首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was designed to determine the role of carbohydrates during naloxone-induced opiate receptor blockade upon the postprandial rise of plasma somatostatin (SLI), insulin and pancreatic polypeptide (PP) levels in response to protein and fat test meals in conscious dogs. Test meals consisting of 50 g liver extract + 50 g sucrose or 50 g corn oil + 50 g sucrose dissolved in 300 ml water were instilled intragastrically, respectively. Additionally, liver extract and fat meals were given with a concomitant intravenous infusion of glucose. To all test meals either naloxone (4 mg) or saline was added. The addition of sucrose to liver extract or the infusion of i.v. glucose during the liver meal abolished the inhibitory effect of naloxone on the rise of postprandial somatostatin levels which has been described recently. The addition of carbohydrate either orally or intravenously to the fat meal resulted in an even stimulatory effect of naloxone upon the rise of postprandial somatostatin levels. Insulin levels were not changed during liver extract + sucrose or i.v. glucose, respectively. When sucrose or i.v. glucose was administered together with the fat meal the addition of naloxone augmented postprandial insulin secretion. Pancreatic polypeptide (PP) release was augmented during the combination of sucrose or i.v. glucose with the fat and liver meal when naloxone was present in the meals. The present data demonstrate that the addition of carbohydrates either orally or intravenously to fat and protein meals modulates the effect of endogenous opiates in the regulation of postprandial somatostatin, insulin and pancreatic polypeptide release in dogs in a way that carbohydrates induce inhibitory mechanisms that are mediated via endogenous opiate receptors.  相似文献   

2.
The role of the vagus nerve in the control of gastrin releasing peptide (GRP) stimulated gastroenteropancreatic hormone release and gastric acid secretion was investigated in four conscious gastric fistula dogs using a technique of bilateral cryogenic vagal blockade. A 90-min infusion of GRP at a dose of 400 pmol X kg-1. h-1 produced significant elevations in plasma levels of gastrin, motilin, GIP, enteroglucagon, insulin, pancreatic glucagon, pancreatic polypeptide and VIP. Vagal blockade reversibly inhibited the rise of plasma PP and significantly blunted the elevation of plasma VIP. However, the GRP stimulated response of the other hormones investigated was not modified by vagal blockade. Similarly, the substantial secretion of gastric acid observed with GRP was not influenced by vagal blockade. Thus GRP acts predominantly via mechanisms which are independent of vagal integrity, findings that are in support of a major role for the local neuromodulation of hormone release and gastric acid secretion.  相似文献   

3.
The purpose of this study was to determine the role of CCK during the intestinal phase of pancreatic polypeptide (PP) release in man. We first compared the PP response to exogenous caerulein infusion in the presence or absence of either loxiglumide (a specific CCK antagonist) or atropine in six healthy subjects. In the second part of the study, a meal was perfused to the duodenum with and without either loxiglumide or atropine. Both loxiglumide and atropine completely abolished the PP response to exogenous or endogenous stimulation (P less than 0.05). We conclude that CCK participates in the intestinal phase of PP secretion.  相似文献   

4.
The aim of the study was to evaluate whether a selective increase in portal vein blood glucose concentration can affect pancreatic islet blood flow. Anesthetized rats were infused (0.1 ml/min for 3 min) directly into the portal vein with saline, glucose, or 3-O-methylglucose. The infused dose of glucose (1 mg. kg body wt(-1). min(-1)) was chosen so that the systemic blood glucose concentration was unaffected. Intraportal infusion of D-glucose increased insulin release and islet blood flow; the osmotic control substance 3-O-methylglucose had no such effect. A bilateral vagotomy performed 20 min before the infusions potentiated the islet blood flow response and also induced an increase in whole pancreatic blood flow, whereas the insulin response was abolished. Administration of atropine to vagotomized animals did not change the blood flow responses to intraportal glucose infusions. When the vagotomy was combined with a denervation of the hepatic artery, there was no stimulation of islet blood flow or insulin release after intraportal glucose infusion. We conclude that a selective increase in portal vein blood glucose concentration may participate in the islet blood flow increase in response to hyperglycemia. This effect is probably mediated via periarterial nerves and not through the vagus nerve. Furthermore, this blood flow increase can be dissociated from changes in insulin release.  相似文献   

5.
The present study examines the effect of orally and intravenously administered opiate-active substances on peripheral vein plasma pancreatic polypeptide (PP) levels in conscious dogs. The intragastric instillation of digested gluten stimulated postprandial PP levels significantly which was reduced by the specific opiate-receptor antagonist naloxone. Naloxone had no effect when added to undigested gluten. Similarly, naloxone reduced significantly the postprandial PP response to a test meal of casopeptone which contains the opiate-active β-casomorphins. The addition of synthetic β-casomorphins to a liver extract/sucrose test meal significantly augmented the rise of postprandial PP levels which was also blocked by naloxone. The intravenous infusion of morphine, leu-enkephalin, D-ala2-D-leu5-enkephalin, β-casomorphin-5 and β-casomorphin-4 elicited a dose-dependent and naloxone reversible effect on basal PP levels. During a background infusion of glucose and amino acids the same opiate-active substances had either none or a stimulatory effect on PP release in these dogs. The addition of naloxone abolished the stimulatory effect in response to β-casomorphin-5 and β-casomorphin-4 and resulted in an inhibition of PP levels during the infusion of morphine and leu-enkephalin. This latter inhibitory effect was no longer observed when the dose of naloxone was increased ten- and fifty-fold, respectively. The present data suggest that orally ingested opiate-active substances participate in the stimulation of postprandial PP release in dogs via specific opiate-receptor mediated mechanisms. The effect of intravenously administered opiate-active substances on PP levels depends on the metabolic state with regard to the level of circulating nutrients. It is suggested that PP release is stimulated via μ-opiate receptors and inhibited via δ-opiate receptors. An increase of circulating nutrients would “activate” μ-receptor sites which are masked in the basal state when exogenous opiates are administered. However, with regard to endogenous opiates an increase of circulating nutrients, mainly carbohydrates, activates inhibitory effects of endogenous opiates suggesting that exogenous and endogenous opiates act at different target sites.  相似文献   

6.
Previously, we have demonstrated the effects of exogenously administered opiates on somatostatin release in dogs and therefore the present study was designed to determine the effect of endogenous opiates via naloxone-induced opiate receptor blockade on somatostatin release. Additionally, plasma insulin and pancreatic polypeptide (PP) levels were determined in response to intragastrically instilled protein, carbohydrate and fat test meals in a group of eight conscious dogs. To all test meals either naloxone (4 mg) or saline was added. The rise of plasma somatostatin levels in response to liver extract, sucrose and fat was attenuated significantly by naloxone. Naloxone had no effect on the rise of postprandial plasma insulin and PP levels. The present data demonstrate that endogenous opiates have a stimulatory effect on postprandial somatostatin release in dogs which indicates a tight interaction that might be of relevance for nutrient homeostasis.  相似文献   

7.
Intravenous glucose infusion was performed in six dogs with and without truncal vagotomy, and plasma pancreatic polypeptide (PP) responses were compared before and after truncal vagotomy. Following truncal vagotomy, basal PP levels decreased significantly from 286 ± 64 pg/ml (mean ± S.E.) to 94 ± 14 pg/ml (P < 0.05). Basal plasma insulin and blood glucose levels also tended to be lower, but not significantly. During the influsion of glucose, blood glucose concentrations rose rapidly in both groups and after 15 min reached peak values which were not significantly different from each other. In the vagotomized group the plasma insulin response to intravenous glucose infusion was significantly lower than in the control group. Following intravenous glucose loading, plasma PP concentrations decreased rapidly in both groups, but the PP level in the vagotomized group was suppressed only to 77 ± 4% of the basal level whereas in the control group it decreased to 45 ± 8%, significantly lower than in the vagotomized group (P < 0.01).These results suggest that basal PP is regulated by vagal tonus and that vagus controls, at least in part, suppression by intravenous glucose administration.  相似文献   

8.
Stimulation of cholecystokinin and glucagon-like peptide-1 secretion by fat is mediated by the products of fat digestion. Ghrelin, peptide YY (PYY), and pancreatic polypeptide (PP) appear to play an important role in appetite regulation, and their release is modulated by food ingestion, including fat. It is unknown whether fat digestion is a prerequisite for their suppression (ghrelin) or release (PYY, PP). Moreover, it is not known whether small intestinal exposure to fat is sufficient to suppress ghrelin secretion. Our study aimed to resolve these issues. Sixteen healthy young males received, on two separate occasions, 120-min intraduodenal infusions of a long-chain triglyceride emulsion (2.8 kcal/min) 1) without (condition FAT) or 2) with (FAT-THL) 120 mg of tetrahydrolipstatin (THL, lipase inhibitor), followed by a standard buffet-style meal. Blood samples for ghrelin, PYY, and PP were taken throughout. FAT infusion was associated with a marked, and progressive, suppression of plasma ghrelin from t = 60 min (P < 0.001) and stimulation of PYY from t = 30 min (P < 0.01). FAT infusion also stimulated plasma PP (P < or = 0.01), and the release was immediate. FAT-THL completely abolished the FAT-induced changes in ghrelin, PYY, and PP. In response to the meal, plasma ghrelin was further suppressed, and PYY and PP stimulated, during both FAT and FAT-THL infusions. In conclusion, in healthy humans, 1) the presence of fat in the small intestine suppresses ghrelin secretion, and 2) fat-induced suppression of ghrelin and stimulation of PYY and PP is dependent on fat digestion.  相似文献   

9.
Cholecystokinin-58 has been shown to be the major form of cholecystokinin (CCK) released to the circulation upon lumenal stimulation of the small intestine in humans and dogs. In anesthetized dogs, electrical vagal stimulation evokes pancreatic exocrine secretion that is in part mediated through the release of CCK. We studied the molecular form of CCK stored in canine vagus nerves and that released into circulation upon electrical vagal stimulation. Gel filtration and radioimmunoassay of the water and acid extracts of canine vagus nerves indicated CCK-8 (35%) and CCK-58 (65%) as the major molecular forms in the vagus nerve. Both forms of CCK isolated from the vagal extracts were equally bioactive as the standard CCK-8 and CCK-58, respectively, in stimulation of amylase release from isolated rat pancreatic acini. Analysis of plasma collected after electrical vagal stimulation indicated that CCK-8 is the only form released into the circulation. The release of CCK-8 upon electrical vagal stimulation was not affected by application of lidocaine to the upper small intestinal mucosa, suggesting that it was released from vagal nerve terminals.  相似文献   

10.
R Schick  V Schusdziarra 《Peptides》1985,6(5):861-864
Somatostatin release in dogs is modulated by exogenous and endogenous opioids. Since postprandial somatostatin secretion is in part due to the stimulatory effect of postprandially activated gastrointestinal hormones as well as endogenous opioids, it was of interest to determine the interaction between motilin, a known stimulus of somatostatin release, and endogenous opioids with regard to activation of D-cell function. In a group of eight conscious dogs the infusion of synthetic porcine motilin at doses of 0.05, 0.25 and 0.5 micrograms/kg X hr elicited a significant increase of peripheral vein plasma somatostatin-like immunoreactivity (SLI), confirming previously reported data. The additional infusion of the opiate receptor antagonist naloxone attenuated this SLI response, suggesting that endogenous opioids participate in motilin-induced SLI release. Since previous studies have shown that the interaction between endogenous opioids and postprandial somatostatin secretion is modified by elevated plasma glucose levels, the experiments were repeated during an IV glucose (0.2 g/min) background infusion increasing circulating glucose levels by 20-30 mg/dl. During IV glucose, the SLI response to motilin was almost abolished. In this group the addition of naloxone restored the SLI response, indicating that the inhibitory effect of elevated glucose on D-cell function is, at least in part, mediated by endogenous opioids. These data suggest that motilin has to be considered as one regulatory factor which participates in the previously observed interaction between glucose and endogenous opioids during postprandial SLI release.  相似文献   

11.
The present study was designed to gather information on the biological activity of peptide YY (PYY) in conscious dogs. PYY was infused intravenously at a dose of 238 pmol/kg X h, and plasma concentrations of glucose, insulin, pancreatic polypeptide (PP), ACTH, cortisol and catecholamines (norepinephrine-NE; epinephrine-E; dopamine-DA) were subsequently measured. PYY significantly increased plasma insulin levels transiently without effect on plasma glucose, but decreased plasma PP levels during all infusion periods. PYY stimulated both plasma ACTH and cortisol secretion, and this action of PYY was also shared by PP, with PP being less potent in ACTH-cortisol release. PYY further elicited specific changes in plasma catecholamine concentrations, i.e. an increase of NE but not of E, which were in contrast to the effects of insulin-induced hypoglycemia. PP failed to alter plasma insulin and catecholamine concentrations. These results suggest that PYY can affect anterior pituitary hormone secretion, sympathetic nervous outflow and pancreatic endocrine activity in addition to its known actions on gastric and pancreatic secretion in the dog.  相似文献   

12.
We have investigated the effect of galanin infusion on unstimulated pancreatic polypeptide (PP) release as well as on the PP response to arginine by the perfused rat pancreas. Galanin significantly reduced unstimulated PP output. Addition of arginine to the perfusate evoked a biphasic pattern of PP release; the second phase of this PP response was delayed when galanin was simultaneously infused. These findings point to a regulatory role of galanin in the control of PP secretion.  相似文献   

13.
Potentiation of vagal contractile response by thromboxane mimetic U-46619   总被引:1,自引:0,他引:1  
We studied the effect of the thromboxane mimetic U-46619 on tracheal smooth muscle contraction caused by bilateral stimulation of the vagus nerves in 14 mongrel dogs in situ. The parasympathetic contractile response was studied isometrically after beta-adrenergic blockade with 2 mg/kg iv propranolol plus 20 micrograms X kg-1 X min-1 continuous intravenous infusion and blockade of endogenous prostaglandin synthesis with 5 mg/kg iv indomethacin. An initial frequency-response curve was generated by electrical stimulation of the caudal ends of cut cervical vagi over the range of frequencies 2-25 Hz (constant 25 V) at 15-s intervals. In five dogs, 10(-10) to 10(-8) mol of the thromboxane mimetic (15S)-hydroxyl-11 alpha,9 alpha-(epoxymethano)prosta-5Z,13E-dienoic acid (U-46619) was injected selectively into the tracheal arterial circulation, causing a transient contractile response (less than or equal to 10 g/cm). Additional frequency response studies were generated 7 min before and 1, 15, 30, 45, and 60 min after U-46619. Substantial augmentation of tracheal contraction to efferent vagal stimulation was observed after U-46619 for all frequencies greater than 4 Hz (P less than 0.02). Augmentation of vagally mediated contraction was not observed in four other dogs after equivalent tracheal contraction was elicited without U-46619. Similarly, in four separate dogs, augmentation of tracheal contraction was not observed when acetylcholine was given instead of vagal stimulation after U-46619. We conclude that the thromboxane analogue, U-46619, causes augmentation of tracheal contractile response induced by efferent vagus nerve stimulation. Potentiation is caused by a prejunctional action of U-46619 and is not induced by nonspecific precontraction with another agonist.  相似文献   

14.
to investigate the regulatory mechanism of motilin release, plasma motilin was measured by radioimmunoassay in healthy dogs during the fasting state and after intravenous administration of various nutrients and somatostatin. The fasting plasma motilin levels of these dogs were found to fluctuate intermittently. Intravenous glucose loading lowered plasma motilin, but immediately after the end of the glucose infusion as abrupt rise of plasma motilin was observed. Mixed amino acids administered intravenously abruptly inhibited motilin secretion, and plasma motilin levels remained low even 45 min after the end of the infusion. On the other hand, no remarkable change in plasma motilin was noted after the fat infusion. Following somatostatin infusion, plasma motilin was significantly decreased, remaining low even 30 min after the end of the infusion. These observations led us to conclude than motilin secretion is regulated by somatostatin and by nutrients coming through intravenous routes.  相似文献   

15.
We have looked at the plasma concentrations of motilin, pancreatic polypeptide (PP), and somatostatin (STS) during the various phases of the interdigestive motor complex (IDMC) in dogs. As expected, motilin cyclical increase was always associated with the phase III of the IDMC. Statistical analysis of PP variations revealed a significant rise 10 min before duodenal phase III; however, in individual animals, this relationship was inconsistent. Although a dose-related increase in PP blood levels was induced by administration of synthetic canine motilin (0-200 ng kg-1 iv), fasting plasma levels of PP were not correlated with the concentrations of circulating endogenous motilin. After truncal vagotomy, while motilin release and the intestinal motility pattern remained unaltered, the phase III associated cyclical increases of PP disappeared. Infusion of physiological amounts of PP (1 microgram kg-1 h-1 for 3 h) mimicking the postprandial release failed to reproduce a fed pattern type of intestinal motility and of motilin secretion. No statistical correlation could be established between STS plasma levels and the motor activity of the intestine. STS plasma levels were not correlated with circulating concentrations of motilin and the exogenous administration of physiological doses of synthetic canine motilin failed to modify STS plasma levels. Morphine (200 micrograms kg-1 iv) stimulated only the release of motilin. These data suggest that the role played by circulating concentrations of PP and STS in the control of the IDMC in dog is at most minimal.  相似文献   

16.
Bombesin, besides many other actions on the mammalian gastroentero-pancreatic tract, strongly stimulates the release of pancreatic-polypeptide (PP) in dogs. In 8 healthy human volunteers (5 males, 3 females), the PP response during bombesin infusion was low (25.7 ± 6.3 peak vs. 5.0 ± 2.0 basal pmol/1) compared to the effect of a protein meal (144.1 ± 13.4 pmol/1) or to the gastrin response to the same dose of the amphibian polypeptide (140.0 ± 23.6 pmol/1 eq SHG 17 I). The response pattern of PP and gastrin was different as PP concentrations peaked 10 min after cessation of bombesin infusion (32.0 ± 4.9 pmol/1) when gastrin concentrations already were down to one third of the maximal response. Atropine inhibited the PP response to bombesin but did not abolish it completely. It is concluded that in man, the total effect of bombesin on PP secretion is minor compared both to the effect of the peptide on gastrin secretion in man and to the effect of bombesin in dogs. It is suggested that bombesin might have a dual, inhibitory-stimulatory, effect on PP secretion in man.  相似文献   

17.
Vagal innervation of guinea pig bronchial smooth muscle   总被引:2,自引:0,他引:2  
We isolated the guinea pig right bronchus with the vagus nerves intact and evaluated the changes in isometric tension of the smooth muscle in response to nerve stimulation. Brief (10-s) trains of electrical field stimulation or vagus nerve stimulation caused a biphasic contraction: the "first phase" sensitive to atropine and the "second phase" sensitive to capsaicin. The two phases could be dissociated by adjusting the stimulus intensity; greater stimulus intensities (pulse durations or voltage) were required to evoke the capsaicin-sensitive phase. When stimulated at 30-min intervals, the magnitude of both phases of the contractions declined over a 2-h period of repeated stimulation; however, this was prevented by indomethacin. Stimulation of the left vagus nerve resulted in a monophasic contraction of the right bronchus, with little evidence of a capsaicin-sensitive phase. Blocking neurotransmission through the bronchial ganglion, as monitored by intracellular recording techniques, abolished the first-phase contraction but had no effect on the capsaicin-sensitive phase. Selective blockade of muscarinic M1 receptors had no effect on vagus nerve-mediated contractions. The results demonstrate that the left and right vagus nerves carry preganglionic fibers to the right bronchial ganglion. The right but not the left vagus nerve also carries capsaicin-sensitive afferent fibers that, when stimulated, result in a persistent contraction of the right bronchus. Finally, we provide functional and electrophysiological evidence supporting the hypothesis that capsaicin-sensitive afferent neurons communicate with postganglionic motoneurons within the bronchus.  相似文献   

18.
The influence of cadmium on basal and stimulated plasma levels of gastrin, cholecystokinin (CCK), and pancreatic polypeptide (PP) was investigated in conscious dogs using three doses of cadmium (0.15, 0.5, and 0.75 mg Cd/kg-h). Levels of gastrointestinal (GI) hormones were stimulated with bombesin (BBS), a peptide known to stimulate GI hormone release. Plasma cadmium was measured employing atomic absorption spectrophotometry and GI hormone levels were measured with specific radioimmunoassays (RIA). Basal plasma levels of hormones (pg/mL) in the dogs were in the range (mean ± SE): 38±5 to 44±6 for gastrin, 80±25 to 107±17, for CCK and 120±5 to 142±5 for PP; these levels did not change with cadmium. Significant increases above basal levels in all three hormones were found with infusions of BBS and with BBS plus cadmium. Gastrin levels remained steady during Cd and saline after BBS; however, CCK and PP levels dropped to values that were 68 and 73% less than their stimulated peak levels. With reinfusion of BBS, gastrin, CCK, and PP were significantly elevated above basal; however, the peak values for CCK and PP, but not gastrin, were less than those found during the first BBS infusion. The data suggest that in response to bombesin, cadmium has little or no effect on the release of gastrin, but that is exerts a latent effect on the release of both CCK and PP.  相似文献   

19.
Y Seino  S Nishi  H Imura 《Life sciences》1985,37(7):651-656
In order to elucidate the role of the vagus nerve in the regulation of pancreatic somatostatin secretion, the effect of electrical stimulation of the vagus on the isolated perfused rat pancreas was studied. Somatostatin release induced by 19 mM arginine in the presence of 11 mM glucose or 10(-6)M glucagon in the presence of 5.5 mM glucose was suppressed by vagal stimulation. This suppressive effect on somatostatin was eliminated in the presence of 10(-5)M atropine plus glucagon, while somatostatin release was significantly enhanced in the presence of atropine plus arginine. We conclude that pancreatic somatostatin secretion may be regulated not only by a cholinergic inhibitory neuron but also by a stimulatory non-cholinergic neuron.  相似文献   

20.
Enterostatin selectively inhibits the intake of dietary fat after both peripheral and central administration. We have investigated the role of the hepatic vagus nerve in modulating the peripheral response to enterostatin in Sprague-Dawley rats adapted to a high fat (HF) diet. Intraperitoneal (ip) enterostatin reduced intake of HF diet after overnight starvation. This response was abolished by selective vagal hepatic branch transection. Immunohistochemical techniques were used to identify the location of Fos protein in brain nuclei after ip enterostatin. Fos protein was evident in the nucleus tractus solitarius (NTS), parabrachial, paraventricular and supraoptic nuclei. The pattern of expression of Fos-like immunoreactivity differed from that induced by the lipoprivic agent β-mercaptoacetate. Transection of the hepatic vagus blocked the central Fos responses to ip enterostatin. We conclude that afferent hepatic vagal nerve activity is required for the feeding response to peripheral enterostatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号