首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 661 毫秒
1.
Allergic sheep with antigen-induced early and late responses were used to determine whether airway hyperresponsiveness (AHR) to carbachol is present during the late response and whether blocking the late response with the leukotriene D4 (LTD4) antagonist MK-571 also blocks this AHR. To do this, we first showed that MK-571 blocked the antigen-induced late response, and then, in a separate study, we determined the effect of MK-571 treatment on airway responsiveness 6 h after antigen challenge (at the start of the late response). MK-571 (5 mg, by metered dose inhaler) given 30 min before and 4 h after Ascaris suum challenge had no effect on the acute response to antigen but blocked (P less than 0.05) the late response compared with placebo (n = 7). In the second study (n = 6), the antigen-induced acute increases in mean specific lung resistance (sRL) were also similar in the placebo (249%) and drug trials (247%). By 6 h postchallenge, however, mean sRL in the placebo trial began to increase (54%, P less than 0.05), whereas in the drug trial mean sRL was baseline. Nevertheless, AHR was apparent in both trials as indicated by a mean twofold leftward shift in the dose-response curves to inhaled carbachol (P less than 0.05 vs. prechallenge). Bronchoalveolar lavage at 6 h showed that MK-571 did not prevent the inflammatory cell influx into the lung. These observations suggest that although LTD4 may be a mediator of the late response in sheep, it is not a primary mediator affecting cholinergic AHR during this period.  相似文献   

2.
We determined whether platelet-activating factor (PAF) plays a role in allergen-induced airway responses by studying the effects of a selective PAF antagonist WEB-2086 on antigen-induced early and late airway responses in allergic sheep. In seven sheep, inhaled Ascaris suum produced significant early (282%) and late (176%) increases in specific lung resistance (sRL). WEB-2086 (1 mg/kg iv) given 20 min before antigen challenge did not affect the early response, but the peak late increase in sRL was only 37% over base line (P less than 0.05 vs. control). To study the mechanism by which PAF contributes to antigen-induced responses, we evaluated the effects of pharmacological probes on PAF-induced bronchoconstriction. Inhaled PAF (dose range 75-700 micrograms) caused reproducible (r = 0.781, P less than 0.05) increases in sRL in eight sheep. The PAF-induced bronchoconstriction was blocked by WEB-2086 (1 mg/kg iv) and by the leukotriene antagonist FPL-55712 (30 mg by aerosol); however, neither the cyclooxygenase blocker indomethacin (2 mg/kg iv) nor the histamine H1-antagonist chlorpheniramine (2 mg/kg iv) blocked the PAF response. WEB-2086, however, did not block bronchoconstriction induced by aerosol leukotriene D4, indicating that PAF acts indirectly through leukotrienes. Finally, we determined whether PAF could induce late airway responses. Inhaled PAF produced an immediate increase in sRL in all seven sheep tested, but late airway responses were observed in only three of the seven sheep.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We compared the development of antigen-induced airway hyperresponsiveness (AHR) 24 h after challenge with Ascaris suum antigen in allergic sheep with acute (n = 7) and with dual (n = 7) airway responses and then attempted to modify this AHR. Cholinergic airway responsiveness was determined by measuring the carbachol dose required to increase specific lung resistance (sRL) 150% (i.e., PC150). Subsequently the sheep were challenged with antigen and sRL was measured at predetermined times to document the presence or absence of a late response. PC150 was redetermined 24 h later followed by bronchoalveolar lavage (BAL) to assess inflammation. Only dual responders developed AHR (PC150 decreased, P less than 0.05). There were no significant differences in BAL between the two groups. Six dual responders were then, on separate occasions (greater than or equal to 3 wk), pretreated with placebo, indomethacin (2 mg/kg iv), or a leukotriene antagonist, FPL-57231 (30 mg inhaled). Neither agent significantly affected the acute response to antigen. Only FPL pretreatment blocked the late response, but both agents blocked the antigen-induced AHR 24 h later. BAL at 24 h showed no significant differences. These results indicate that only dual responders develop AHR 24 h after antigen challenge. This AHR appears independent of the late increase in sRL or the severity of pulmonary inflammation. AHR appears to be sensitive to agents that interfere with the early release or actions of cyclooxygenase and lipoxygenase metabolites in dual responders.  相似文献   

4.
We tested the hypothesis that prior exposure to alveolar hyperoxia prevents the hypoxia-induced enhancement of bronchial reactivity, possibly via a cyclooxygenase-dependent mechanism. In 15 sheep, specific lung resistance (sRL) was measured before and after 30 min of exposure to either air or a hypoxic gas mixture (13% O2). The sheep then inhaled 50 breaths of aerosolized 5% histamine solution (n = 9) or 10 breaths of 2.5% carbachol solution (n = 9), and measurements of sRL were repeated. On subsequent days the above protocols were repeated after a 30-min exposure to hyperoxia (O2 greater than or equal to 95%), without or after pretreatment with indomethacin (2 mg/kg). After air-sham exposure, carbachol and histamine increased mean sRL to 370 +/- 40 (SE) and 309 +/- 65% of baseline, respectively. Exposure to the hypoxic gas mixture had no effect on baseline sRL but enhanced the airway responsiveness to carbachol and histamine; mean sRL increased to 740 +/- 104 and 544 +/- 76% of baseline, respectively (P less than 0.05). Prior 30-min exposure to hyperoxia prevented the hypoxia-induced enhancement of bronchial reactivity to carbachol (sRL = 416 +/- 66% of baseline) and histamine (sRL = 292 +/- 41% of baseline) without affecting the airway responsiveness to these agents after air. Pretreatment with indomethacin did not reverse the protective effects of hyperoxia or the hypoxia-induced enhancement of bronchial reactivity. We conclude that 1) prior exposure to alveolar hyperoxia prevents the hypoxia-induced enhancement of bronchial reactivity and 2) neither the protective effects of hyperoxia nor the hypoxia-induced enhancement of bronchial reactivity is mediated via a cyclooxygenase-dependent mechanism.  相似文献   

5.
We examined the effects of nedocromil sodium, a new drug developed for the treatment of reversible obstructive airway disease, on allergen-induced early and late bronchial responses and the development of airway hyperresponsiveness 24 h after challenge in nine allergic sheep. On occasions greater than 2 wk apart the sheep were treated with 1) placebo aerosol (buffered saline) before and 3 h after antigen challenge, 2) an aerosol of nedocromil sodium (1 mg/kg in 3 ml buffered saline) before antigen challenge and placebo 3 h after challenge, and 3) placebo aerosol before and nedocromil sodium aerosol 3 h after challenge. Early and late bronchial responses were determined by measuring specific lung resistance (sRL) before and periodically after challenge. Airway responsiveness was assessed by determining from dose-response curves the carbachol concentration (in % wt/vol) that increased sRL to 5 cmH2O/s. In the placebo trial, antigen challenge resulted in early and late increases in sRL over a base line of 353 +/- 32 and 131 +/- 17% (SE), respectively. Both early and late increases in sRL were blocked (P less than 0.05) when the sheep were pretreated with nedocromil sodium. When nedocromil was given after the early response, the late response was reduced significantly. Eight of nine sheep developed airway hyperresponsiveness 24 h after antigen challenge. In these eight sheep, carbachol concentration before antigen challenge was 2.6 +/- 0.3%, 24 h later carbachol concentration was significantly lower (1.8 +/- 0.3%). Both nedocromil sodium treatments blocked (P less than 0.05) this antigen-induced airway hyperresponsiveness.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We determined the effect of aerosol challenge with leukotriene D4 (LTD4) on specific lung resistance (sRL) and tracheal mucous velocity (TMV) in conscious sheep with (allergic) and without (nonallergic) Ascaris suum hypersensitivity. In allergic sheep LTD4 in concentrations of 50, 100, and 150 micrograms/ml produced dose-dependent increases in mean sRL by 44 (P = NS), 154 (P less than 0.05), and 233% (P less than 0.05), respectively. The increase in sRL produced by 150 micrograms/ml LTD4 was prevented by FPL 55712, an antagonist of slow-reacting substance of anaphylaxis. In nonallergic sheep 150 micrograms/ml LTD4 failed to elicit a significant change in sRL. In contrast to the changes in airway mechanics, concentrations of LTD4 as low as 25 micrograms/ml produced significant decreases in TMV in allergic sheep. The maximum decrease in TMV at this dose occurred 2 h after challenge; with larger doses of LTD4 (100 and 150 micrograms/ml) the maximum effect was observed 3 h after challenge. Furthermore, 150 micrograms/ml LTD4 reduced TMV in nonallergic sheep (mean decrease 43%, P less than 0.05). FPL 55712 only had a minor effect on the LTD4-induced decreases in TMV. We conclude that allergic sheep exhibit greater airway responsiveness to inhaled LTD4 than nonallergic sheep but that this difference is not evident for the concomitant changes in mucociliary transport. This suggests that the allergic state is associated with an increased responsiveness to LTD4 in tissues controlling airway caliber but not in those contributing to mucociliary function.  相似文献   

7.
We studied the effects of WEB-2086, a specific antagonist of platelet-activating factor (PAF), on the development of antigen-induced airway hyperresponsiveness and inflammation in sheep (n = 8). For these studies, airway responsiveness was determined from slopes of carbachol dose-response curves (DRC) performed at base line (prechallenge) and 2 h after Ascaris suum antigen challenges in the following three protocols: 1) antigen challenge alone (control trial), 2) WEB-2086 (1 mg/kg iv) given 30 min before antigen challenge (WEB pretreatment), and 3) WEB-2086 given 2 h after antigen challenge, immediately before the postchallenge DRC (WEB posttreatment). Airway inflammation was assessed by bronchoalveolar lavage (BAL) before antigen challenge and after the postchallenge DRC for each trial. A. suum challenge resulted in acute increases in specific lung resistance that were not different among the three trials. Antigen challenge (control trial) caused a 93% increase (P less than 0.05) in the slope of the carbachol DRC when compared with the prechallenge value. WEB pretreatment (1 mg/kg) reduced (P less than 0.05) this antigen-induced hyperresponsiveness, whereas pretreatment with a 3-mg/kg dose completely prevented it. WEB posttreatment was ineffective in blocking this hyperresponsiveness. BAL neutrophils increased after antigen challenge in the control trial and when WEB-2086 was given after antigen challenge (P less than 0.05). Pretreatment with WEB-2086 (1 or 3 mg/kg) prevented this neutrophilia. This study provides indirect evidence for antigen-induced PAF release in vivo and for a role of endogenous PAF in the modulation of airway responsiveness and airway inflammation after antigen-induced bronchoconstriction in sheep.  相似文献   

8.
Inhaled heparin has been shown to inhibit allergic bronchoconstriction in sheep that develop only acute responses to antigen (acute responders) but was ineffective in sheep that develop both acute and late airway responses (LAR) (dual responders). Because the antiallergic activity of heparin is molecular-weight dependent, we hypothesized that heparin-derived oligosaccharides (<2, 500) with potential anti-inflammatory activity may attenuate the LAR in the dual-responder sheep. Specific lung resistance was measured in 24 dual-responder sheep before and serially for 8 h after challenge with Ascaris suum antigen for demonstration of early airway response (EAR) and LAR, without and after treatment with inhaled medium-, low-, and ultralow-molecular-weight (ULMW) heparins and "non-anticoagulant" fractions (NAF) of heparin. Airway responsiveness was estimated before and 24 h postantigen as the cumulative provocating dose of carbachol that increased specific lung resistance by 400%. Only ULMW heparins caused a dose-dependent inhibition of antigen-induced EAR and LAR and postantigen airway hyperresponsiveness (AHR), whereas low- and medium-molecular-weight heparins were ineffective. The effects of ULMW heparin and ULMW NAF-heparin were comparable and inhibited the LAR and AHR even when administered "after" the antigen challenge. The ULMW NAF-heparin failed to inhibit the bronchoconstrictor response to histamine, carbachol, and leukotriene D(4), excluding a direct effect on airway smooth muscle. In six sheep, segmental antigen challenge caused a marked increase in bronchoalveolar lavage histamine, which was not prevented by inhaled ULMW NAF-heparin. The results of this study in the dual-responder sheep demonstrate that 1) the antiallergic activity of inhaled "fractionated" heparins is molecular-weight dependent, 2) only ULMW heparins inhibit the antigen-induced EAR and LAR and postantigen AHR, and 3) the antiallergic activity is mediated by nonanticoagulant fractions and resides in the ULMW chains of <2,500.  相似文献   

9.
Time course recovery from induced airway obstruction by carbachol infusion (CI; 0.2 microgram.kg-1.min-1 for 40 min), carbachol aerosol (CA; 10 breaths of 2% solution), and histamine aerosol (HA; 25-50 breaths of 5% solution) challenge was investigated in conscious sheep (n = 6 each). Total lung aerosol deposition and airway caliber as assessed by pulmonary airflow resistance (RL) were measured every 20-30 min up to 4 h after the challenges. Aerosol deposition was measured by monitoring aerosol concentration continuously with a laser aerosol photometer while the sheep rebreathed 1.0-micron-diam inert oil droplets delivered by a 0.25-liter bag-in-box system driven by a respiratory pump at a breathing frequency of 30 breaths/min. Total accumulated deposition at the fifth breath (AD5) as percentage of the initial aerosol concentration was determined and used as an aerosol deposition index. Percent changes in AD5 from baseline were compared with corresponding changes in RL. Both RL and AD5 increased after Cl, CA, and HA: 192-477% for RL and 23-44% for AD5 (P less than 0.05). Mean RL return to baseline values 1 h after CI and HA and 2 h after CA. Mean AD5 returned to baseline at 1 h post-HA. In contrast, mean AD5 remained elevated for 2-4 h after CI and CA (P less than 0.05), and the increased AD5 could not be reversed by a bronchodilator aerosol. The persistence of enhanced aerosol deposition long after the return of RL to baseline suggests that complete recovery of airway conditions after CI and CA takes much longer than predicted by RL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Immunologic degranulation of airway mast cells after antigen inhalation produces early and late airway obstructions in allergic sheep. In this study we determined whether nonimmunologic degranulation of airway mast cells by inhalation of compound 48/80 had similar effects. In five sheep, pulmonary flow resistance (RL), thoracic gas volume (Vtg), and arterial O2 tension (Pao2) were determined prior to and at predetermined times after inhalation of 48/80 aerosol. Immediately after challenge mean specific lung resistance (sRL = RL X Vtg) increased by 259% and mean Pao2 decreased by 29%. All values returned to normal by 3 h. By 5-h postchallenge sRL again increased significantly; this second increase in sRL (92% above base line) was maximal at 7 h and was accompanied by a 17% drop in Pao2. In these same sheep inhalation of Ascaris suum antigen produced comparable early changes in sRL, but the onset of the late response was somewhat delayed and more pronounced. In a second group of sheep (n = 5), pretreatment with the mast cell stabilizer cromolyn sodium prevented both early and late responses by compound 48/80. Pretreatment with the histamine H1-antagonist chlorpheniramine had no significant effect on either response, whereas pretreatment with FPL 55712, an antagonist of slow-reacting substance of anaphylaxis (SRS-A), slightly but not significantly attenuated the early response and completely prevented the late response. We conclude that, like immunologic stimuli, nonimmunologic mast cell degranulation produces early and late bronchial obstructions in allergic sheep; that these responses are mediator dependent; and that while histamine and SRS-A contribute to the early response, it is the early appearance of SRS-A which is an important prerequisite for the late response.  相似文献   

11.
Excessive airway mucus can alter both the mass and site of aerosol deposition, which, in turn, may affect airway responsiveness to inhaled materials. In six prone sheep, we therefore measured pulmonary airflow resistance (RL) and cumulative aerosol deposition during five standard breaths (AD5) at base line and 3 min after inhalation challenge with 2% carbachol in buffered saline (10 breaths, tidal volume = 500 ml) or after an intravenous loading dose of carbachol (3 micrograms/kg) followed by a constant infusion of 0.3 micrograms.kg-1.min-1 with and without instillation of 20 ml of a mucus simulant (MS) into the distal end of each of the main bronchi or 30 ml of MS into the right main bronchus only by means of a flexible fiber-optic bronchoscope. Before carbachol challenge, RL did not change with MS into either both lungs or one lung only. AD5 increased from 36 +/- 2% (SE) before to 42 +/- 2% after MS instillation into both lungs (P less than 0.05) but remained unchanged after MS into one lung. After carbachol inhalation, RL increased significantly by 154 +/- 20 before and 126 +/- 25% after MS into both lungs and 162 +/- 24 before and 178 +/- 31% after MS into one lung (P less than 0.05). When the percent increase in RL was normalized for total aerosol deposition (% delta RL/AD5), the normalized values were lower after MS (3.0 +/- 0.5) than before MS (4.4 +/- 0.3) into both lungs (P less than 0.05) but were not significantly different before and after MS into the right lung only.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The role of endothelin, PAF and thromboxane A2 in airway hyperreactivity (AHR) to carbachol induced by ovalbumin sensitization and challenge in Balb/c mice was investigated. Ovalbumin sensitization and challenge induced significant AHR to carbachol in actively sensitized and challenged mice. Treatment of these mice with the PAF antagonist CV-3988 (10 microg kg(-1), i.v.) completely abolished OVA-induced AHR to carbachol. Treatment of sensitized mice with the TxA2 antagonist L-654,664 (1 mg kg(-1), i.v.) partially blocked the induction of AHR in OVA-challenged mice. The intranasal administration of 50 pmol of the ET(A) receptor antagonist BQ-123 had no effect on the PIP but produced a significant reduction at the dose of 100 pmol. The intravenous administration of BQ-123 (100 pmol) reduced the PIP only at the highest doses of carbachol. The ET(B) receptor antagonist BQ-788 administered either via the intranasal or intravenous route had no effect on the PIP at the dose of 100 pmol. Na?ve mice treated with either U-44069 (25 or 100 microg kg(-1), i.v.), endothelin-1 (100 pmol, intranasally) or the ET(B) receptor agonist IRL-1620 (100 pmol, intranasally) showed a marked increase in airway reactivity to carbachol. These results suggest an important role for endothelin, PAF and thromboxane A2 in AHR in mice actively sensitized and challenged with ovalbumin.  相似文献   

13.
To determine whether tracheal narrowing accompanies histamine-induced bronchoconstriction and whether a cholinergic reflex is involved in the tracheal and bronchial responses, we determined specific pulmonary resistance between the carina and the pleura (sRL) and tracheal volume (Vtr) with an indicator-dilution technique in conscious sheep. Immediately postdelivery of histamine aerosol (7.5 mg histamine base) mean sRL increased by 223% (P less than 0.05), and mean Vtr decreased by 25% (P less than 0.05). The duration of the changes was similar, with a return to base-line values within 60 min. With increasing doses of histamine up to 30 mg, there was a corresponding increase in mean sRL, whereas the maximum effect on Vtr was already reached after 7.5 mg of histamine. Atropine (0.2 mg/kg iv) increased mean Vtr by 77% (P less than 0.05) and blunted the histamine effects on sRL, whereas the histamine effects on Vtr were abolished. Intravenous histamine or carbachol aerosol had similar effects on sRL and Vtr. We conclude that in conscious sheep 1) histamine produces both tracheal and bronchial constriction with a similar time course, 2) there is a base-line vagal tone in the trachea and not the bronchi, 3) the cholinergic reflex component of histamine-induced constriction is greater in the trachea than the bronchi, and 4) this difference between the trachea and bronchi is not due to differential aerosol deposition or cholinergic responsiveness.  相似文献   

14.

Background

Previous studies showed that heparin''s anti-allergic activity is molecular weight dependent and resides in oligosaccharide fractions of <2500 daltons.

Objective

To investigate the structural sequence of heparin''s anti-allergic domain, we used nitrous acid depolymerization of porcine heparin to prepare an oligosaccharide, and then fractionated it into disaccharide, tetrasaccharide, hexasaccharide, and octasaccharide fractions. The anti-allergic activity of each oligosaccharide fraction was tested in allergic sheep.

Methods

Allergic sheep without (acute responder) and with late airway responses (LAR; dual responder) were challenged with Ascaris suum antigen with and without inhaled oligosaccharide pretreatment and the effects on specific lung resistance and airway hyperresponsiveness (AHR) to carbachol determined. Additional inflammatory cell recruitment studies were performed in immunized ovalbumin-challenged BALB/C mice with and without treatment.

Results

The inhaled tetrasaccharide fraction was the minimal effective chain length to show anti-allergic activity. This fraction showed activity in both groups of sheep; it was also effective in inhibiting LAR and AHR, when administered after the antigen challenge. Tetrasaccharide failed to modify the bronchoconstrictor responses to airway smooth muscle agonists (histamine, carbachol and LTD4), and had no effect on antigen-induced histamine release in bronchoalveolar lavage fluid in sheep. In mice, inhaled tetrasaccharide also attenuated the ovalbumin-induced peribronchial inflammatory response and eosinophil influx in the bronchoalveolar lavage fluid. Chemical analysis identified the active structure to be a pentasulfated tetrasaccharide ([IdoU2S (1→4)GlcNS6S (1→4) IdoU2S (1→4) AMan-6S]) which lacked anti-coagulant activity.

Conclusions

These results demonstrate that heparin tetrasaccharide possesses potent anti-allergic and anti-inflammatory properties, and that the domains responsible for anti-allergic and anti-coagulant activity are distinctly different.  相似文献   

15.
We tested the accuracy, sensitivity, and reproducibility of a new lung water computer, based on the thermal conductivity technique, in 22 anesthetized closed-chest ventilated sheep with different treatments: 1) controls (n = 8), 2) 0.05 ml/kg of oleic acid + 100 ml/kg of lactated Ringer solution (n = 6), and 3) airway instillation of saline [3.1 +/- 1.3 (SD) g/kg, n = 8]. After 4 h, we determined the extravascular lung water gravimetrically. We found a significant overall correlation between the final extravascular lung thermal volume and the gravimetric extravascular lung mass (P < 0.001). Although the average ratio of extravascular lung thermal volume to extravascular lung mass was 0.97 +/- 0.25 ml/g for all groups, the computer overestimated extravascular lung mass in controls by 10% (17 g) and underestimated it in sheep with oleic acid by 15% (95 g) and in sheep with airway instillation by 8% (37 g). The computer also underestimated the small quantities of saline placed via the airway in the alveolar space by 75% (61 g). Reproducibility of three consecutive measurements was 4.3% (SE). We conclude that the thermal conductivity technique has an ability to detect the baseline extravascular lung mass but has a poor ability to detect an accurate increment of the extravascular lung water under poor tissue perfusion in anesthetized ventilated sheep.  相似文献   

16.
Sixteen anesthetized artificially ventilated open-chest sheep were prepared with retrograde catheters to allow for measurement of dynamic compliance of the lungs (Cdyn), total airflow resistance of the lungs (RL), and central (Rc) and peripheral (Rp) airflow resistance. Twelve sheep received aerosol histamine and 12 sheep received aerosol carbachol. Eight sheep received and responded to both aerosol histamine and aerosol carbachol. Three sheep received both aerosol histamine and aerosol carbachol but failed to respond to both agents. Under base-line conditions, for the 16 sheep, 69% of total RL was located in the peripheral component, Rp, and 31% in the central component, Rc. Aerosol histamine caused only peripheral small airway changes while aerosol carbachol predominantly effected the central large airways. When aerosol histamine responsiveness, defined using Cdyn or Rp, was compared to aerosol carbachol responsiveness using Rc, a correlation was demonstrable (r = 0.84, n = 8, P less than 0.05). It is possible in sheep to cause relatively pure peripheral small airway and relatively pure central large airway changes by using different bronchoconstrictor agents. Aerosol histamine and aerosol carbachol responsiveness correlated with each other in these artificially ventilated anesthetized sheep.  相似文献   

17.
The purpose of this study was to determine whether excessive airway secretions could serve as a barrier function against inhaled particulate matter. To increase airway secretions, six conscious sheep were treated with pilocarpine (0.8 mg/kg i.v.). Pilocarpine increased pulmonary resistance (RL) and total aerosol deposition within five breaths (AD5) as determined by the rebreathing of an inert monodisperse aerosol. When RL had returned to baseline, AD5 remained elevated [21 +/- 2% (SE), P < 0.05] and tracheal secretions were increased (237 +/- 77%, P < 0.05) above the values before pilocarpine administration. A carbachol aerosol dose-response curve was carried out at this time and compared with a control carbachol dose-response curve by calculating the dose of carbachol required to increase RL by 400% (PD400). Mean PD400 was increased postpilocarpine by 53 +/- 18 (P < 0.05) and 85 +/- 25% (P < 0.05) when normalized for increased aerosol deposition. Thus, pilocarpine decreased airway responsiveness to inhaled carbachol despite increasing aerosol deposition. The pilocarpine-induced airway hyporesponsiveness to inhaled carbachol is consistent with the hypothesis that excessive secretions have a protective role in the airways.  相似文献   

18.
Recently, we have shown that allergen-induced airway hyperresponsiveness (AHR) after the early (EAR) and late (LAR) asthmatic reaction in guinea pigs could be reversed acutely by inhalation of the Rho kinase inhibitor Y-27632. The present study addresses the effects of pretreatment with inhaled Y-27632 on the severity of the allergen-induced EAR and LAR, the development of AHR after these reactions, and airway inflammation. Using permanently instrumented and unrestrained ovalbumin (OA)-sensitized guinea pigs, single OA challenge-induced EAR and LAR, expressed as area under the lung function (pleural pressure, P(pl)) time-response curve, were measured, and histamine PC(100) (provocation concentration causing a 100% increase of P(pl)) values were assessed 24 h before, and at 6 and 24 h after, the OA challenge (after the EAR and LAR, respectively). Thirty minutes before and 8 h after OA challenge, saline or Y-27632 (5 mM) was nebulized. After the last PC(100) value, bronchoalveolar lavage (BAL) was performed, and the inflammatory cell profile was determined. It was demonstrated that inhalation of Y-27632 before allergen challenge markedly reduced the immediate allergen-induced peak rise in P(pl), without significantly reducing the overall EAR and LAR. Also, pretreatment with Y-27632 considerably protected against the development of AHR after the EAR and fully prevented AHR after the LAR. These effects could not be explained by a direct effect of Y-27632 on the histamine responsiveness, because of the short duration of the acute bronchoprotection of Y-27632 (<90 min). In addition, Y-27632 reduced the number of total inflammatory cells, eosinophils, macrophages, and neutrophils recovered from the BAL. Altogether, inhaled Y-27632 protects against acute allergen-induced bronchoconstriction, development of AHR after the EAR and LAR, and airway inflammation in an established guinea pig model of allergic asthma.  相似文献   

19.
Platelet activating factor (PAF) interacts with cell surface G protein-coupled receptors on leukocytes to induce degranulation, leukotriene C(4) (LTC(4)) generation, and chemokine CCL2 production. Using a basophilic leukemia RBL-2H3 cell line expressing wild-type PAF receptor (PAFR) and a phosphorylation-deficient mutant (mPAFR), we have previously demonstrated that receptor phosphorylation mediates desensitization of PAF-induced degranulation. Here, we sought to determine the role of receptor phosphorylation on PAF-induced LTC(4) generation and CCL2 production. We found that PAF caused a significantly enhanced LTC(4) generation in cells expressing mPAFR when compared with PAFR cells. In contrast, PAF-induced CCL2 production was greatly reduced in mPAFR cells. Pertussis toxin and U0126, which inhibit G(i) and p44/42 mitogen-activated protein kinase (ERK) activation, respectively, caused very little inhibition of PAF-induced CCL2 production (approximately 20% inhibition). In contrast, these inhibitors almost completely blocked both PAF-induced ERK phosphorylation and LTC(4) generation in PAFR cells. However, in mPAFR cells pertussis toxin only partially inhibited PAF-induced ERK phosphorylation. A Ca(2+)/calmodulin inhibitor had no effect on PAF-induced ERK phosphorylation in PAFR cells but completely blocked the response in mPAFR cells. These data demonstrate that receptor phosphorylation, which serves to desensitize PAF-induced LTC(4) generation, is required for chemokine CCL2 production. They also indicate a previously unrecognized selectivity in G protein usage and ERK activation for PAF-induced responses. Whereas PAF-induced CCL2 production is, in large part, mediated independently of G(i) activation or ERK phosphorylation, LTC(4) generation requires ERK phosphorylation, which is mediated by different G proteins depending on the phosphorylation status of the receptor.  相似文献   

20.
Platelet-activating factor (PAF) is a lipid mediator able to induce a variety of inflammatory processes in human peripheral blood cells. We have investigated the effect of PAF on the release of chemical mediators from human basophils of allergic and normal donors. PAF (10 nM to 1 microM) caused a concentration-dependent, noncytotoxic histamine release (greater than or equal to 10% of total) in 27 of 44 subjects tested (24 atopic and 20 nonatopic donors). The release process was either very rapid (t1/2 approximately equal to 10 s) or quite slow (t 1/2 approximately equal to 10 min), temperature- and Ca2(+)-dependent (optimal at 37 degrees C and 5 mM Ca2+). Coincubation of PAF with cytochalasin B (5 micrograms/ml) enhanced the release of histamine induced by PAF and activated the release process in most donors (42 of 44). Atopics did not release significantly more histamine than normal subjects, and the percentage of PAF responders (greater than or equal to 10% of total) was nearly the same in the two groups. Histamine release was accompanied by the synthesis and release of leukotriene C4, although this lagged 1 to 2 min behind histamine secretion. Lyso-PAF (100 nM to 10 microM), alone or together with cytochalasin B, did not release significant amounts of histamine. The release of histamine activated by PAF was inhibited by the specific PAF receptor antagonist, L-652,731, with an IC50 of 0.4 microM. There was a partial desensitization to PAF when the cells were preincubated with PAF (100 nM to 1 microM) for 2 min in the absence of Ca2+, whereas the cells remained responsive to anti-IgE (0.1 micrograms/ml). If neutrophils were removed from the basophil preparation by a Percoll gradient or a countercurrent elutriation technique, there was a significant decrease in PAF-induced histamine release. PAF (1 microM) was able to induce a very rapid, transient rise (peak less than 10 s) in [Ca2+]i in purified basophils analyzed by digital video microscopy. Finally, among human histamine-containing cells, the basophils are unique in degranulating following a PAF challenge. Mast cells from human lung, skin, or uterus failed to respond to PAF (10 nM to 1 microM) regardless of the presence or absence of cytochalasin B (5 micrograms/ml). Our results demonstrate that PAF is able to induce the release of inflammatory mediators from human basophils, and that neutrophils can influence this response. It is suggested that PAF-induced basophil activation can play a role in the pathogenesis of allergic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号