共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenanthrene degradation by Pseudomonas mendocina CGMCC 1.766, a new phenanthrene-degrading strain, was investigated in this work. When cells were grown on 20, 50, 100 and 200 mg l−1 of phenanthrene, the doubling time was 18.3, 19.8, 21.0 and 20.3 h and the growth yield during exponential phase was 242, 271, 221 and 206 mg protein (g phenanthrene)−1, respectively. High level accumulation of the intermediate metabolite 1-hydroxy-2-naphthoic acid (1H2N) up to ≈94% of its theoretical yield was observed. Dynamic profiles of the activities of two key enzymes, i.e. polycyclic aromatic hydrocarbon (PAH) dioxygenase (PDO) and catechol-2,3-oxygenase (C23O), during the biodegradation were revealed and the results suggest a delicate mechanism in the regulation of these phenanthrene-degrading enzymes in this strain. 相似文献
2.
A strain of Pseudomonas has been studied for its nickel accumulation capacity. Most assays were carried out exposing cells to the metal in a resting state. Results indicate an extracellular, metabolically independent adsorption that is decreased by the presence of acetate. A possible exchange of nickel for magnesium from the outer membrane is suggested. Nickel tolerance of this strain in minimal medium is limited. 相似文献
3.
Eun Gyo Lee Hye Soon Won Hyeon-Su Ro Yeon-Woo Ryu Bong Hyun Chung 《Journal of Molecular Catalysis .B, Enzymatic》2003,26(3-6):149-156
Esterase PF1-K from Pseudomonas sp. KTCC 10122BP was overproduced by the fed-batch culture of Escherichia coli. The soluble expression of esterase PF1-K was achieved by shifting the culture temperature from 37 to 25 °C at the time of IPTG induction. The enzyme was partially purified to about 75% purity by a single-step hydrophobic interaction column chromatography. The purified enzyme exhibited a fairly high enantioselectivity towards the hydrolysis of rac-flurbiprofen ethyl ester. The enzymatic chiral resolution was further improved by optimizing the reaction conditions in terms of reaction rate and enantioselectivity. The optimal reaction conditions were found to be 40 °C, pH 10.5 and 600 mM of initial rac-flurbiprofen ethyl ester. After 90 min of batch reaction under the optimal conditions, 50% of the initial rac-flurbiprofen was hydrolyzed with an enantiomeric excess of 99%. 相似文献
4.
Gautam Kumar Meghwanshi Lata Agarwal Kakoli Dutt Rajendra K. Saxena 《Journal of Molecular Catalysis .B, Enzymatic》2006,40(3-4):127-131
Lipase producing ability of 120 bacterial isolates was examined qualitatively, resulting in 32 lipase producers, which were further screened for 1,3-regiospecificity. Three Bacillus (GK-8, GK-31 and GK-42) and one Pseudomonas (GK-80) were found to produce 1,3-regiospecific lipases. These lipases were alkaline in nature as they showed pH optima of 9.0 and high stability in the alkaline pH range of 8.0–11.0. The lipases from three Bacillus isolates, viz. GK-8, GK-31 and GK-42 showed temperature optima of 37 °C, whereas the Pseudomonas (GK-80) lipase showed optimum activity at 50 °C. The lipase of GK-8 was highly stable and showed enhanced activity in different organic solvents like petroleum ether (172%), diethyl ether (143%) and acetone (135%). 相似文献
5.
Jolanta Bohdziewicz 《Process Biochemistry》1998,33(8):811-818
A method of immobilizing enzymes from Pseudomonas sp. that decompose phenol on polymeric ultrafiltration membranes is described. Transport-separation properties of neutral and enzymic membranes have been compared and the optimal ultrafiltration process parameters of a model phenol solution have been determined. The immobilized enzyme system was applied to the biodegradation of phenol in coke wastewaters. 相似文献
6.
食源假单胞菌群体感应信号分子的研究 总被引:4,自引:0,他引:4
从市售鲜鱼中分离的3株革兰氏阴性菌,经16S rDNA鉴定为假单胞菌属,该菌是一种导致食品腐败的重要腐败细菌。N-酰基-高丝氨酸内酯(AHLs)是革兰氏阴性菌群体感应(QS)系统中一类重要的信号分子,以密度依赖的方式调控某些生理性状的表达。利用AHLs检测菌株对3株假单胞菌进行检测发现,均产生AHLs类信号分子,且FML05-1和FML05-2至少产生两种AHLs,主要的信号分子是N-3-氧代-辛酰基-高丝氨酸内酯(N- 3-oxo-C_8-HSL)。同时对菌株FML05-2在生长过程中所产生的AHLs的活性变化进行研究,发现AHLs活性在菌体生长至12h时达到最大。首次对食源假单胞菌所产生的AHLs进行了研究,为以干扰腐败细菌群体感应为靶点的食品防腐保鲜策略提供研究基础。 相似文献
7.
A new nicotinamide cofactor-dependent alcohol dehydrogenase from Pseudomonas strain SBD6 (PADH) was isolated and purified 150-fold to homogeneity using a combination of salt precipitation, anion-exchange chromatography, gel filtration chromatography, and dye matrix chromatography. Approximately 10 mg of pure enzyme can be obtained from 10 g of wet cells. The enzyme has four subunits with a total molecular weight of 162,000. Incubation with the metal chelators 1,10-phenanthroline, 2-aminoethanethiol, hydroxyquinolinesulfonic acid, N-ethylmaleimide, and potassium cyanide result in complete loss of activity. The enzyme is very stable (t1/2 7 days at pH 7 and 25°C in the absence of 2-propanol and 18 days in the presence of 10% 2-propanol, v/v) and possesses a broad substrate specificity with transfer of the pro-(R) hydride from NADH to the si face of carbonyl substrates to give (R)-alcohols in high enantiomeric excess, a stereochemical process different from that of other known alcohol dehydrogenases. Synthetic scale reductions are facilitated with 2-propanol as a hydride source for the regeneration of NADH. The kinetic mechanism is ordered bi-bi with the cofactor binding first. Based on NAD and 2-propanol, the kinetic parameters of the enzyme were determined to be Vmax = 29.9 Units mg−1 at 25°C and pH 8.5, KmNAD = 0.36 m
and Km2-propanol = 0.19 m
. 相似文献
8.
Pseudomonas sp. CP4, a potent phenol-degrading laboratory isolate could mineralize all three isomers of cresol. This strain readily utilized up to 1.4, 1.1 and 2.2 g/l of o- m- and p-cresol, respectively as the sole sources of carbon and energy. These are the highest concentrations of cresols reported to be degraded by a bacterial strain. The rates of degradation of the three isomers were in the order: o- > p- > m-cresol. All the isomers of cresol were catabolized through a meta-cleavage pathway. Fairly high catechol 2,3-dioxygenase (C230) activity against catechol was observed in the cell-free extracts of the culture grown on these compounds and were in the order: m- > o- > p-cresol. 相似文献
9.
假单胞菌污染事件在临床就医和日常饮食中频发,屡次产生致病、致死等恶劣后果,有效抑制致病假单胞菌并降低其耐药性作为解决该问题的关键手段,是目前的研究重点。相关研究表明益生菌等天然活性成分对假单胞菌产生多方面影响,以应用范围最广的益生菌——乳杆菌为例,综合国内外最新研究进展,论述了乳杆菌对假单胞菌的生物膜结构、生长活性、生物毒性、黏附细胞表面能力及被假单胞菌感染后的小鼠等产生的影响。深入挖掘乳杆菌等益生菌及其代谢产物成分的作用机制,是防治假单胞菌等微生物污染和感染的关键。 相似文献
10.
S.N. Wang P. Xu H.Z. Tang J. Meng X.L. Liu J. Huang H. Chen Y. Du H.D. Blankespoor 《Biotechnology letters》2005,26(19):1493-1496
A Pseudomonas sp. grew with nicotine optimally 3 g l–1 and at 30 °C and pH 7. Nicotine was fully degraded within 10 h. The resting cells degraded nicotine in tobacco solid waste completely within 6 h in 0.02 m sodium phosphate buffer (pH 7) at maximally 56 mg nicotine h–1 g dry cell–1. 相似文献
11.
Kalidas Shetty Thomas L. Carpenter Otis F. Curtis Thomas L. Potter 《Plant science》1996,120(2):41-183
Hyperhydricity or vitrification is a physiological malformation affecting tissue culture-based propagation of several plant species. A Pseudomonas spp-mediated approach was recently developed to control hyperhydricity in oregano. This bacterium-induced prevention of hyperhydricity helped the establishment of clonal plants in the greenhouse without extensive acclimatization. The prevention of hyperhydricity was specifically linked to mucoid Pseudomonas spp and was characterized by high chlorophyll and reduced water content in oregano shoots. The focus of research reported in this paper was to purify the extracellular mucoid component from Pseudomonas spp and evaluate the effect on hyperhydricity in oregano tissue culture. The extracellular mucoid component was purified by ethanol precipitation. This extracellular mucoid component was confirmed to be a polysaccharide using gas chromatography-mass spectrometry. The effect of purified polysaccharide to prevent or reduce hyperhydricity was tested in oregano clone 0–1. The polysaccharide prevented hyperhydricity in oregano with reduced efficiency compared to bacterial inoculation. This was characterized by higher chlorophyll and reduced water content when compared to uninoculated/untreated oregano shoots. This confirms that the Pseudomonas spp-mediated hyperhydricity reduction in oregano is partially due to its extracellular polysaccharide. This provides a novel approach to develop a media formulation to control hyperhydricity in wide number of plant species where tissue culture is used for clonal propagation. 相似文献
12.
Dahai Yu Zhi Wang Lifang Zhao Yueming Cheng Shugui Cao 《Journal of Molecular Catalysis .B, Enzymatic》2007,48(3-4):64-69
Lipase from Pseudomonas sp. (PSL) was immobilized on SBA-15 (a highly ordered hexagonal array mesoporous silica molecular sieve) through physical adsorption and the immobilized PSL was used in resolution of (R,S)-2-octanol with vinyl acetate as acyl donor. Enhanced activity and enantioselectivity were observed for the immobilized PSL compared with those of the free one. The effects of reaction conditions, such as solvents, temperature, water activity and substrate ratio were investigated. Under the optimum conditions, the residual (S)-2-octanol was recovered with 99% enantiomeric excess at 52% conversion. The results also indicated that the immobilized PSL maintained 90% of its initial activity even after reusing it five times. 相似文献
13.
Radial basis function (RBF) artificial neural network (ANN) and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (pH, temperature, inoculum volume) for extracellular protease production from a newly isolated Pseudomonas sp. The optimum operating conditions obtained from the quadratic form of the RSM and ANN models were pH 7.6, temperature 38 °C, and inoculum volume of 1.5 with 58.5 U/ml of predicted protease activity within 24 h of incubation. The normalized percentage mean squared error obtained from ANN and RSM models were 0.05 and 0.1%, respectively. The results demonstrated an higher prediction accuracy of ANN compared to RSM. This superiority of ANN over other multi factorial approaches could make this estimation technique a very helpful tool for fermentation monitoring and control. 相似文献
14.
For the purpose of producing pyruvate from
-lactate by enzymatic methods, four microorganism strains that produce lactate oxidase (LOD) were screened and isolated from many soil samples. Among them, strain SM-6, which showed high potential for pyruvate production, was chosen for further research. Physiological studies and 16S rDNA relationship reveal that SM-6 belongs to Pseudomonas putida. The optimized pH and temperature of the enzyme-catalyzed reaction were pH 7.2, and 39 °C, respectively. Low-concentration EDTA (1 mM) could improve the stability of pyruvate and conversion ratio of lactate oxidase. Vmax and Km value for
-lactate were 2.46 μmol/(min mg) protein and 9.53 mM, respectively. On preparation scale, cell-free extract from SM-6, containing 300 mg/l of crude enzyme (4037 U/ml lactate oxidase), could convert 66% of 116 mM of
-lactate into 76.6 mM pyruvate in 18 h, and 82% of substrate was transformed after 48 h, giving 95.0 mM (10.5 mg/ml) of pyruvate. The ratio of product to biocatalyst was 34.8:1 (g/g). 相似文献
15.
藤黄绿脓菌素的自诱导及假单胞菌M18抗生物质代谢相关性初步分析 总被引:1,自引:0,他引:1
假单胞菌M18的生防功能归功于其分泌吩嗪-1-羧酸和藤黄绿脓菌素。为了研究抗生物质合成代谢相关性及调控机制,分别构建了两种抗生物质合成基因簇插入突变株M18T和M18Z1。用翻译融合表达载体pMEAZ(pltA′-′lacZ)分别转化野生株和突变株M18T、发酵培养并测定β-半乳糖苷酶活性,结果显示,添加藤黄绿脓菌素使突变株M18T(pMEAZ)的β-半乳糖苷酶活性比野生株M18(pMEAZ)增加约6倍,表明藤黄绿脓菌素对自身基因簇具正向自诱导作用。抗生物质的测定结果显示,突变株M18T无藤黄绿脓菌素合成,而吩嗪-1-羧酸的合成量与野生株相同;突变株M18Z1与野生株相比,吩嗪-1-羧酸明显减少,藤黄绿脓菌素却显著提高。过量的吩嗪-1-羧酸又抑制藤黄绿脓菌素的合成。表明,假单胞菌M18中独有的代谢相关方式为:藤黄绿脓菌素不影响吩嗪-1-羧酸,但吩嗪-1-羧酸负调控藤黄绿脓菌素。 相似文献
16.
Pseudomonas sp. strain JS150 was isolated as a nonencapsulated variant of Pseudomonas sp. strain JS1 that contains the genes for the degradative pathways of a wide range of substituted aromatic compounds. Pseudomonas sp. strain JS150 grew on phenol, ethylbenzene, toluene, benzene, naphthalene, benzoate, p-hydroxybenzoate, salicylate, chlorobenzene, and several 1,4-dihalogenated benzenes. We designed experiments to determine the conditions required for induction of the individual pathways and to determine whether multiple substrates could be biodegraded simultaneously. Oxygen consumption studies with whole cells and enzyme assays with cell extracts showed that the enzymes of the meta, ortho, and modified ortho cleavage pathways can be induced in strain JS150. Strain JS150 contains a nonspecific toluene dioxygenase with a substrate range similar to that found in strains of Pseudomonas putida. The presence of the dioxygenase along with multiple pathways for metabolism of substituted catechols allows facile extension of the growth range by spontaneous mutation and degradation of mixtures of substituted benzenes and phenols. Chlorobenzene-grown cells of strain JS150 degraded mixtures of chlorobenzene, benzene, toluene, naphthalene, trichloroethylene, and 1,2- and 1,4-dichlorobenzenes in continuous culture. Under similar conditions, phenol-grown cells degraded a mixture of phenol, 2-chloro-, 3-chloro, and 2,5-dichlorophenol and 2-methyl- and 3-methylphenol. These results indicate that induction of appropriate biodegradative pathways in strain JS150 permits the biodegradation of complex mixtures of aromatic compounds. 相似文献
17.
Biodegradation of mixtures of substituted benzenes by Pseudomonas sp. strain JS150. 总被引:1,自引:7,他引:1 下载免费PDF全文
Pseudomonas sp. strain JS150 was isolated as a nonencapsulated variant of Pseudomonas sp. strain JS1 that contains the genes for the degradative pathways of a wide range of substituted aromatic compounds. Pseudomonas sp. strain JS150 grew on phenol, ethylbenzene, toluene, benzene, naphthalene, benzoate, p-hydroxybenzoate, salicylate, chlorobenzene, and several 1,4-dihalogenated benzenes. We designed experiments to determine the conditions required for induction of the individual pathways and to determine whether multiple substrates could be biodegraded simultaneously. Oxygen consumption studies with whole cells and enzyme assays with cell extracts showed that the enzymes of the meta, ortho, and modified ortho cleavage pathways can be induced in strain JS150. Strain JS150 contains a nonspecific toluene dioxygenase with a substrate range similar to that found in strains of Pseudomonas putida. The presence of the dioxygenase along with multiple pathways for metabolism of substituted catechols allows facile extension of the growth range by spontaneous mutation and degradation of mixtures of substituted benzenes and phenols. Chlorobenzene-grown cells of strain JS150 degraded mixtures of chlorobenzene, benzene, toluene, naphthalene, trichloroethylene, and 1,2- and 1,4-dichlorobenzenes in continuous culture. Under similar conditions, phenol-grown cells degraded a mixture of phenol, 2-chloro-, 3-chloro, and 2,5-dichlorophenol and 2-methyl- and 3-methylphenol. These results indicate that induction of appropriate biodegradative pathways in strain JS150 permits the biodegradation of complex mixtures of aromatic compounds. 相似文献
18.
Yu Yangsheng Bai Gang Liu Chunqin Li Yang Jin Yongjie Yang Wenbo 《Frontiers of Biology in China》2007,2(4):391-396
L-cysteine desulfhydrase (CD) plays an important role in L-cysteine decomposition. To identify the CD gene in Pseudomonas sp. TS1138 and investigate its effect on the L-cysteine biosynthetic pathway, the CD gene was cloned from Pseudomonas sp. TS1138 by polymerase chain reaction (PCR) method. The nucleotide sequence of CD gene was determined to be 1,215 bp, and
its homology with other sequences encoding CD was analyzed. Then the CD gene was subcloned into pET-21a(+) vector and expressed
in Escherichia coli (E. coli) by isopropyl-β-D-thiogalactopyranoside (IPTG) inducement. The recombinant CD was purified by Ni-NTA His-Bind resin, and its activity was
identified by the CD activity staining. The enzymatic properties of the recombinant CD were characterized and its critical
role involved in the L-cysteine biosynthetic pathway was also discussed.
__________
Translated from Microbiology, 2006, 33(4): 21–26 [译自: 微生物学通报] 相似文献
19.
Sang-young Lee Hae-ik Rhee Weon-chan Tae Jeong-chul Shin Boo-kil Park 《Applied microbiology and biotechnology》1989,31(5-6):542-546
Summary A cholesterol-oxidase-producing microorganism, strain COX629, isolated from soil was identified as Pseudomonas sp. The cholesterol oxidase produced by Pseudomonas sp. strain COX629 was purified 2400-fold to homogeneity in an overall yield of 60% from culture broth. The enzyme was a monomer with a molecular weight of 56 000, as estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Sephadex G-150 gel column chromatography. The enzyme showed optimum activity at pH 7.0 and was stable over a rather wide pH range of 4.0 to 11.0. The enzyme showed a high substrate specificity for 3-hydroxysteroids and the K
m value for the oxidation of cholesterol by this enzyme was about 0.2 mM. A characteristic of the enzyme is marked stability at high temperature. 相似文献
20.
A microbial biosensor was developed for monitoring microbiologically influenced corrosion (MIC) of metallic materials in industrial systems. The Pseudomonas sp. isolated from corroded metal surface was immobilized on acetylcellulose membrane and its respiratory activity was estimated by measuring oxygen consumption. The microbial biosensor was used for the measurement of sulfuric acid in a batch culture medium contaminated by microorganisms. A linear relationship between the microbial sensor response and the concentration of sulfuric acid was observed. The response time of biosensor was 5 min and was dependent on the immobilized cell loading of Pseudomonas sp., pH, temperature and corrosive environments. The microbial biosensor response was stable, reproducible and specific for sensing of sulfur oxidizing bacterial activity. 相似文献