首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated and sequenced a full-length cDNA clone for the protein-tyrosine kinase substrate p36 (calpactin I heavy chain). This sequence predicts a 339 amino acid (Mr 38,493) protein containing an N-terminal region of 20 amino acids, known to interact with a 10 kd protein (light chain), and a C-terminal region, found to contain two Ca2+/phospholipid-binding sites, that can be aligned as four 70 amino acid repeats. A single p36 gene was detected in the mouse genome, and a major p36 mRNA of 1.6 kb was found to be expressed in different mouse tissues. Unexpectedly, p36 and the phospholipase A2 inhibitor lipocortin I were found to be 50% identical in sequence over the C-terminal 300 residues. The function of p36 and its relation to other proteins are discussed.  相似文献   

2.
N Johnsson  G Marriott    K Weber 《The EMBO journal》1988,7(8):2435-2442
Protein I is a hetero-tetramer which contains two copies each of p11 and p36. p36 (calpactin I, lipocortin II) is a major substrate of retrovirally encoded tyrosine protein kinases, while p11 modulates several Ca2+-induced properties also displayed by p36 alone. Here we have characterized the p11 binding site on p36 by fluorescence spectroscopy using porcine p36 labelled at cysteine 8 with the fluorophore Prodan (6-proprionyl-2-dimethylamino-naphthalene). We have used peptides of differing length from the amino-terminal domain of p36 to restrict the major binding site to the first 12 residues. Noticeable binding is still observed with a peptide containing only the first nine residues. Interestingly the N-terminal acetyl group of p36 forms a functional part of the p11 binding site. CD studies indicate that the binding region can form an alpha-helix, which seems to have amphiphatic properties when projected on a helical wheel. This structural element is also known for a calmodulin binding protein. Thus the question is raised whether other p11/calmodulin-related proteins interact with their target proteins via a similar mechanism. We also discuss how p11 could modulate p36 associated properties.  相似文献   

3.
cDNA clones encoding human 'p68', a membrane-associated Ca2+-binding protein, were isolated from a lambda gt11 expression library of the human T-leukaemia cell line J6, by using a rabbit antiserum against denatured purified lymphocyte p68, and from a liver cDNA library by using 32P-labelled p68 cDNA fragments. The amino acid sequence of p68, deduced from the sequences of overlapping cDNA clones, is described. The results show that p68 is closely related to a family of proteins which includes intracellular substrates of the EGF receptor and pp60src tyrosine kinases. The p68 amino acid sequence is internally repetitive, being constructed from eight repeats of varying lengths, each of which contains a highly conserved sequence. Multiple copies of the latter sequence are also present in the related proteins p36, lipocortin I and protein II. We discuss how the common structural features of these proteins may reflect common functions and, furthermore, how the eight repeat structure of p68 may have evolved. The sequences of independent cDNAs suggest that alternatively-spliced mRNAs could encode different p68 protein species. This suggestion is consistent with the observation that purified p68 migrates as a closely-spaced doublet when analysed by SDS-PAGE.  相似文献   

4.
S E Moss  M J Crumpton 《FEBS letters》1990,261(2):299-302
The p68 Ca2+ and phospholipid binding protein of the lipocortin/calpactin family appears to exist as two forms. These may be resolved into a closely-spaced polypeptide doublet by SDS-PAGE. The cloning and sequencing of p68 revealed an apparent 18 nucleotide alternative splice sequence, which could account for this observation. We show here that an antiserum directed against a synthetic peptide corresponding to the region containing the splice sequence, recognises only the upper band of the p68 doublet by both immunoprecipitation and Western blotting. These results are consistent with alternative splicing being responsible for the generation of the two forms of p68.  相似文献   

5.
We have purified two 35 kd phospholipase A2 inhibitors from human placenta, which we refer to as lipocortin I and II. Both proteins exhibit similar biochemical properties and occur in placenta at about 0.2% of the total protein. By peptide mapping, sequence, and immunological analyses, we show that lipocortin I and the 35 kd substrate for the EGF-receptor/kinase from A431 cells are the same protein. By similar criteria, we determine that lipocortin II is the human analogue of pp36, a major substrate for pp60src, which has been characterized in chicken embryo fibroblasts and in bovine brush border preparations. The amino acid sequences of lipocortin I and II that we deduced from cDNA clones share 50% homology, indicating that they probably evolved from a common gene.  相似文献   

6.
Purification of three forms of lipocortin from bovine lung   总被引:2,自引:0,他引:2  
Experimental conditions are described for simultaneous purification of three forms of lipocortin (lipocortin I, lipocortin II and lipocortin-85) from bovine lung. The procedure yields milligram quantities of all three lipocortins. Using antisera against lipocortin I and lipocortin II, purified proteins show no cross contaminations. All forms of lipocortin exhibit equal potency as in vitro bovine pancreatic phospholipase A2 inhibitors. Protein kinase C catalyzes the in vivo incorporation of about 1.0, 0.7 and 0.4 mole of phosphate per mole of lipocortin I (p35), lipocortin II (p36) and lipocortin-85 (p36 oligomer) respectively. The phosphorylation is specific for protein kinase C and is dependent on the presence of both calcium and phospholipids. While lipocortin I is phosphorylated on threonine residues, lipocortin II and lipocortin-85 are phosphorylated on serine residues.  相似文献   

7.
P36 was originally defined as the major cytoplasmic target of retrovirally coded tyrosine-kinases. While recently much has been learned about its biochemistry, the functional importance of its tyrosine and serine phosphorylation has not been approached. As p36 is now understood as a multi-ligand protein its in vitro phosphorylation by three different serine/threonine kinases was followed. Monomeric p36 is a much better substrate than the complex containing two copies each of p36 and p11 (protein I). All p36 phosphorylation sites occur within the amino-terminal 29 residues specifically released by mild proteolysis. As this region harbors an important interaction site for p11 the reduced phosphorylation of p36 in the protein I complex results most likely from a lowered accessibility. Phosphorylation of p36 is serine specific. Reconstitution experiments define at least two functionally distinct sites. One product of protein kinase C reconstitutes with p11 to protein I, while this complex formation normal for p36 is observed neither for the second phosphorylation product nor for the derivatives resulting from phosphorylation by calmodulin or cAMP dependent kinases. The results lend direct support to the hypothesis that phosphorylation of p36 can modulate one of its molecular functions. Obvious implications for other Ca2+-dependent lipid binding proteins are discussed.  相似文献   

8.
Endonexin II is a member of the family of Ca2+-dependent phospholipid binding proteins known as annexins. We cloned human endonexin II cDNA and expressed it in Escherichia coli. The apparent size and Ca2+-dependent phospholipid binding properties of purified recombinant endonexin II were indistinguishable from those of the placental protein. A single mRNA of approximately 1.6 kilobase pairs was found to be expressed in human cell lines and placenta and was in close agreement with the length of the cDNA clone (1.59 kilobase pairs). The cDNA predicted a 320-amino acid protein with a sequence that was in agreement with the previously determined partial amino acid sequence of endonexin II isolated from placenta. Endonexin II contained 58, 46, and 43% sequence identity to protein II, calpactin I (p36, protein I), and lipocortin I (p35), respectively. The partial sequence of bovine endonexin I was aligned with the sequence of endonexin II to give 63% sequence identity. Like these other proteins, endonexin II had a 4-fold internal repeat of approximately 70 residues preceded by an amino-terminal domain lacking similarity to the repeated region. It also had significant sequence identity with 67-kDa calelectrin (p68), a protein with an 8-fold internal repeat. Comparing the amino-terminal domains of these four proteins of known sequence revealed that, in general, only endonexin II and protein II had significant sequence identity (29%). Endonexin II was not phosphorylated by Ca2+/phospholipid-dependent enzyme (protein kinase C) even though it contained a threonine at a position analogous to the protein kinase C phosphorylation sites of lipocortin I, calpactin I, and protein II.  相似文献   

9.
An amplified Okayama-Berg plasmid cDNA library was constructed from total poly(A)+ RNA isolated from the Madin-Darby bovine kidney cell line MDBK. This library was screened with a partial murine calpactin I heavy chain (p36) cDNA clone, the identification of which was based on bovine p36 tryptic peptide sequences generated during the course of these studies. The largest p36 cDNA insert (p36/6 of 1.6 kilobase pairs) was fully sequenced by the dideoxy method. The DNA sequence of this insert had an open reading frame of 1014 base pairs and coded for a protein with a molecular weight of 38 481. The deduced protein sequence of 338 residues was concordant with 173 residue positions of p36 determined at the protein level. The 5'- and 3'-ends of p36/6 contained 54 and 307 base pairs of untranslated sequence, respectively. Examination of poly(A)+ RNA prepared from the Madin-Darby cell line indicated a p36 mRNA species of about 1.6 kilobases. Four regions of internal homology, each about 70 amino acid residues in length, were observed in the deduced protein sequence for p36. Thirty-three of the 70 residue positions were conserved in at least three of the four repeating units. A comparison of derived amino acid sequence for bovine p36 with that previously determined for human lipocortin [Wallner, B. P., Mattaliano, R. J., Hession, C., Cate, R. L., Tizard, R., Sinclair, L. K., Foeller, C., Chow, E. P., Browning, J. L., Ramachandran, K. L., & Pepinsky, R. B. (1986) Nature (London) 320, 77-81] revealed extensive homology (66% overall) and the presence of four repetitive regions in the lipocortin structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A plasmid cDNA library prepared from a T-lymphocyte clone of murine strain B10.A origin was screened by cross-species DNA hybridisation using a partial human p68 cDNA clone, identified as containing coding sequences for previously determined amino-acid sequences. The longest p68 cDNA insert from this library and a full-length cDNA insert from a second similar library were fully sequenced. A comparison of the derived amino-acid sequence with that of human p68 revealed extensive homology (95% overall). Homology at the nucleotide level was 89% in the open reading frame and 85% and 50% in the 5' (33 nucleotides) and 3' (347 nucleotides) non-coding regions respectively. Eight segments of internal homology were observed, each containing a highly conserved consensus region of 17 amino acids correlating with that described for several membrane associated calcium-binding proteins [Geisow, M. J., Fritsche, U., Hexham, J. M. & Johnson, T. (1986) Nature (Lond.) 320, 636-638]. These results provide further evidence that p68 is a member of the same gene family as p32,p36 and lipocortin I and demonstrate an unusually high level of inter-species sequence conservation of p68 between mouse and human.  相似文献   

11.
V Gerke  K Weber 《The EMBO journal》1985,4(11):2917-2920
The major cytoplasmic target of various tyrosine-specific protein kinases is a 36-kd protein (p36). This protein can exist as a monomer or as a complex with a small subunit which seems to have a regulatory function. Amino acid sequence analysis of the small subunit from porcine intestine documents a unique polypeptide of 95 residues with a calculated mol. wt. close to 11 kd (p11). Since an immunologically related subunit of the same electrophoretic mobility is also found in the corresponding complex of chicken intestine p11 is well conserved across species. Unexpectedly, the sequence of p11 shows a high homology with the glia-specific protein S-100 whose biological function is not known. Although both proteins are dimers of rather small polypeptides we have not been able to detect in our preparations of p11 the moderate Ca2+ binding known for S-100. Certain implications of this sequence relation are discussed.  相似文献   

12.
The gene for the human p58 protein kinase, a cell division control-related gene, has been mapped by somatic cell hybrid analyses, in situ localization with the chromosomal gene, and nested polymerase chain reaction amplification of microdissected chromosomes. These studies indicate that the expressed p58 chromosomal gene maps to 1p36, while a highly related p58 sequence of unknown nature maps to chromosome 15. Assignment of a p34cdc2-related gene to 1p36 may have implications for numerous tumors that involve deletion of this region, including neuroblastoma, ductal carcinoma of the breast, malignant melanoma, Merkel cell carcinoma, and endocrine neoplasia.  相似文献   

13.
14.
The 36 kDa substrate of several tyrosine protein kinases has been shown to exist in monomeric and oligomeric (362102) forms. Partial sequence data has suggested that the oligomer, referred to as protein I, is homologous to a group of phospholipase A2 inhibitory proteins, collectively called lipocortins. In the present communication we demonstrate that protein I inhibits bovine pancreas phospholipase A2 with similar potency to that of lipocortin. Approximately 44 pmol protein I was required to produce 50% inhibition of 7.2 pmol of phospholipase A2. Inhibition of phospholipase A2 activity by calmodulin, S-100, calregulin, parvalbumin, troponin-C, or CAB-48 was not observed. These results indicate that protein I is a potent and specific inhibitor of phospholipase A2 activity, and thus shares functional homology with the lipocortin proteins. We therefore propose that this protein be named lipocortin-85.  相似文献   

15.
Correlation of gene and protein structure of rat and human lipocortin I   总被引:5,自引:0,他引:5  
Lipocortins (annexins) are a family of calcium-dependent phospholipid-binding proteins with phospholipase A2 inhibitory activity. The characteristic primary structure of members of this family consists of a core structure of four or eight repeated domains, which have been implicated in calcium-dependent phospholipid binding. In two lipocortins (I and II) a short amino-terminal sequence distinct from the core structure has potential regulatory functions which are dependent on its phosphorylation state. We have isolated the rat and the human lipocortin I genes and found that they both consist of 13 exons with a striking conservation of their exon-intron structure and their promoter and amino acid sequences. Both lipocortin I genes are at least 19 kbp in length with exons ranging from 57 to 123 bp interrupted by introns as large as 5 kbp. Each of the four repeat units of lipocortin I are encoded by two consecutive exons while individual exons code for the highly conserved putative calcium-binding domains. The promoter sequences in the rat and in human genes are highly conserved and contain nucleotide sequences characterized as enhancer sequences in other genes. The structure of the lipocortin I gene lends support to the hypothesis that the lipocortin genes arose by a duplication of a single domain.  相似文献   

16.
33 kDa protein of neutrophil is a lipocortin-like protein, as proposed from its biochemical properties, amino acid composition, and the homology of its amino acid sequence to human lipocortin I. The localization and translocation of 33 kDa protein (p33) in blood cells of guinea pig were studied by immunoblotting (Western blotting) and immunocytochemical fluorescence methods using polyclonal and monoclonal mouse anti-p33 antibodies. The protein was determined to be present only in the cytoplasm of neutrophils, but not in cells such as the monocyte, lymphocyte, platelet, and other bone marrow cells. The translocation of the protein from cytoplasm to cell membrane was coupled with the increase in intracellular calcium ion and in superoxide generation induced by a chemotactic factor. These findings suggest that p33 may have an important role not only in the regulatory mechanism of phospholipase A2 (PLA2) activity but also in other transmembrane signaling.  相似文献   

17.
Two-dimensional crystals of p68, a Ca2+ -binding protein that has homology with members of the lipocortin/calpactin family, were obtained by interaction with a phospholipid monolayer. By measuring surface pressure at constant surface area, p68 was found to interact in a Ca2+ -dependent manner specifically with phosphatidylethanolamine, less so with phosphatidylserine and not at all with phosphatidylcholine. With dimyristoyl-phosphatidylethanolamine, two-dimensional crystalline arrays were formed. Image analysis of electron micrographs of these crystals, which diffracted to about 50 A, revealed p3 symmetry with a unit cell of about 178 A by 178 A; the protein densities showed a two-domain structure giving a cylindrical molecule of about 100 A by 35 A diameter packed as trimers. Three-dimensional microcrystals obtained without lipid or Ca2+ were suitable for electron microscopy and gave a tetragonal unit cell of about 256 A by 68 A. The implications of these observations on the structure and lipid specificity of p68 binding are discussed.  相似文献   

18.
We have identified two major proteins in human neutrophils that are phosphorylated in vitro by protein kinase C (PKC) as lipocortins III and a fragment of a lipocortin-like 68-kDa protein. In electroporated cells, the 68-kDa protein was phosphorylated during stimulation of the cells with either FMLP or PMA. Lipocortins are of interest because of their Ca2(+)- and phospholipid-dependent actin binding properties and ability to inhibit phospholipase A2. Two crude fractions of enzymes and proteins exposed to [gamma-32]PATP in the presence of Ca2+, Mg2+, phosphatidylserine and 1,2-oleoyl-acetyl-rac-glycerol were analyzed by gel electrophoresis and autoradiography. A number of proteins in a detergent-free fraction, including proteins at 36 and 32 kDa, were phosphorylated in the presence of these cofactors. In contrast, only two major proteins (35 and 32 kDa) were phosphorylated in a detergent-extracted fraction. Phosphorylation of the 36, 35, and 32 kDa proteins required the presence of Ca2+, Mg2+, and phosphatidylserine in our soluble fraction and detergent extract, indicating PKC-dependent phosphorylation. The 32-kDa protein phosphorylated in both the soluble fraction and detergent extract was identified as lipocortin III by immunoprecipitation with a cross-reactive antibody that recognized lipocortin I and comparison of cyanogen bromide (CNBr) cleavage patterns of this protein with a lipocortin III standard. The 68-kDa protein was identified as a lipocortin VI-like protein by immunoprecipitation with anti-calelectrin. Additionally, the CNBr cleavage pattern of the 68-kDa protein was similar to that of the 36-kDa protein phosphorylated in our soluble fraction. Autoradiograms of the 68- and 36-kDa fragments immunoprecipitated from our soluble fraction with anticalelectrin and cleaved with CNBr showed that both of these proteins were phosphorylated in this sample. Because phosphorylation is known to change the functional characteristics of the lipocortins, the potential exists to link PKC and lipocortins in neutrophils to regulation of granulemembrane interactions or mediation of inflammation.  相似文献   

19.
Reversible calcium-dependent association with a particulate fraction from human placenta was used as the first step in the purification of substrates for the epidermal growth factor-stimulated protein kinase. A protein with apparent Mr of 35,000 was purified to homogeneity, and the sequence was determined for approximately one-fourth of the protein. These residues could be aligned exactly with the previously published sequence of lipocortin I derived from the cDNA from a human lymphoma. Two other proteins that appear to be formed by proteolytic removal of 12 or 26 of the amino acids from the NH2 terminus of the protein also were isolated. Placental lipocortin I was phosphorylated in Tyr-21 in an epidermal growth factor-dependent manner by the kinase activity in a particulate fraction from A431 cells; half-maximal phosphorylation occurred at 50 nM lipocortin I. Lipocortin I phosphorylated on Tyr-21 was approximately 10-fold more sensitive to tryptic cleavage at Lys-26 than was the native protein. Placental lipocortin I and its two truncated forms were potent inhibitors of pancreatic phospholipase A2 activity. Another 33-kDa protein that was not related immunologically to lipocortin I or lipocortin II (calpactin I) also was purified from the EGTA extract of placenta. The unidentified protein inhibited phospholipase A2 but was not a substrate for the epidermal growth factor-stimulated kinase. The mechanism by which these proteins inhibit phospholipase A2 activity was investigated. Attempts to detect direct interaction between these proteins and the enzyme were unsuccessful. However, both the unidentified protein, lipocortin I, and 32P-labeled lipocortin I bound in a Ca2+-dependent manner to the [3H]oleic acid-labeled Escherichia coli membranes used as substrate in the phospholipase A2 assay. Heparin, which is known to block lipocortin I inhibition of phospholipase A2, also blocked binding of lipocortin I to E. coli membranes. The results of these and other experiments raise the possibility that placental lipocortin I inhibits phospholipase A2 activity in this assay by coating the phospholipid and thereby blocking interaction of enzyme and substrate.  相似文献   

20.
Structure and functional properties of the ubiquitin binding protein p62   总被引:12,自引:0,他引:12  
Geetha T  Wooten MW 《FEBS letters》2002,512(1-3):19-24
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号