首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structural genes encoding the cytochrome o terminal oxidase complex (cyo) of Escherichia coli have been subcloned into the multicopy plasmid pBR322 after the Mu-mediated transposition of the gene locus from the bacterial chromosome onto the conjugative R plasmid RP4. Introduction of cyo plasmids into strains (cyo cyd) lacking both terminal oxidases restored the ability of the strains to grow aerobically on nonfermentable substrates. Strains carrying the cyo plasmids produced 5 to 10 times more cytochrome o oxidase than did control strains. The gene products encoded by the cyo plasmids could be immunoprecipitated with monospecific antibodies raised against cytochrome o. The cloned genes will be valuable for studying the structure, function, and regulation of the cytochrome o terminal oxidase complex.  相似文献   

2.
3.
A cytochrome oxidase was purified 52-fold from membranes of alkalophilic Bacillus firmus RAB by extraction with Triton X-100, ion-exchange and hydroxyapatite chromatography, and gel filtration. On denaturing gels, the purified enzyme dissociated into two subunits of 56,000 and 40,000 Mr as well as a cytochrome c with an Mr of approximately 14,000. Heme contents calculated for an enzyme with a molecular weight of 110,000 were found to be 2 mol of heme a and 1 mol of heme c per mol of cytochrome oxidase; approximately 2 mol of copper per mol of purified enzyme was also found. Enzyme activity was observed in assays using reduced yeast or horse heart cytochrome c. Activity of the purified enzyme was optimal at pH 6.0 and in the presence of added lipids. Impure, membrane-associated activity exhibited a broader pH range for optimal activity extending to alkaline values.  相似文献   

4.
G N Green  J E Kranz  R B Gennis 《Gene》1984,32(1-2):99-106
Two plasmids containing the two structural genes for the inner-membrane-bound cytochrome d complex (Cyd) have been isolated from the Clarke and Carbon Escherichia coli DNA bank. A 5.4-kb DNA fragment from one plasmid was subcloned in both orientations into pBR322. The promoter(s) and both genes must have been present within this fragment since the two orientations yielded similar levels of Cyd. Recombination and transduction studies indicated that the cyd gene locus had been isolated. These results demonstrate that cyd contains all the structural information for the complex. Overproduction of Cyd has yielded a visual screening procedure for plasmids bearing cyd that is unique to colored proteins like cytochromes. Colonies of E. coli bearing the cloned cyd gene are yellow-green. The cyd gene can, therefore, be used as a vehicle for detection of inserted DNA fragments.  相似文献   

5.
The cytochrome o terminal oxidase from Escherichia coli was immunochemically purified and monospecific antiserum toward cytochrome o was obtained. This antiserum is able to precipitate 100% of the ubiquinol-1 oxidase activity in Triton X-100 extracts of membranes from an E. coli strain in which cytochrome o is the only terminal oxidase. Cytochrome o was analyzed and quantitated using crossed immunoelectrophoresis, rocket immunoelectrophoresis, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that cytochrome o is composed of four subunits of approximate equimolar stoichiometry with molecular weights of 51,000, 28,500, 18,000, and 12,700. The low temperature (77 K) reduced - oxidized spectrum of the immunoprecipitate shows two peaks at 555 and 562 nm, indicating b-type cytochromes. With the anti-cytochrome o and antiserum toward the cytochrome d terminal oxidase complex which was previously obtained, it is possible to immunochemically assay for all the cytochromes in the cytoplasmic membrane of aerobically grown E. coli. Preliminary results indicate that the biosynthesis of cytochrome o is repressed when cytochrome d is induced by lowering the dissolved oxygen concentration during cell growth.  相似文献   

6.
The terminal oxidase content of Bacillus firmus OF4, a facultative alkaliphile that grows well over the pH range of 7.5 to 10.5, was studied by difference spectroscopy. Evidence was found for three terminal oxidases under different growth conditions. The growth pH and the stage of growth profoundly affected the expression of one of the oxidases, cytochrome d. The other two oxidases, cytochrome caa3 and cytochrome o, were expressed under all growth conditions tested, although the levels of both, especially cytochrome caa3, were higher at more alkaline pH (P.G. Quirk, A.A. Guffanti, R.J. Plass, S. Clejan, and T.A. Krulwich, Biochim. Biophys. Acta, in press). These latter oxidases were identified in everted membrane vesicles by reduced-versus-oxidized difference spectra (absorption maximum at 600 nm for cytochrome caa3) and CO-reduced-versus-reduced difference spectra (absorption maxima at 574 and 414 nm for cytochrome o). All three terminal oxidases were solubilized from everted membranes and partially purified. The difference spectra of the solubilized, partially purified cytochrome caa3 and cytochrome o complexes were consistent with these assignments. Cytochrome d, which has not been identified in a Bacillus species before, was tentatively assigned on the basis of its absorption maxima at 622 and 630 nm in reduced-versus-oxidized and CO-reduced-versus-reduced difference spectra, respectively, resembling the maxima exhibited by the complex found in Escherichia coli. The B. firmus OF4 cytochrome d was reducible by NADH but not by ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine in everted membrane vesicles. Cytochrome d was expressed under two conditions: in cells growing exponentially at pH 7.5 (but not at pH 10.5) and in cells stationary phase at either pH 7.5 or 10.5. Protein immunoblots with antibodies against subunit I of the E. coli cytochrome d complex reacted only with membrane vesicles that contained spectrally identifiable cytochrome d. Additional evidence that this B. firmus OF4 cytochrome is related to the E. coli complex was obtained with a solubilized, partially purified fraction of cytochrome d that also reacted with antibodies against the subunits of the E. coli cytochrome d.  相似文献   

7.
A combination of potentiometric analysis and electrochemically poised low-temperature difference spectroscopy was used to examine a mutant strain of Escherichia coli that was previously shown by immunological criteria to be lacking the cytochrome d terminal oxidase. It was shown that this strain is missing cytochromes d, a1, and b558 and that the cytochrome composition of the mutant is similar to that of the wild-type strain grown under conditions of high aeration. The data indicate that the high-aeration branch of the respiratory chain contains two cytochrome components, b556 (midpoint potential [Em] = +35 mV) and cytochrome o (Em = +165 mV). The latter component binds to CO and apparently has a reduced-minus-oxidized split-alpha band with peaks at 555 and 562 nm. When the wild-type strain was grown under conditions of low aeration, the components of the cytochrome d terminal oxidase complex were observed: cytochrome d (Em = +260 mV), cytochrome a1 (Em = +150 mV) and cytochrome b558 (Em = +180 mV). All cytochromes appeared to undergo simple one-electron oxidation-reduction reactions. In the absence of CO, cytochromes b558 and o have nearly the same Em values. In the presence of CO, the Em of cytochrome o is raised, thus allowing cytochromes b558 and o to be individually quantitated by potentiometric analysis when they are both present.  相似文献   

8.
Seven clones isolated from libraries of DNA from alkaliphilic Bacillus firmus OF4 restored the growth of a K+-uptake-deficient Escherichia coli mutant on only 10mM K+. None of the clones contained genes with apparent homology to known K+ transport systems in other organisms. Based on sequence homologies, the newly isolated alkaliphile loci included: ftsH; a dipeptide transport system; a gerC locus with hydrophobic open reading frames not found in the comparable locus of Bacillus subtilis; a sugar phosphotransferase enzyme; and a capBC homologue. The ftsH gene provided a new and striking example of a recognized property of extracellular and external regions of polytopic alkaliphile proteins: a significant paucity of basic amino acid residues relative to neutrophile counterparts. The alkaliphile ftsH gene was able to complement a mutant of E. coli with a temperature-sensitive ftsH gene product. Received: 5 August 1996 / Accepted: 14 October 1996  相似文献   

9.
The caa3-type terminal oxidase of Bacillus firmus OF4 has been proposed to play an important role in the growth and bioenergetics of this alkaliphile (A. A. Guffanti and T. A. Krulwich, J. Biol. Chem. 267:9580-9588, 1992). A mutant strain was generated in which the cta operon encoding the oxidase was disrupted by insertion of a spectinomycin resistance cassette. The mutant was unable to oxidize ascorbate in the presence of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). Absorption spectra of membranes confirmed the loss of the enzyme and indicated the presence of a cytochrome bd-type terminal oxidase. The mutant could grow on glucose but was unable to grow on malate or other nonfermentative carbon sources, despite the presence of the cytochrome bd. The cytochrome bd was purified from the mutant. The enzyme consisted of two subunits and, with menadiol as substrate, consumed oxygen with a specific activity of 12 micromol of O2 x min(-1) x mg(-1). In contrast to both cytochromes bd of Escherichia coli, the enzyme did not utilize TMPD as an electron source. A number of additional features, including subunit size and spectral properties, distinguish this cytochrome bd from its counterparts in E. coli and Azotobacter vinelandii.  相似文献   

10.
Partial purification of a cytochrome bd complex from Azotobacter vinelandii grown under high aeration was achieved by isolating respiratory particles enriched in this hemoprotein via differential centrifugation and detergent extraction. The cytochrome bd complex was subsequently solubilized from the inner membrane with dodecyl maltoside and purified to near homogeneity via DEAE-Sepharose chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the complex consisted of two subunits, with sizes in good agreement with those predicted from the cloned cyd locus (59.7 and 42 kDa). Spectral analysis of the purified complex indicated that the heme components present were cytochromes b560, b595, and d; CO difference spectral studies identified cytochrome d as a CO-reactive component. The complex had a Km for ubiquinol-1 approximately seven times larger than that for the analogous bd complex from Escherichia coli, and O2 consumption curves revealed a Km value for O2 three times greater than that which we determined for the E. coli bd complex.  相似文献   

11.
12.
When sulfur compounds are scarce or difficult to process, Escherichia coli adapts by inducing the high‐level expression of sulfur‐compound importers. If cystine then becomes available, the cystine is rapidly overimported and reduced, leading to a burgeoning pool of intracellular cysteine. Most of the excess cysteine is exported, but some is adventitiously degraded, with the consequent release of sulfide. Sulfide is a potent ligand of copper and heme moieties, raising the prospect that it interferes with enzymes. We observed that when cystine was provided and sulfide levels rose, E. coli became strictly dependent upon cytochrome bd oxidase for continued respiration. Inspection revealed that low‐micromolar levels of sulfide inhibited the proton‐pumping cytochrome bo oxidase that is regarded as the primary respiratory oxidase. In the absence of the back‐up cytochrome bd oxidase, growth failed. Exogenous sulfide elicited the same effect. The potency of sulfide was enhanced when oxygen concentrations were low. Natural oxic‐anoxic interfaces are often sulfidic, including the intestinal environment where E. coli dwells. We propose that the sulfide resistance of the cytochrome bd oxidase is a key trait that permits respiration in such habitats.  相似文献   

13.
M A Kahlow  T M Zuberi  R B Gennis  T M Loehr 《Biochemistry》1991,30(49):11485-11489
The 680-nm-absorbing "peroxide state" of the Escherichia coli cytochrome d terminal oxidase complex, obtained by addition of excess hydrogen peroxide to the enzyme, is shown to be a ferryl intermediate in the catalytic cycle of the enzyme. This ferryl intermediate is also created by aerobic oxidation of the fully reduced enzyme. Resonance Raman spectra with 647.1-nm excitation show an FeIV = O stretching band at 815 cm-1, a higher frequency than noted in any other ferryl-containing enzyme to date. The band shows an 16O/18O frequency shift of -46 cm-1, larger than that observed for any porphyrin ferryl species. The FeIV = O formulation was unambiguously established by oxidations of the reduced enzyme with 16O2, 18O2, and 16O18O. Only the use of a mixed-isotope gas permitted discrimination between a ferryl and a peroxo structure. A catalytic cycle for the cytochrome d terminal oxidase complex is proposed, and possible reasons for the high v(Fe = O) frequency are discussed.  相似文献   

14.
A screening procedure was devised which permitted the isolation of a cytochrome d-deficient mutant by its failure to oxidize the artificial electron donor N,N,N',N'-tetramethyl-p-phenylenediamine. Cytochrome a1 and probably cytochrome b558 were also missing in the mutant. Growth and oxygen uptake rates were similar for both parent and mutant strains. However, the strain lacking cytochrome d had an increased sensitivity to cyanide, indicating that cytochrome d confers some resistance to this respiratory inhibitor. The gene responsible for these phenotypes has been named cyd and maps between tolA and sucB.  相似文献   

15.
A respiration-deficient mutant of Escherichia coli has been isolated which is unable to grow aerobically on nonfermentable substrates such as succinate and lactate. Spectroscopic and immunological studies showed that this mutant lacks the cytochrome o terminal oxidase of the high aeration branch of the aerobic electron transport chain. This strain carries a mutation in a gene designated cyo which is cotransducible with the acrA locus. Mutations in cyo were obtained by mutagenizing a strain that was cyd and, thus, was lacking the cytochrome d terminal oxidase. Strain RG99, which carries both the cyd- and cyo- alleles, grows normally under anaerobic conditions in the presence of nitrate. Introduction of the cyd+ allele into the strain restores the respiration function of the strain, indicating that the cytochrome o branch of the respiratory chain is dispensable under normal laboratory growth conditions.  相似文献   

16.
The aerobic respiratory chain of Escherichia coli contains two terminal oxidases which are differentially regulated. The cytochrome o complex predominates under growth conditions of high aeration, whereas the cytochrome d complex predominates when the oxygen tension is low. Either terminal oxidase will support aerobic growth. The goal of the work presented in this paper was to identify genes required for the expression of the functional form of the cytochrome d complex, other than the genes encoding the polypeptide components of the oxidase complex (cyd locus). A strain lacking the cytochrome o complex (cyo mutant strain) was mutagenized by using a lambda-Mu hybrid hopper bacteriophage, lambda placMu53, which inserts randomly into the chromosome and carries a kanamycin resistance marker. Strains were isolated and examined which were unable to grow aerobically, i.e., which lacked functional cytochrome d complex, and which could not be complemented by introduction of the cyd gene on F-prime episomes. One strain was selected for characterization. The phage insert was mapped to min 18.9 on the genetic linkage map, defining a new genetic locus, cydC. Evidence described in the text suggests that the gene product is probably required for the synthesis of the unique heme d component of the cytochrome d complex.  相似文献   

17.
Cytochrome bd is a heterodimeric terminal ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli. For understanding the unique catalytic mechanism of the quinol oxidation, mass spectrometry was used to identify amino acid residue(s) that can be labeled with a reduced form of 2-azido-3-methoxy-5-methyl-6-geranyl-1,4-benzoquinone or 2-methoxy-3-azido-5-methyl-6-geranyl-1,4-benzoquinone. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry demonstrated that the photo inactivation of ubiquinol-1 oxidase activity was accompanied by the labeling of subunit I with both azidoquinols. The cross-linked domain was identified by reverse-phase high performance liquid chromatography of subunit I peptides produced by in-gel double digestion with lysyl endopeptidase and endoproteinase Asp-N. Electrospray ionization quadrupole time-of-flight mass spectrometry determined the amino acid sequence of the peptide (m/z 1047.5) to be Glu(278)-Lys(283), where a photoproduct of azido-Q(2) was linked to the carboxylic side chain of I-Glu(280). This study demonstrated directly that the N-terminal region of periplasmic loop VI/VII (Q-loop) is a part of the quinol oxidation site and indicates that the 2- and 3-methoxy groups of the quinone ring are in the close vicinity of I-Glu(280).  相似文献   

18.
Two protonophore-resistant mutants, designated strains CC1 and CC2, of the facultative alkaliphile Bacillus firmus OF4 811M were isolated. The ability of carbonyl cyanide m-chlorophenylhydrazone (CCCP) to collapse the protonmotive force (delta mu H+) was unimpaired in both mutants. Both resistant strains possessed elevated respiratory rates when grown at pH 7.5, in either the presence or absence of CCCP. Membrane cytochromes were also elevated: cytochrome o in particular in strain CC1, and cytochromes aa3, b, c and o in strain CC2. Strain CC2 also maintained a higher delta mu H+ than the others when grown in the absence of CCCP. When grown in the presence of low concentrations of CCCP, strains CC1 and CC2 both maintained higher values of delta mu H+ than the wild-type parent and correspondingly higher capacities for ATP synthesis. In large-scale batch culture at pH 10.5, both mutant strains grew more slowly than the parent and contained significantly reduced levels of cytochrome o. Cells of stran CC1 also displayed a markedly altered membrane lipid composition when grown at pH 10.5. Unlike previously characterized protonophore-resistant strains of B. subtilis and B. megaterium, neither B. firmus mutant possessed any ability above that of the parent strain to synthesize ATP at given suboptimal values of delta mu H+. Instead, both resistant alkaliphile strains maintained a higher delta mu H+ and a correspondingly higher delta Gp than the parent strain when growing in sublethal concentrations of CCCP, apparently as a result of mutational changes affecting respiratory chain composition. Also of note in both the mutant and the wild-type strains was a marked elevation in the level of one of the multiple terminal oxidases, an aa3-type cytochrome, during growth at pH 7.5 in the presence of CCCP or during growth at pH 10.5, i.e. two conditions that reduce the bulk delta mu H+.  相似文献   

19.
Cytochrome d terminal oxidase mutants were isolated by using hydroxylamine mutagenesis of pNG2, a pBR322-derived plasmid containing the wild-type cyd operon. The mutagenized plasmid was transformed into a cyo cyd recA strain, and the transformants were screened for the inability to confer aerobic growth on nonfermentable carbon sources. Western blot analysis and visible-light spectroscopy were performed to characterize three independent mutants grown both aerobically and anaerobically. The mutational variants of the cytochrome d complex were stabilized under anaerobic growth conditions. All three mutations perturb the b595 and d heme components of the complex. These mutations were mapped and sequenced and are shown to be located in the N-terminal third of subunit II of the cytochrome d complex. It is proposed that the N terminus of subunit II may interact with subunit I to form an interface that binds the b595 and d heme centers.  相似文献   

20.
Escherichia coli has two terminal oxidases for its respiratory chain: cytochrome o (low O2 affinity) and cytochrome d (high O2 affinity). Expression of the cyo operon, encoding cytochrome o, is decreased by anaerobic growth, whereas expression of the cyd operon, encoding cytochrome d, is increased by anaerobic growth. We show by the use of lac gene fusion that the expressions of cyo and cyd are under the control of the two-component arc system. In a cyo+ cyd+ background, expression of phi(cyo-lac) is higher when the organism is grown aerobically than when it is grown anaerobically. A mutation in either the sensor gene arcB or the pleiotropic regulator gene arcA almost abolishes the anaerobic repression. In the same background, expression of phi(cyd-lac) is higher under anaerobic growth conditions than under aerobic growth conditions. A mutation in arcA or arcB lowers both the aerobic and anaerobic expressions, suggesting that ArcA plays an activating role instead of the typical repressing role. Under aerobic growth conditions, double deletions of cyo and cyd lower phi(cyo-lac) expression but enhance phi(cyd-lac) expression. The double deletions also prevent elevated aerobic induction of the lct operon (encoding L-lactate dehydrogenase), another target operon of the arc system. In contrast, these deletions do not circumvent aerobic repression of the nar operon (encoding the anaerobic respiratory enzyme nitrate reductase) under the control of the pleiotropic fnr gene product. It thus appears that ArcB senses the presence of O2 by level of an electron transport component in reduced form or that of an nonautoxidizable compound linked to the process by a redox reaction, whereas Fnr senses O2 by a different mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号