurysms especially in ruptured AAA. New extended studies detecting H. pylori DNA are needed to detect the aetiopathogenesis between aneurysm types and H. pylori.  相似文献   

3.
Background. Limited data are available on the prevalence of CagA and VacA Helicobacter pylori antibodies in children. The aim of this study was to investigate the antibody prevalence to the H. pylori virulence factors CagA and VacA in symptomatic and asymptomatic children with H. pylori infection and to correlate these antibodies with the severity of gastric inflammation or density of H. pylori organisms in the gastric mucosa.
Materials and Methods. Twenty-three symptomatic children and 132 asymptomatic children with positive H. pylori serology participated in this study. Anti– H. pylori IgG antibody and CagA or VacA H. pylori antibodies were measured by enzyme immunoassay (HM-CAP; sensitivity and specificity> 90%) and Western immunoblot (Helicoblot 2.0) methods, respectively. Gastric inflammation and H. pylori density were graded histologically using the revised Sydney criteria.
Results. The prevalence of CagA and VacA antibodies were 69% and 35% in symptomatic children and 54% and 52% in asymptomatic children, respectively. Multiple regression analysis showed a correlation between CagA antibody and the severity of gastritis but no correlation with other histological features, including the number of neutrophils or lymphoid follicles. Neither antibody correlated with the degree of bacterial density in the gastric mucosa.
Conclusion. CagA and VacA H. pylori antibodies are common in the pediatric population. The combined CagA/VacA antibodies correlated weakly with the degree of mucosal inflammation.  相似文献   

4.
The pathogenicity of chronic gastroduodenal diseases is very often related to Helicobacter pylori infections. Most H. pylori strains carry the cagA gene encoding an immunodominant 120- to 128-kDa protein which is considered a virulence marker. The majority of CagA-positive H. pylori isolates also produce a 95-kDa protein cytotoxin (VacA) causing vacuolation and degradation of mammalian cells. In our previous study we have shown that live H. pylori bacteria and their sonicates inhibit PHA-driven proliferation of human T lymphocytes. The H. pylori CagA and VacA proteins were suspected of a paralyzing effect of H. pylori on T cell proliferation. In this report, by using isogenic H. pylori mutant strains defective in CagA and VacA proteins, we determined that CagA is responsible for the inhibition of PHA-induced proliferation of T cells.  相似文献   

5.
In this study we investigated whether an acidic extracellular pH may inhibit H. pylori-induced internalization of bacterial virulence factors by gastric epithelium, thus preventing ingestion of potentially dangerous luminal contents and resulting cellular damage. The interaction of H. pylori VacA toxin and ammonia (produced by H. pylori urease) with partly polarized gastric MKN 28 cells in culture was investigated at neutral and moderately acidic pH (6.2, compatible with cell viability) by means of neutral red dye uptake and ultrastructural immunocytochemistry. We found that acidic extracellular pH virtually abolished both VacA-dependent and ammonia-dependent cell vacuolation, as shown by the neutral red test, and caused a 50% decrease in VacA internalization into endosomal vesicles and vacuoles, as assessed by quantitation of immunogold particles. In addition, acidic pH blocked endosomal internalization of H. pylori outer membrane vesicles, a convenient indicator of endocytosis. Our data raise the possibility that suppression of gastric acid may increase H. pylori-induced gastric damage by enhancing epithelial internalization of H. pylori virulence factors through activation of endocytosis. Increased transmembrane diffusion of ammonia could also contribute to this process.  相似文献   

6.
Helicobacter pylori interacts with gastric epithelial cells, activating signaling pathways important for carcinogenesis. In this study we examined the role of H. pylori on cell invasion and the molecular mechanisms underlying this process. The relevance of H. pylori cag pathogenicity island-encoded type IV secretion system (T4SS), CagA, and VacA for cell invasion was also investigated. We found that H. pylori induces AGS cell invasion in collagen type I and in Matrigel invasion assays. H. pylori-induced cell invasion requires the direct contact between bacteria and cancer cells. H. pylori-mediated cell invasion was dependent on the activation of the c-Met receptor and on increased MMP-2 and MMP-9 activity. The abrogation of the c-Met receptor using the specific NK4 inhibitor or the silencing of c-Met expression with small interference RNA suppressed both cell invasion and MMP activity. Studies with different H. pylori strains revealed that cell invasion, c-Met tyrosine phosphorylation, and increased MMP-2 and MMP-9 activity were all dependent on the presence of a functional bacterial T4SS, but not on VacA cytotoxicity. Our findings demonstrate that H. pylori strains with a functional T4SS stimulate gastric epithelial cell invasion through a c-Met-dependent signaling pathway that comprises an increase in MMP-2 and MMP-9 activity.  相似文献   

7.
In this study, we have evaluated the effects on cell cycle regulation of VacA alone and in combination with other two Helicobacter pylori proteins, cytotoxin-associated protein (CagA) and HspB, using the human gastric epithelial cells (AGS). Our results indicate that VacA alone was able to inhibit the G1 to S progression of the cell cycle. The VacA capacity of inhibiting cell progression from G1 to S phase was also observed when cells were co-transfected with CagA or HspB. Moreover, VacA over-expression caused apoptosis in AGS cells through activation of caspase 8 and even more of caspase 9, thus indicating an involvement of both the receptor-mediated and the mitochondrial pathways of apoptosis. Indeed, the two pathways probably can co-operate to execute cell death with a prevalence of the mitochondrial pathways. Our data taken together provide additional information to further enhance our understanding of the molecular mechanism by which H. pylori proteins alter the growth status of human gastric epithelial cells.  相似文献   

8.
To expand our knowledge of Helicobacter pylori virulence mechanisms, we used iTRAQ (isobaric tagging reagents for relative and absolute quantification)-based proteomic analysis to investigate the effect of H. pylori on gastric AGS tissue culture cells. In particular, we were interested in finding out which effects of H. pylori were dependent on the cytotoxins CagA and VacA. Protein analysis was restricted to detergent-resistant membranes (DRMs), because both toxins were described previously to localize in lipid raft-like domains. Using H. pylori wild type and two isogenic mutants, DeltacagA and DeltavacA, we identified a total of 21 proteins that were either increased or decreased in the DRMs due to bacterial infection. The effect on three of these proteins, ezrin, syndecan-4 and Rab11-FIP1, were furthermore dependent on CagA. Because these proteins have been implicated in cell migration, adhesion and polarity, they might act as important mediators of CagA cytotoxicity.  相似文献   

9.
Pathogenic strains of Helicobacter pylori produce a potent exotoxin, VacA, which causes progressive vacuolation as well as gastric injury. Most H. pylori strains secrete VacA into the extracellular space. After exposure of VacA to acidic or basic pH, re-oligomerized VacA (mainly 6 monomeric units) at neutral pH is more toxic. Although the mechanisms have not been defined, VacA induces multiple effects on epithelial and lymphatic cells, i.e., vacuolation with alterations of endo-lysosomal function, anion-selective channel formation, mitochondrial damage, and the inhibition of primary human CD4+ cell proliferation. VacA binds to two types of receptor-like protein tyrosine phosphatases (RPTP), RPTPalpha and RPTPbeta, on the surface of target cells. Oral administration of VacA to wild-type mice, but not to RPTPbeta KO mice, results in gastric ulcers, suggesting that RPTPbeta is essential for intoxication of gastric tissue by VacA. As the potential roles of VacA as a ligand for RPTPalpha and RPTPbeta are only poor understood, further studies are needed to determine the importance of VacA in the pathogenisis of disease due to H. pylori infection.  相似文献   

10.
The Helicobacter pylori VacA toxin plays a major role in the gastric pathologies associated with this bacterium. When added to cultured cells, VacA induces vacuolation, an effect potentiated by preexposure of the toxin to low pH. Its mechanism of action is unknown. We report here that VacA forms anion-selective, voltage-dependent pores in artificial membranes. Channel formation was greatly potentiated by acidic conditions or by pretreatment of VacA at low pH. No requirement for particular lipid(s) was identified. Selectivity studies showed that anion selectivity was maintained over the pH range 4.8-12, with the following permeability sequence: Cl- approximately HCO3- > pyruvate > gluconate > K+ approximately Li+ approximately Ba2+ > NH4+. Membrane permeabilization was due to the incorporation of channels with a voltage-dependent conductance in the 10-30 pS range (2 M KCl), displaying a voltage-independent high open probability. Deletion of the NH2 terminus domain (p37) or chemical modification of VacA by diethylpyrocarbonate inhibited both channel activity and vacuolation of HeLa cells without affecting toxin internalization by the cells. Collectively, these observations strongly suggest that VacA channel formation is needed to induce cellular vacuolation, possibly by inducing an osmotic imbalance of intracellular acidic compartments.  相似文献   

11.
Infection with Helicobacter pylori is responsible for gastritis and gastroduodenal ulcers but is also a high risk factor for the development of gastric adenocarcinoma and lymphoma. The most pathogenic H. pylori strains (i.e., the so-called type I strains) associate the CagA virulence protein with an active VacA cytotoxin but the rationale for this association is unknown. CagA, directly injected by the bacterium into colonized epithelium via a type IV secretion system, leads to cellular morphological, anti-apoptotic and proinflammatory effects responsible in the long-term (years or decades) for ulcer and cancer. VacA, via pinocytosis and intracellular trafficking, induces epithelial cell apoptosis and vacuolation. Using human gastric epithelial cells in culture transfected with cDNA encoding for either the wild-type 38 kDa C-terminal signaling domain of CagA or its non-tyrosine-phosphorylatable mutant form, we found that, depending on tyrosine-phosphorylation by host kinases, CagA inhibited VacA-induced apoptosis by two complementary mechanisms. Tyrosine-phosphorylated CagA prevented pinocytosed VacA to reach its target intracellular compartments. Unphosphorylated CagA triggered an anti-apoptotic activity blocking VacA-induced apoptosis at the mitochondrial level without affecting the intracellular trafficking of the toxin. Assaying the level of apoptosis of gastric epithelial cells infected with wild-type CagA+/VacA+ H. pylori or isogenic mutants lacking of either CagA or VacA, we confirmed the results obtained in cells transfected with the CagA C-ter constructions showing that CagA antagonizes VacA-induced apoptosis. VacA toxin plays a role during H. pylori stomach colonization. However, once bacteria have colonized the gastric niche, the apoptotic action of VacA might be detrimental for the survival of H. pylori adherent to the mucosa. CagA association with VacA is thus a novel, highly ingenious microbial strategy to locally protect its ecological niche against a bacterial virulence factor, with however detrimental consequences for the human host.  相似文献   

12.
Helicobacter pylori is the causative agent of gastric pathologies ranging from chronic gastritis to peptic ulcers and even cancer. Virulent strains carrying both the cag pathogenicity island ( cag PAI) and the vacuolating cytotoxin VacA are key players in disease development. The ca gPAI encodes a type IV secretion system (T4SS) which forms a pilus for injection of the CagA protein into gastric epithelial cells. Injected CagA undergoes tyrosine phosphorylation and induces actin-cytoskeletal rearrangements involved in host cell scattering and elongation. We show here that the CagA-induced responses can be inhibited in strains expressing highly active VacA. Further investigations revealed that VacA does not interfere with known activities of phosphorylated CagA such as inactivation of Src kinase and cortactin dephosphorylation. Instead, we demonstrate that VacA exhibits inactivating activities on the epidermal growth factor receptor EGFR and HER2/Neu, and subsequently Erk1/2 MAP kinase which are important for cell scattering and elongation. Inactivation of vacA gene, downregulation of the VacA receptor RPTP-α, addition of EGF or expression of constitutive-active MEK1 kinase restored the capability of H. pylori to induce the latter phenotypes. These data demonstrate that VacA can downregulate CagA's effects on epithelial cells, a novel molecular mechanism showing how H. pylori can avoid excessive cellular damage.  相似文献   

13.
14.
Hirata Y  Yanai A  Shibata W  Mitsuno Y  Maeda S  Ogura K  Yoshida H  Kawabe T  Omata M 《Gene》2004,343(1):165-172
CagA protein of Helicobacter pylori is injected into the epithelium, where CagA undergoes tyrosine phosphorylation and activates proliferation signals. However, the importance of these CagA activities for pathogenesis has yet to be resolved. The aim of this study is to analyze the genetic and functional variability of cagA gene of clinical strains in relation to gastric diseases. Thirty-six H. pylori strains were isolated from Japanese patients with various gastric diseases and examined. All 36 strains were found to contain cagA and cagE gene and to induce CagA phosphorylation upon infection. The intensity of CagA phosphorylation expressed in HeLa cells by transfection was highly correlated to the number of R1 region. The phosphorylation intensity was slightly higher in strains from chronic atrophic gastritis (CG); however, the differences were not statistically significant. These CagA proteins also activated the serum response element (SRE) reporter by 5- to 14-fold, above the level of the control. CagA proteins which lack R2 or R3 region exhibited smaller ability for SRE activation. The average of SRE activation was slightly higher in strains from cases of gastric cancer (GC; 11.4+/-1.6), MALT lymphoma (ML; 10.7+/-1.0), and chronic atrophic gastritis (CG; 11.2+/-1.6) than in those of duodenal ulcer (DU; 8.3+/-1.9) or gastric ulcer (GU; 9.0+/-1.1). In summary, most Japanese H. pylori strains contained CagA transport system and induced CagA phosphorylation, and the levels of the intensity of phosphorylation and the ability to induce SRE varied among strains. Although the association between CagA activities and disease outcome shown in this study is not very strong, variety of CagA structure, which induces variable activities, may be one of the reasons why H. pylori induces distinct diseases on host.  相似文献   

15.
To develop a specific line blot (LB) for supporting ELISA-based serodiagnosis of Helicobacter pylori infection, individual native/recombinant H. pylori antigens were evaluated with respect to their reactivity with both serum IgG and IgA from 156 dyspeptic screening patients (67% H. pylori positive). Of 13 antigens, HP0175, p17, and p19 revealed highest positive likelihood ratios for H. pylori-specific IgG (> 5.0) and were selected as LB substrates, in addition to the established virulence markers VacA and CagA. For validation, the LB was compared to a commercial whole-cell-lysate-based ELISA by parallel (re-)analysis of 156 screening sera, 22 sera from diabetes mellitus patients and 15 sera from follow-up patients after H. pylori eradication. In screening patients, the combined use of IgG ELISA and LB revealed a sensitivity, specificity, and accuracy of 94%, 81%, and 90%, respectively, whereas IgG ELISA alone exhibited a low specificity of 75%. In diabetic and follow-up patients, IgA ELISA exhibited high accuracy of 89% and 93%, respectively, whereas IgG detection was unreliable (accuracy < 80%). In conclusion, using HP0175, p17, p19, CagA, and VacA as LB substrates significantly improves the specificity of anti-H. pylori IgG analysis, providing a reliable tool for (1) confirmation/refutation of ELISA-based screening results and (2) assessment of the CagA/VacA status.  相似文献   

16.
Secreted proteins are of general interest from the perspective of bacteria-host interaction. The gastric bacterial pathogen Helicobacter pylori uses a set of secreted and translocated proteins--including outer membrane adhesins, secreted extracellular enzymes and translocated effector proteins--to adapt to its extraordinary habitat, the gastric mucosa. Two major virulence factors of H. pylori are the vacuolating cytotoxin (VacA) and the cag type-IV secretion system and its translocated effector protein, cytotoxin-associated antigen A (CagA). VacA targets not only epithelial cells, but also cells of the immune system and induces immunosuppression. CagA has been shown to interact with a growing set of eucaryotic signaling molecules in phosphorylation-dependent and -independent ways.  相似文献   

17.
Background:  Helicobacter pylori infection is associated with severe gastrointestinal disease including cancer. It induces complex antibody responses that might vary depending on disease state but currently cannot be assessed adequately. The objective of this work was the development of a sensitive and specific H. pylori multiplex serology assay with high-throughput capability that allows simultaneous detection of antibodies to a protein array.
Methods:  Seventeen proteins of up to three H. pylori strains (26695, G27, 151), including CagA, VacA, UreA, Catalase, Omp, and GroEL, were recombinantly expressed as glutathione- S -transferase fusion proteins, affinity-purified, and used as antigens in a fluorescent bead-based antibody-binding assay. Reference sera (n   =   317) characterized by commercial assays (screening ELISA with Western blot confirmation) were used for validation.
Results:  H. pylori seropositivity by multiplex serology defined as reactivity with at least four proteins showed good agreement (kappa: 0.70) with commercial serologic assay classification, and a sensitivity of 89% and specificity of 82%. For individual antigens, agreement with Western blot was good for CagA (kappa: 0.77), moderate for UreA (kappa: 0.53), and weak for VacA (kappa: 0.12). Of the 13 proteins expressed from two strains, only VacA showed serologic strain differences. High antibody reactivity to CagA (Type I infection) was negatively associated with antibodies to GroEL, Cad, CagM, catalase, HcpC, NapA, and UreA, suggesting type-specific differences in protein expression patterns and/or immune response.
Conclusion:  With its high-throughput and simultaneous detection abilities, H. pylori multiplex serology appears suited as tool for large seroepidemiologic studies assessing H. pylori prevalence, antibody patterns, and associations with specific diseases.  相似文献   

18.
To explore the interactions between the host, environment and bacterium responsible for the different manifestations of Helicobacter pylori infection, we examined the effect of acidic conditions on H. pylori-induced interleukin (IL)-8 expression. AGS gastric epithelial cells were exposed to acidic pH and infected with H. pylori[wild-type strain, its isogenic cag pathogenicity island (PAI) mutant or its oipA mutant]. Exposure of AGS cells to acidic pH alone did not enhance IL-8 production. However, following exposure to acidic conditions, H. pylori infection resulted in marked enhancement of IL-8 production which was independent of the presence of the cag PAI and OipA, indicating that H. pylori and acidic conditions act synergistically to induce gastric mucosal IL-8 production. In neutral pH environments H. pylori-induced IL-8 induction involved the NF-kappaB pathways, the extracellular signal-regulated kinase (ERK)-->c-Fos/c-Jun-->activating protein (AP-1) pathways, JNK-->c-Jun-->AP-1 pathways and the p38 pathways. At acidic pH H. pylori-induced augmentation of IL-8 production involved markedly upregulated the NF-kappaB pathways and the ERK-->c-Fos-->AP-1 pathways. In contrast, activation of the JNK-->c-Jun-->AP-1 pathways and p38 pathways were pH independent. These results might explain the clinical studies in which patients with duodenal ulcers had higher levels of IL-8 in the antral gastric mucosa than patients with simple H. pylori gastritis.  相似文献   

19.
ABSTRACT: BACKGROUND: Chronic gastritis, peptic ulcer disease, and gastric cancer have been shown to be related toinfection with Helicobacter pylori (H. pylori). Two major virulence factors of H. pylori,CagA and VacA, have been associated with these sequelae of the infection. In this study, totalDNA was isolated from gastric biopsy specimens to assess the cagA and vacA genotypes. RESULTS: Variations in H. pylori cagA EPIYA motifs and the mosaic structure of vacA s/m/i/dayregions were analysed in 155 H. pylori-positive gastric biopsies from 71 individuals usingPCR and sequencing. Analysis of a possible association between cagA and vacA genotypesand gastroduodenal pathogenesis was made by logistic regression analysis. We found that H. pylori strains with variation in the number of cagA EPIYA motif variants present in the samebiopsy correlated with peptic ulcer, while occurrence of two or more EPIYA-C motifs wasassociated with atrophy in the gastric mucosa. No statistically significant relation betweenvacA genotypes and gastroduodenal pathogenesis was observed. CONCLUSIONS: The results of this study indicate that cagA genotypes may be important determinants in thedevelopment of gastroduodenal sequelae of H. pylori infection. In contrast to other studies,vacA genotypes were not related to disease progression or outcome. In order to fullyunderstand the relations between cagA, vacA and gastroduodenal pathogenesis, themechanisms by which CagA and VacA act and interact need to be further investigated.  相似文献   

20.
Inducible NO synthase (iNOS) expression and production of NO are both up-regulated with Helicobacter pylori infection in vivo and in vitro. We determined whether major pathogenicity proteins released by H. pylori activate iNOS by coculturing macrophages with wild-type or mutant strains deficient in VacA, CagA, picB product, or urease (ureA(-)). When filters were used to separate H. pylori from macrophages, there was a selective and significant decrease in stimulated iNOS mRNA, protein, and NO(2)(-) production with the ureA(-) strain compared with wild-type and other mutants. Similarly, macrophage NO(2)(-) generation was increased by H. pylori protein water extracts of all strains except ureA(-). Recombinant urease stimulated significant increases in macrophage iNOS expression and NO(2)(-) production. Taken together, these findings indicate a new role for the essential H. pylori survival factor, urease, implicating it in NO-dependent mucosal damage and carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号