首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
δ13C and δ15N measurements are still poorly conducted in benthic invertebrate larvae. To assess the δ13C and δ15N changes occurring after a dietary shift, experiments were conducted on veliger larvae of Crepidula fornicata fed with two cultured microalgae (Isochrysis galbana and Pavlova lutheri) of known isotopic composition, 13C-enriched and 15N-depleted compared to the initial values of the larvae. Rapid changes in larval δ13C and δ15N were observed after the dietary shift, with an increase in δ13C and a decrease in δ15N. After 19 days of feeding, isotopic equilibrium was still not reached, a period which is close to the duration of the pelagic life of the larvae. This implies that the isotopic composition measured in field-collected larvae might only partly reflect actual larval feeding but also the parental isotopic signature, especially during the early developmental stages. Isotopic measurements in marine invertebrate larvae should thus be interpreted cautiously. In planktonic food web investigations, the study of field-collected larvae of different size/developmental stage may reduce potential misinterpretations.  相似文献   

2.
Sears J  Hatch SA  O'Brien DM 《Oecologia》2009,159(1):41-48
A growing number of studies suggest that an individual’s physiology affects its carbon and nitrogen stable isotope signatures, obscuring a signal often assumed to be only a reflection of diet and foraging location. We examined effects of growth and moderate food restriction on red blood cell (RBC) and feather δ15N and δ13C in rhinoceros auklet chicks (Cerorhinca monocerata), a piscivorous seabird. Chicks were reared in captivity and fed either control (75 g/day; n = 7) or ~40% restricted (40 g/day; n = 6) amounts of high quality forage fish. We quantified effects of growth on isotopic fractionation by comparing δ15N and δ13C in control chicks to those of captive, non-growing subadult auklets (n = 11) fed the same diet. To estimate natural levels of isotopic variation, we also collected blood from a random sample of free-living rhinoceros auklet adults and chicks in the Gulf of Alaska (n = 15 for each), as well as adult feather samples (n = 13). In the captive experiment, moderate food restriction caused significant depletion in δ15N of both RBCs and feathers in treatment chicks compared to control chicks. Growth also induced depletion in RBC δ15N, with chicks exhibiting lower δ15N when they were growing the fastest. As growth slowed, δ15N increased, resulting in an overall pattern of enrichment over the course of the nestling period. Combined effects of growth and restriction depleted δ15N in chick RBCs by 0.92‰. We propose that increased nitrogen-use efficiency is responsible for 15N depletion in both growing and food-restricted chicks. δ15N values in RBCs of free-ranging auklets fell within a range of only 1.03‰, while feather δ15N varied widely. Together, our captive and field results suggest that both growth and moderate food restriction can affect stable isotope ratios in an ecologically meaningful way in RBCs although not feathers due to greater natural variability in this tissue.  相似文献   

3.
Carbon and nitrogen stable isotopes are frequently used to study energy sources and food web structure in ecosystems, and more recently, to study the effects of anthropogenic stress on aquatic ecosystems. We investigated the effect of nutrient enrichment on δ13C and δ15N in fine (FPOM), coarse (CPOM) particulate organic matter, periphyton, invertebrates and fish in nine boreal streams in south-central Sweden. In addition, we analysed the diet of benthic consumers using stable isotope data. Increases in δ15N of periphyton (R 2 = 0.88), CPOM (0.78), invertebrates (0.92) and fish (0.89) were related to nutrient enrichment. In contrast, δ13C signatures did not change along the nutrient gradient. Our results show that δ15N has potential as a sensitive indicator of nutrient enrichment in boreal streams. Carbon and nitrogen isotopes failed to elucidate putative diets of selected aquatic consumers. Indeed, comparison of low- and high-impact sites showed that δ13C of many consumers were found outside the ranges of basal resource δ13C. Moreover, ranges of basal resource δ13C and δ15N overlapped at both low and high sites, making discrimination between the importance of allochthonous and autochthonous production difficult. Our findings show that a fractionation rate of 3.4‰ is not always be appropriate to assess trophic interactions, suggesting that more studies are needed on fractionation rates along gradients of impairment. Handling editor: M. Power  相似文献   

4.
Concentrations and natural isotope abundance of total sulfur and nitrogen as well as sulfate and nitrate concentrations were measured in needles of different age classes and in soil samples of different horizons from a healthy and a declining Norway spruce (Picea abies (L.) Karst.) forest in the Fichtelgebirge (NE Bavaria, Germany), in order to study the fate of atmospheric depositions of sulfur and nitrogen compounds. The mean δ15N of the needles ranged between −3.7 and −2.1 ‰ and for δ34S a range between −0.4 and +0.9 ‰ was observed. δ34S and sulfur concentrations in the needles of both stands increased continuously with needle age and thus, were closely correlated. The δ15N values of the needles showed an initial decrease followed by an increase with needle age. The healthy stand showed more negative δ15N values in old needles than the declining stand. Nitrogen concentrations decreased with needle age. For soil samples at both sites the mean δ15N and δ34S values increased from −3 ‰ (δ15N) or +0.9 ‰ (δ34S) in the uppermost organic layer to about +4 ‰ (δ15N) or +4.5 ‰ (δ34S) in the mineral soil. This depth-dependent increase in abundance of 15N and 34S was accompanied by a decrease in total nitrogen and sulfur concentrations in the soil. δ15N values and nitrogen concentrations were closely correlated (slope −0.0061 ‰ δ15N per μmol eq N gdw −1), and δ34S values were linearly correlated with sulfur concentrations (slope −0.0576 ‰ δ34S per μmol eq S gdw −1). It follows that in the same soil samples sulfur concentrations were linearly correlated with the nitrogen concentrations (slope 0.0527), and δ34S values were linearly correlated with δ15N values (slope 0.459). A correlation of the sulfur and nitrogen isotope abundances on a Δ basis (which considers the different relative frequencies of 15N and 34S), however, revealed an isotope fractionation that was higher by a factor of 5 for sulfur than for nitrogen (slope 5.292). These correlations indicate a long term synchronous mineralization of organic nitrogen and sulfur compounds in the soil accompanied by element-specific isotope fractionations. Based on different sulfur isotope abundance of the soil (δ34S=0.9 ‰ for total sulfur of the organic layer was assumed to be equivalent to about −1.0 ‰ for soil sulfate) and of the atmospheric SO2 deposition (δ34S=2.0 ‰ at the healthy site and 2.3 ‰ at the declining site) the contribution of atmospheric SO2 to total sulfur of the needles was estimated. This contribution increased from about 20 % in current-year needles to more than 50 % in 3-year-old needles. The proportion of sulfur from atmospheric deposition was equivalent to the age dependent sulfate accumulation in the needles. In contrast to the accumulation of atmospheric sulfur compounds nitrogen compounds from atmospheric deposition were metabolized and were used for growth. The implications of both responses to atmospheric deposition are discussed.  相似文献   

5.
Carbon isotopic composition of soils subjected to C3–C4 vegetation change can be used to estimate C turnover in bulk soil and in soil organic matter (SOM) pools with fast and intermediate turnover rates. We hypothesized that the biological availability of SOM pools is inversely proportional to their thermal stability, so that thermogravimetry can be used to separate SOM pools with contrasting turnover rates. Soil samples from a field plot cultivated for 10.5 years with the perennial C4 plant Miscanthus×gigantheus were analyzed by thermogravimetry coupled with differential scanning calorimetry (DSC). Three SOM fractions were distinguished according to the differential weight losses and exothermic or endothermic reactions measured by DSC. The δ13C and δ15N values of these three fractions obtained by gradual soil heating were measured by IRMS. The weight losses up to 190 °C mainly reflected water evaporation because no significant C and N losses were detected and δ13C and δ15N values of the residual SOM remained unchanged. The δ13C values (−16.4‰) of SOM fraction decomposed between 190 and 390 °C (containing 79% of total soil C) were slightly closer to that of the Miscanthus plant tissues (δ13C = −11.8‰) compared to the δ13C values (−16.8‰) of SOM fraction decomposed above 390 °C containing the residual 21% of SOM. Thus, the C turnover in the thermally labile fraction was faster than that in thermally stable fractions, but the differences were not very strong. Therefore, in this first study combining TG-DSC with isotopic analysis, we conclude that the thermal stability of SOM was not very strongly related to biological availability of SOM fractions. In contrast to δ13C, the δ15N values strongly differed between SOM fractions, suggesting that N turnover in the soil was different from C turnover. More detailed fractionation of SOM by thermal analysis with subsequent isotopic analysis may improve the resolution for δ13C.  相似文献   

6.
The effects of the liquid pig manure (LM) used in organic farming on the natural abundance of 15N and 13C signatures in plant tissues have not been studied. We hypothesized that application of LM will (1) increase δ15N of plant tissues due to the high δ15N of N in LM as compared with soil N or inorganic fertilizer N, and (2) increase δ13C of plant tissues as a result of high salt concentration in LM that decreases stomatal conductance of plants. To test these hypotheses, variations in the δ15N and δ13C of Chinese cabbage (Brassica campestris L.) and chrysanthemum (Chrysanthemum morifolium Ramatuelle) with two different LMs (with δ15N of +15.6 and +18.2‰) applied at two rates (323 and 646 kg N ha-1 for cabbage and 150 and 300 kg N ha-1 for chrysanthemum), or urea (δ15N = -2.7‰) applied at the lower rate above for the respective species, in addition to the control (no N input) were investigated through a 60-day pot experiment. Application of LM significantly increased plant tissue δ15N (range +9.4 to +14.9‰) over the urea (+3.2 to +3.3‰) or control (+6.8 to 7.7‰) treatments regardless of plant species, strongly reflecting the δ15N of the N source. Plant tissue δ13C were not affected by the treatments for cabbage (range −30.8 to −30.2‰) or chrysanthemum (−27.3 to −26.8‰). However, cabbage dry matter production decreased while its δ13C increased with increasing rate of LM application or increasing soil salinity (P < 0.05), suggesting that salinity stress caused by high rate of LM application likely decreased stomatal conductance and limited growth of cabbage. Our study expanded the use of the δ15N technique in N source (organic vs. synthetic fertilizer) identification and suggested that plant tissue δ13C maybe a sensitive indicator of plant response to salinity stress caused by high LM application rates.  相似文献   

7.
The palaeoenvironment of a former coastal lagoon in the south eastern Iberian Peninsula (San Rafael, Almeria, Spain) were inferred from one core analyzed for particulate organic matter content (POM) together with its C/N, δ13C, δ15N to depict the biogeochemical record from the Late Glacial to the Holocene. The results, complemented by previously reported pollen assemblages, indicate the appearance of a freshwater lagoon at 7300 b.p. (uncalibrated 14C age), its salinization at 6200 b.p. and its disappearance at 4400 b.p. The period of existence of the lagoon coincided with a period of wetter conditions as inferred from terrestrial vegetation. The lagoon’s salinization was not related to a decrease in precipitation but to a stronger maritime influence since there were no parallel changes in terrestrial vegetation. Salinization caused an increase in δ13C, associated with a higher relative presence of C4 plants, and an increase in δ15N, due to a decrease in plant N demand. The late period of the lagoon, from about 5100 to 4400 b.p., shows a progressive drying and salinization not detected in isotopes but reflected in a decrease in POM, and in the pollen records. Increases in δ15N were related to increases in salinity within the lagoon, and are indicative of a more open N cycle, because the absence of changes in terrestrial vegetation rules out changes in the catchment area as the cause for changes in δ15N.  相似文献   

8.
The advent of stable nitrogen isotope analysis in ecological research has at last enabled precise identification of trophic position and omnivory due to the differential enrichment of15N over14N with progressive assimilation up the foodweb. I compiled literature data on δ15N values in freshwater and marine foodwebs to search for qeneral patterns in omnivory, specifically the supposition originally proposed by Lindeman (1942) and most recently advanced by Peters (1977), that omnivory should increase with trophic height or position. Omnivory, measured as average intraspecific variability in δ15N, was indeed found to increase with trophic height, such that species at the top of foodwebs were comprised of animals relying, on average, on energy originating from a mixture of different trophic categories.  相似文献   

9.
The δ15N natural abundance (‰) of the total soil N pool varies at the landscape level, but knowledge on short-range variability and consequences for the reliability of isotopic methods are poorly understood. The short-range spatial variability of soil δ15N natural abundance as revealed by the 15N abundance in spring barley and N2-fixing pea was measured within the 0.15–4 m scale at flowering and at maturity. The short-range spatial variability of soil δ15N natural abundance and symbiotic nitrogen fixation were high at both growth stages. Along a 4-m row, the δ15N natural abundance in barley reference plants varied up to 3.9‰, and sometimes this variability was observed even between plants grown only 30 cm apart. The δ15N natural abundance in pea varied up to 1.4‰ within the 4-m row. The estimated percentage of nitrogen derived from the atmosphere (%Ndfa) varied from 73–89% at flowering and from 57–95% at maturity. When increasing the sampling area from 0.01 m2 (single plants) and up to 0.6 m2 (14 plants) the %Ndfa coefficient of variation (CV) declined from 5 to 2% at flowering and from 12 to 2% at maturity. The implications of the short-range variability in δ15N natural-abundance are that estimates of symbiotic N2-fixation can be obtained from the natural abundance method if at least half a square meter of crop and reference plants is sampled for the isotopic analysis. In fields with small amounts of representative reference crops (weeds) it might be necessary to sow in reference crop species to secure satisfying N2-fixation estimates.  相似文献   

10.
The semi-diurnal tidal regime (≥2 m) in the Paria Gulf on the Atlantic coast of Venezuela, and the flat landscape of the region, allow the penetration for tens of km of marine waters into the rivers draining the northeastern coastal plain of the country. The levels of salinity, tidal flooding, and sedimentation decrease perpendicularly from the river channel toward the back swamps. The vegetation varies sequentially from fringe mangroves along the river margins, to back swamps containing forests dominated by Pterocarpus officinalis, herbaceous communities of Lagenocarpus guianensis, and palm swamps with Mauritia flexuosa, Chrysobalanus icaco, and Tabebuia spp. This environmental structure was used to test the hypotheses that: (a) mangrove distribution is strongly associated with salinity of interstitial water, and (b) they occupy areas where tidal influence and sediment dynamics determine a relatively open N cycle. Analyses of soil, water, and plants along a 1.5 km transect located near the confluence of the Guanoco and San Juan Rivers (Sucre and Monagas States, Venezuela) revealed that: (a) conductivity decreased from 11 to 0.2 mmhos cm−1 from the river fringe to the internal swamp, whereas Na in the same stretch decreased from 100 to 2 μM; (b) average leaf tissue concentrations of Na, P, and N decreased significantly along the transect; (c) P. officinalis showed a large Na-exclusion capacity indicated by positive K/Na ratios from 8 to 200, and Crinum erubescens counteracted Na by accumulating K above 1,000 mmol kg−1; (d) leaves varied widely in δ 13C (−25.5 to −32‰) and δ 15N (4 to −10.5‰) values. Samples were aggregated according to soil carbon content corresponding to those of the mangrove forest belt (5–28 mol C kg−1; 0–650 from river fringe) and those of the back swamps (40–44 mol C kg−1; 700–1,500 m from river fringe). The concentrations of Na, P, and N (in mmol kg−1) and δ 15N values (in ‰) were significantly higher in the mangrove forest compared to the back swamp (Na 213 vs. 88; P 41 vs. 16; N 1,535 vs. 727; δ 15N 1.5 vs. −3.7), indicating that the fringe forest was not nutrient limited. These results support the hypotheses that mangroves are restricted to the more-saline sections of the transect, and that the fringe forest has a more open N cycle, favoring 15N accumulation within the system.  相似文献   

11.
Jun Xu  Min Zhang  Ping Xie 《Limnology》2011,12(2):107-115
Stable isotope signatures of freshwater snails and mussels have been established as a convenient baseline measurement at the primary consumer level for food-web coupling studies. We measured δ15N and δ13C of primary consumers, including mussels (Anodonta woodiana, Cristaria plicata, and Unio douglasiae), snails (Bellamya aeruginosa and Hippeutis sp.), and zooplankton from the same habitat within a shallow eutrophic lake. Primary consumers showed positive relationship between δ15N and δ13C, indicating a linkage between planktonic and benthic habitats in this system. The variation in isotope ratios was higher in short-lived primary consumers (zooplankton) compared with the long-lived primary consumers (mussels and snails), suggesting limited availability of short-lived primary consumers as isotopic baselines in aquatic food-web assessment. Significant differences in isotope ratios were also found among three species of mussels, and when using these mussels separately as pelagic baselines to calculate trophic position and contribution of planktonic and benthic sources of fishes, bias and even misestimates were observed. This finding suggests that caution is needed when multiple primary consumers coexist in the same habitat, and it is important to assess potential effects of different baselines used.  相似文献   

12.
Harrod C  Grey J  McCarthy TK  Morrissey M 《Oecologia》2005,144(4):673-683
Recent studies have shown that anguillid eel populations in habitats spanning the marine–freshwater ecotone can display extreme plasticity in the range of catadromy expressed by individual fishes. Carbon and nitrogen stable isotope analysis was used to differentiate between European eels (Anguilla anguilla) collected along a short (2 km) salinity gradient ranging from <1‰ to ~30‰ in Lough Ahalia, a tidal Atlantic lake system. Significant differences were recorded in mean δ13C, δ15N and C:N values from eels collected from fresh, brackish and marine-dominated basins. A discriminant analysis using these predictor variables correctly classified ca. 85% of eels to salinity zone, allowing eels to be classified as freshwater (FW), brackish (BW) or marine (MW) residents. The results of the discriminant analysis also suggested that a significant proportion of eels moved between habitats (especially between FW and BW). Comparisons of several key population parameters showed significant variation between eels resident in different salinity zones. Mean condition and estimated age was significantly lower in MW eels, whilst observed length at age (a correlate of growth) was significantly higher in MW eels, intermediate in BW and lowest in FW eels. This study has demonstrated that the ecology of eels found along a short salinity gradient can be extremely plastic and that stable isotope analysis has considerable utility in demonstrating intra-population variation in diadromous fishes.  相似文献   

13.
The isotopic composition of tree ring cellulose was obtained over a 2-year period from small-diameter riparian-zone trees at field sites that differed in source water isotopic composition and humidity. The sites were located in Utah (cool and low humidity), Oregon (cool and high humidity), and Arizona (warm and low humidity) with source water isotope ratio values of –125/–15‰ (δD/δ18O), –48/–6‰, and –67/–7‰, respectively. Monthly environmental measurements included temperature and humidity along with measurements of the isotope ratios in atmospheric water vapor, stream, stem, and leaf water. Small riparian trees used only stream water (both δD and δ18O of stem and stream water did not differ), but δ values of both atmospheric water vapor and leaf water varied substantially between months. Differences in ambient temperature and humidity conditions between sites contributed to substantial differences in leaf water evaporative enrichment. These leaf water differences resulted in differences in the δD and δ18O values of tree ring cellulose, indicating that humidity information was recorded in the annual rings of trees. These environmental and isotopic measurements were used to test a mechanistic model of the factors contributing to δD and δ18O values in tree ring cellulose. The model was tested in two parts: (a) a leaf water model using environmental information to predict leaf water evaporative enrichment and (b) a model describing biochemical fractionation events and isotopic exchange with medium water. The models adequately accounted for field observations of both leaf water and tree ring cellulose, indicating that the model parameterization from controlled experiments was robust even under uncontrolled and variable field conditions. Received: 7 April 1999 / Accepted: 8 December 1999  相似文献   

14.
Several lichens and the terrestrial alga Trentepohlia were found to have extremely depleted 15N signatures at two sites near the Rotorua geothermal area, New Zealand. Values, typically −20‰, with several extreme cases of −24‰, are more isotopically depleted than any previously quoted δ15N signature for vegetation growing in natural environments. For Trentepohlia, distance from a geothermal source did not affect isotopic signature. A 100-km transect showed that the phenomenon is widespread and the discrimination is not related to substrate N, or to elevation. Rainfall NHx and atmospheric gaseous NH3 (NH3(g)) were shown to be isotopically depleted in the range −1‰ to −8‰ and could not, of themselves, be responsible for the plant values obtained. A simulation of Trentepohlia thallus was created using an acidified fiberglass mat and was allowed to absorb NH3(g) from the atmosphere. Mats exposed at the geothermal sites and on farmland showed a significant further depletion of 15N to −17‰. We hypothesize that the extreme isotopic depletion is due to dual fractionation: firstly by the volatilization of NH3(g) from aqueous sources into the atmosphere; secondly by the diffusive assimilation of that NH3(g) into vegetation. We further hypothesize that lithophytes, epiphytes, and higher plants, growing on strongly N-limited substrates, will show this phenomenon more or less, depending on the proportion of diffusively assimilated NH3(g) utilized as a N source. Many of the isotopically depleted δ15N signatures in vegetation, previously reported in the literature, especially epiphytes, may be due to this form of uptake depending on the concentration of atmospheric NH3(g), and the degree of reliance on that form of N.  相似文献   

15.
The aim of this study was to identify the sources and depth of water uptake by 15-years old Quercus suber L. trees in southern Portugal under a Mediterranean climate, measuring δ18O and δD in the soil–plant-atmosphere continuum. Evidence for hydraulic lift was substantiated by the daily fluctuations observed in Ψs at 0.4 and 1 m depth and supported by similar δ18O values found in tree xylem sap, soil water in the rhizosphere and groundwater. From 0.25 m down to a depth of 1 m, δD trends differed according to vegetation type, showing a more depleted value in soil water collected under the evergreen trees (−47‰) than under dead grasses (−35‰). The hypothesis of a fractionation process occurring in the soil due to diffusion of water vapour in the dry soil is proposed to explain the more depleted soil δD signature observed under trees. Hydraulically lifted water was estimated to account for 17–81% of the water used during the following day by tree transpiration at the peak of the drought season, i.e., 0.1–14 L tree−1 day−1. Significant relationships found between xylem sap isotopic composition and leaf water potential in early September emphasized the positive impact of the redistribution of groundwater in the rhizosphere on tree water status.  相似文献   

16.
We used the dual isotope method to study differences in nitrate export in two subwatersheds in Vermont, USA. Precipitation, soil water and streamwater samples were collected from two watersheds in Camels Hump State Forest, located within the Green Mountains of Vermont. These samples were analyzed for the δ15N and δ18O of NO3. The range of δ15N–NO3 values overlapped, with precipitation −4.5‰ to +2.0‰ (n = 14), soil solution −10.3‰ to +6.2‰ (n = 12) and streamwater +0.3‰ to +3.1‰ (n = 69). The δ18O of precipitation NO3 (mean 46.8 ± 11.5‰) was significantly different (P < 0.001) from that of the stream (mean 13.2 ± 4.3‰) and soil waters (mean 14.5 ± 4.2‰) even during snowmelt periods. Extracted soil solution and streamwater δ18O of NO3 were similar and within the established range of microbially produced NO3, demonstrating that NO3 was formed by microbial processes. The δ15N and δ18O of NO3 suggests that although the two tributaries have different seasonal NO3 concentrations, they have a similar NO3 source.  相似文献   

17.
Pan BS  Wolyniak CJ  Brenna JT 《Amino acids》2007,33(4):631-638
Summary. Presented here is the first experimental evidence that natural, intramolecular, isotope ratios are sensitive to physiological status, based on observations of intramolecular δ15N of lysine in the mitochondrial mimic Paracoccus denitrificans. Paracoccus denitrificans, a versatile, gram-negative bacterium, was grown either aerobically or anaerobically on isotopically-characterized ammonium as sole cell-nitrogen source. Nitrogen isotope composition of the biomass with respect to source ammonium was = −6.2 ± 1.2‰ for whole cells under aerobic respiration, whereas cells grown anaerobically produced no net fractionation ( = −0.3 ± 0.23‰). Fractionation of 15N between protein nitrogen and total cell nitrogen increased during anaerobic respiration and suggests that residual nitrogen-containing compounds in bacterial cell membranes are isotopically lighter under anaerobic respiration. In aerobic cells, the lysine intramolecular difference between peptide and sidechain nitrogen is negligible, but in anaerobic cells was a remarkable Δ15Np − s = δ15Npeptide − δ15Nsidechain = +11.0‰, driven predominantly by enrichment at the peptide N. Consideration of known lysine pathways suggests this to be likely due to enhanced synthesis of peptidoglycans in the anaerobic state. These data indicate that distinct pathway branching ratios associated with microbial respiration can be detected by natural intramolecular Δδ15N measurements, and are the first in vivo observations of position-specific measurements of nitrogen isotope fractionation.  相似文献   

18.
Samples of an angiosperm species, nine lichen species and a terrestrial alga, were collected from a variety of Antarctic terrestrial habitats, and were analysed for C and N stable isotope composition. Collections were made along natural gradients, the marine gradient, running from the sea coast inland and the moisture gradient, determined by melt water and precipitation runoff, and running towards the sea coast. Considerable variation in stable isotope ratios was found; δ13C values ranged between −16 and −32‰ and δ15N values between −23 and +23‰ The variation in stable carbon isotope ratios could be attributed in part to species specific differences, but differences in water availability also played a role, as was shown for the terrestrial alga Prasiola crispa and the lichen species Usnea antarctica. The differences in the isotope ratios of nitrogen could be retraced to the origin of nitrogen: marine or terrestrial. The nitrogen stable isotope ratios were influenced by both the marine gradient from the sea inland and the melt water and precipitation flow running in the opposite direction, towards the sea. This was shown for the lichen species Turgidosculum complicatulum and the angiosperm species Deschampsia antarctica. The variation in the C and N stable isotope ratios can be used to determine sources and pathways of N and changes in the water availability in Antarctic terrestrial ecosystems. Contrary to earlier reports the use of stable N isotope ratios is possible in this case because of the relative simplicity of the structure of the Antarctic terrestrial ecosystems.  相似文献   

19.
We conducted stable oxygen and carbon isotope analyses for otoliths of Atlantic salmon (Salmo salar), in an attempt to develop a reference database on isotopic variability among private and federal hatcheries in Maine which currently support the salmon aquaculture industry and recovery of endangered populations. During the first phase of our study, we collected 40–50 sagittal otoliths of juvenile Atlantic salmon from each of the five hatcheries and analyzed for stable oxygen and carbon isotope ratios (18O/16O or δ18O, and 13C/12C or δ13C). Combination of δ18O and δ13C signatures in otoliths showed that the five hatcheries can be clearly separated and chemically distinguished. By identifying stable isotopic variations of otoliths from different hatchery settings, we were able to establish some isotopic criteria or standards to assign a likelihood that an individual Atlantic salmon came from a specific hatchery within the reference database. If successful, a diagnostic tool that can provide definitive information on identification of the hatchery origin could serve as a novel marking technique, and the chemical method may provide a more effective alternative to DNA analysis for mixed stocks. Overall our isotopic data from otoliths support the hypothesis that there are detectable differences between the five hatcheries, and multiple statistical analyses indicated that we can correctly distinguish individual Atlantic salmon into a hatchery with high confidence.  相似文献   

20.
B. Gu 《Oecologia》2009,160(3):421-431
Nitrogen stable isotope (δ15N) data of particulate organic matter (POM) from the literature were analyzed to provide an understanding of the variations and controls of δ15NPOM in lakes at the global scale. The δ15NPOM variability characterized by seasonal mean, minimum, maximum, and amplitude (defined as δ15NPOM maximum − δ15NPOM minimum) from 36 lakes with seasonal data did not change systematically with latitude, but was significantly lower in small lakes than in large lakes. The seasonal mean δ15NPOM increased from oligotrophic lakes to eutrophic lakes despite large variations that are attributed to the occurrences of nitrogen fixation across the trophic gradient and the differences in δ15N of dissolved inorganic nitrogen (DIN) in individual lakes. Seasonal mean δ15NPOM was significantly correlated with DIN concentration and δ15NDIN in two subsets of lakes. Seasonal minimum δ15NPOM in individual lakes is influenced by nitrogen fixation and δ15NDIN while seasonal maximum δ15NPOM is influenced by lake trophic state and δ15NDIN. As a result of the dominance of non-living POM in the unproductive surface waters, seasonal δ15NPOM amplitude was small (mean = 4.2‰) in oligotrophic lakes of all latitudes. On the other hand, seasonal δ15NPOM amplitude in eutrophic lakes was large (mean = 10.3‰), and increased from low to high latitudes, suggesting that the seasonal variability of δ15N in the phytoplankton-dominated POM pool was elevated by the greater spans of solar radiation and thermal regimes at high latitudes. The δ15NPOM from 42 lakes with no seasonal data revealed no consistent patterns along latitude, lake area, and trophic gradients, and a greater than 2‰ depletion compared to the lakes with seasonal data. Along with the large seasonal variability of δ15NPOM within lakes, these results provide insightful information on sampling design for the studies of food web baseline in lakes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号