首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparisons were made of ornithine decarboxylase isolated from Morris hepatoma 7777, thioacetamide-treated rat liver and androgen-stimulated mouse kidney. The enzymes from each source were purified in parallel and their size, isoelectric point, interaction with a monoclonal antibody or a monospecific rabbit antiserum to ornithine decarboxylase, and rates of inactivation in vitro, were studied. Mouse kidney, which is a particularly rich source of ornithine decarboxylase after androgen induction, contained two distinct forms of the enzyme which differed slightly in isoelectric point, but not in Mr. Both forms had a rapid rate of turnover, and virtually all immunoreactive ornithine decarboxylase protein was lost within 4h after protein synthesis was inhibited. Only one form of ornithine decarboxylase was found in thioacetamide-treated rat liver and Morris hepatoma 7777. No differences between the rat liver and hepatoma ornithine decarboxylase protein were found, but the rat ornithine decarboxylase could be separated from the mouse kidney ornithine decarboxylase by two-dimensional gel electrophoresis. The rat protein was slightly smaller and had a slightly more acid isoelectric point. Studies of the inactivation of ornithine decarboxylase in vitro in a microsomal system [Zuretti & Gravela (1983) Biochim. Biophys. Acta 742, 269-277] showed that the enzymes from rat liver and hepatoma 7777 and mouse kidney were inactivated at the same rate. This inactivation was not due to degradation of the enzyme protein, but was probably related to the formation of inactive forms owing to the absence of thiol-reducing agents. Treatment with 1,3-diaminopropane, which is known to cause an increase in the rate of degradation of ornithine decarboxylase in vivo [Seely & Pegg (1983) Biochem. J. 216, 701-717] did not stimulate inactivation by microsomal extracts, indicating that this system does not correspond to the rate-limiting step of enzyme breakdown in vivo.  相似文献   

2.
The content of calmodulin in the 100,000 × g supernatant and particulate fractions in Morris hepatoma 5123 t.c.(h), assayed by its ability to activate the Ca2+-activatable cAMP phosphodiesterase, was significantly higher (about 44%) than that in normal or host liver. Only one peak of calmodulin activity was detected when 100,000 × g supernates (350 mg protein) from sonicated homogenates of normal liver and hepatoma were fractionated on a DEAE cellulose column, eluting at a sodium acetate concentration of 0.65 M. The total calmodulin activity eluted from the hepatoma supernatant was 240% higher than that from nornal liver. The increased content of calmodulin in the hepatoma may contribute to the state of abnormal cell proliferation in this tissue.  相似文献   

3.
In primary cultures of adult rat hepatocytes maintained in a salts/glucose medium, a more than 100-fold increase in ornithine decarboxylase (EC 4.1.1.17) activity was caused by asparagine and glucagon in a synergistic manner. The synthesis rate of ornithine decarboxylase was determined by [35S]methionine incorporation into the enzyme protein, and the amount of ornithine decarboxylase-mRNA was measured by hybridization with a cloned rat liver ornithine decarboxylase-cDNA. The synthesis rate of ornithine decarboxylase was stimulated more than 20-fold by asparagine and glucagon together, but the amount of ornithine decarboxylase-mRNA was increased only 3-4-fold, indicating that translational stimulation was involved in the induction process. Asparagine alone stimulated the synthesis of ornithine decarboxylase without substantial effect on the amount of ornithine decarboxylase-mRNA, whereas glucagon alone increased the amount of ornithine decarboxylase-mRNA about 3-fold without a detectable change in either enzyme activity or enzyme synthesis. Asparagine, at least in part, also suppressed degradation of ornithine decarboxylase.  相似文献   

4.
Male mice carrying the spfash mutation have 5-10% of the normal activity of ornithine carbamoyltransferase, yet are only slightly hyperammonaemic and develop quite well. A study of liver mitochondria from normal and spfash males showed that they differ in important ways. (1) The spfash liver contains about 33% more mitochondrial protein per g than does normal liver. (2) The specific activities of carbamoyl-phosphate synthetase (ammonia) and glutamate dehydrogenase are about 15% lower than normal in mitochondria from spfash mice, whereas those of beta-hydroxybutyrate dehydrogenase and cytochrome oxidase are 22% higher and 30% lower respectively. (3) In the presence of 10 mM-ornithine and the substrates for carbamoyl phosphate synthesis, coupled and uncoupled mitochondria from spfash mice synthesize citrulline at unexpectedly high rates, about 25 and 44 nmol/min per mg respectively. Though these are somewhat lower than the corresponding rates obtained with normal mitochondria, the difference does not arise from the deficiency in ornithine carbamoyltransferase, but from the lower carbamoyl-phosphate synthetase activity of the mutant mitochondria. (4) At lower external [ornithine] (less than 2 mM), a smaller fraction of the carbamoyl phosphate synthesized is converted into citrulline in spfash than in normal mitochondria. These studies show that what appears to be a single mutation brings about major adaptations in the mitochondrial component of liver. In addition, they clarify the role of ornithine transport and of protein-protein interactions in citrulline synthesis in normal mitochondria.  相似文献   

5.
Steady-state rates of turnover of two single proteins were measured in vivo by two independent methods. The fractional rate of synthesis of liver ornithine aminotransferase, measured by a continuous infusion of L-[2,6-3H]tyrosine, was 0.42 day-1, whereas in the same animals the fractional rate of degradation measured by loss of radioactivity from amino acids labelled via [14C]bicarbonate was 0.40 day-1. The agreement between methods confirms the reliability of each method for the study of hepatic protein turnover. In contrast, [14C]bicarbonate-labelled amino acids are extensively reutilized in muscle, and are therefore unsuitable for measuring rates of muscle protein breakdown.  相似文献   

6.
1. The characteristics of ornithine catabolism by the aminotransferase pathway in isolated mitochondria were determined. 2. Ornithine synthesis from glutamate and glutamate gamma-semialdehyde produced by the oxidation of proline was studied. No ornithine was formed in the absence of rotenone. 3. The mechanism of ornithine transport was reinvestigated, and the existence of an ornithine+/H+ exchange system postulated. 4. The kinetics of ornithine transport, ornithine catabolism in intact mitochondria and ornithine aminotransferase activity in solubilized mitochondria were compared. It is concluded that ornithine aminotransferase activity in liver mitochondria is rate-limited by the transport of ornithine across the mitochondrial membrane, and that this enzyme is involved primarily in ornithine degradation rather than ornithine synthesis.  相似文献   

7.
DL-[14C]Leucine or L-[3H]leucine was injected intraperitoneally into pyridoxine-deficient and control rats, and the subsequent incorporation of the radioactivities into aspartate aminotransferase (AspAT) isozymes and the total soluble protein in the liver was measured. AspAT in the cytosol (AspATc) was separated into 3 subfractions with different characteristics on chromatofocusing. The results showed that in the liver of pyridoxine-deficient rats, the syntheses of all 3 subfractions of AspATc and degradation of AspATc (total) were increased, but that the syntheses and degradation of the total soluble protein and mitochondrial AspAT (AspATm) were not much different from those in control rats. The half-lives of soluble protein and AspATm were calculated to be 3.26-3.72 and 5.02-6.67 days, respectively, in both groups, and that of AspATc in control liver was found to be 4.78 days. The rate of degradation of AspATc in pyridoxine-deficient rat liver could not be calculated, because its kinetics were very complicated; there were apparently at least 2 components with different rates of degradation. Thus pyridoxal 5'-phosphate (PLP) apparently affects both the synthesis and degradation of AspATc, but does not affect the turnover of AspATm in rat liver.  相似文献   

8.
Abstract: A radiometric assay for ornithine aminotransferase was developed using [1-14C]α-ketoglutarate as the labeled substrate and glutamate decarboxylation as a linking step. This assay gives near total measurement of ornithine aminotransferase activities that are, respectively, about 1.5 and 10 times larger than those obtained by the spectrophotometric assay and the radiometric assay using [1-14C]ornithine. It is also the most sensitive of the three assay procedures.
Consistent with previous reports, brain ornithine aminotransferase was found to be present predominantly in synaptosomes. Regional distribution of the enzyme correlated with that of the high-affinity uptake of glutamate, but not with the distribution of glutamate decarboxylase. Ornithine aminotransferase may be responsible for the synthesis of glutamate in glutamatergic neurons but it is clearly not localized exclusively in such neurons.  相似文献   

9.
Gabaculine, a potent suicide inhibitor of ornithine aminotransferase (OAT), at a dose of 50 mg/kg inhibited this enzyme in mouse tissues and dramatically increased tissue ornithine concentrations, whether or not arginine was present in the diet. Thus even under arginine deprivation there is catabolism of ornithine which involves OAT. This was confirmed by administration of [14C]ornithine to arginine-deprived mice. Gabaculine (3-amino-2,3-dihydrobenzoic acid) drastically decreased the release of 14CO2 and increased the radioactivity in the basic amino acids in the tissues. When [1-14C]glutamate was injected into mice deprived of arginine, a significant amount of radioactivity was recovered in tissue ornithine and arginine, and gabaculine decreased this labelling by about two-thirds, indicating that ornithine was synthesized in vivo from glutamate via OAT. In addition, we failed to detect in liver and small intestine alpha-N-acetylornithine, N-acetylglutamate kinase or N-acetylornithine aminotransferase, which are obligatory components of a potential route of ornithine synthesis from N-acetylglutamate. Our results indicate that at least 45 mumol of ornithine was synthesized and catabolized daily via OAT in the mouse deprived of arginine.  相似文献   

10.
Male Wistar rats were fed a diet with or without di(2-ethylhexyl)phthalate (DEHP) for 2 weeks. Carnitine octanoyltransferase (COT) in the liver was increased 23.5-fold in rats given DEHP. It was found by in vivo experiments using L-[4,5-3H]leucine and the immunoprecipitation technique that the rate of synthesis of COT was 14.1-fold higher and that of its degradation was 1.5-fold lower in the DEHP group. COT was translated much more effectively in free polysomes than in membrane-bound polysomes. The molecular size of the in vitro product was the same as that of the mature enzyme. The translation activity of mRNA coding for COT measured with total hepatic RNA was 16.6-fold higher in the DEHP group. Carnitine palmitoyltransferase (CPT) was increased 5.9-fold after administration of DEHP. The rate of synthesis of CPT measured in the in vivo experiment was 5.0-fold higher in the DEHP group. The rate of its degradation was the same in the two groups. CPT was also translated much more effectively in free polysomes. The size of the preenzyme was larger than that of the subunit of the mature enzyme by about 2,400 daltons. In contrast to COT, the increase in the translation activity of mRNA for CPT by administration of DEHP was markedly higher than the increase in the rate of its synthesis measured in the in vivo experiment.  相似文献   

11.
Arginine serves multiple roles in the pathophysiological response to burn injury. Our previous studies in burn patients demonstrated a limited net rate of arginine de novo synthesis despite a significantly increased arginine turnover (flux), suggesting that this amino acid is a conditionally indispensable amino acid after major burns. This study used [15N2-guanidino-5,5-2H2]arginine and [5-13C]ornithine as tracers to assess the rate of arginine disposal via its conversion to and subsequent oxidation of ornithine; [5,5-2H2]proline and [5,5,5-2H3]leucine were also used to assess proline and protein kinetics. Nine severely burned patients were studied during a protein-free fast ("basal" or fast) and total parenteral nutrition (TPN) feedings. Compared with values from healthy volunteers, burn injury significantly increased 1) fluxes of arginine, ornithine, leucine, and proline; 2) arginine-to-ornithine conversion; 3) ornithine oxidation; and 4) arginine oxidation. TPN increased arginine-to-ornithine conversion and proportionally increased irreversible arginine oxidation. The elevated arginine oxidation, with limited net de novo synthesis from its immediate precursors, further implies that arginine is a conditionally indispensable amino acid in severely burned patients receiving TPN.  相似文献   

12.
The source of nitrogen (N) for the de novo synthesis of brain glutamate, glutamine and GABA remains controversial. Because leucine is readily transported into the brain and the brain contains high activities of branched-chain aminotransferase (BCAT), we hypothesized that leucine is the predominant N-precursor for brain glutamate synthesis. Conscious and unstressed rats administered with [U-13C] and/or [15N]leucine as additions to the diet were killed at 0-9 h of continuous feeding. Plasma and brain leucine equilibrated rapidly and the brain leucine-N turnover was more than 100%/min. The isotopic dilution of [U-13C]leucine (brain/plasma ratio 0.61 +/- 0.06) and [15N]leucine (0.23 +/- 0.06) differed markedly, suggesting that 15% of cerebral leucine-N turnover derived from proteolysis and 62% from leucine synthesis via reverse transamination. The rate of glutamate synthesis from leucine was 5 micro mol/g/h and at least 50% of glutamate-N originally derived from leucine. The enrichment of [5-15N]glutamine was higher than [15N]ammonia in the brain, indicating glial ammonia generation from leucine via glutamate. The enrichment of [15N]GABA, [15N]aspartate, [15N]glutamate greater than [2-15N]glutamine suggests direct incorporation of leucine-N into both glial and neuronal glutamate. These findings provide a new insight for the role of leucine as N-carrier from the plasma pool and within the cerebral compartments.  相似文献   

13.
The 7- to 10-fold increase in the rat liver serine:pyruvate aminotransferase activity after glucagon administration was shown to occur mainly in the mitochondrial matrix of parenchymal cells. The enzyme was purified from glucagon-treated rat liver mitochondria to apparent homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A specific rabbit antibody was prepared against the purified enzyme. Upon Ouchterlony double diffusion analysis, the mitochondrial extracts of glucagon-treated rat liver produced a single and fused precipitin line between the purified enzyme against the antibody. The supernatant fraction of glucagon-treated rat liver and the mitochondrial extracts of normal liver were also shown to make a single and fused precipitin line with the purified enzyme, when applied in large quantities. The quantitative immunotitration demonstrated that the glucagon-induced increase in the activity of liver serine:pyruvate aminotransferase were accompanied by the parallel increase in the amount of the enzyme antigen. Isotopic leucine incorporation studies showed that the relative rate of synthesis of the enzyme was increased approximately 10-fold by glucagon administration under the conditions employed. The rate of the degradation of the aminotransferase in the normal rat liver was a relatively slow process with a half-life of approximately 30 h. Thus the accumulation of serine:pyruvate aminotransferase in rat liver mitochondria by glucagon treatment can be ascribed mainly to the rise in the rate of enzyme synthesis.  相似文献   

14.
The irreversible reaction between liver esterases and the active-site-directed inhibitor bis(4-nitrophenyl)phosphate can be used in vivo both for the estimation of the esterase contents and for the measurement of the esterase degradation rates. A method based on this reaction is described which allows the simultaneous estimation of the rate constants of degradation and synthesis of esterases during a period of change in protein concentration. Rat liver was found to contain about 1 mg of organophosphate-binding esterases per g of fresh tissue while the microsomal fraction contains about 30 mg of esterases per g of microsomal protein. Esterase degradation and de novo synthesis were shown to remain in equilibrium for a period of at least five days following the injection of 10 mg bis(4-nitro-[14C]phenyl)phosphate per kg. The decrease of the relative amount of labeled esterases with time was found to follow first-order kinetics yielding an average esterase degrading constant of 0.0165 h-1 which corresponds to a half-life of 42 h. These data were confirmed by an independent experiment using one of the standard procedures for the estimation of degradation rates: [14C]leucine was incorporated and one of the esterases was subsequently isolated by immuno-precipitation. Using isoelectric focussing and dodecyl sulfate electrophoretic methods, the various esterase isoenzymes appeared to have very similar, if not identical turnover rates. This method for the estimation of the turnover characteristics was applied to evaluate hormone effects on liver esterases. The time course of the contents and the turnover of liver esterases was measured under the influence of glucagon treatment in diabetic rats and under the influence of high doses of insulin. The esterase content decreased faster than the average content of microsomal protein under the influence of glucagon. The reverse effect was observed with insulin-treated rats. Both insulin and glucagon apparently reduced the intracellular esterase turnover in rat liver. Kinetic analysis of the results revealed that insulin mainly lowered the esterase degradation rate, though the rate of esterase synthesis might also have been restricted. In the glucagon-treated rats the de novo synthesis of esterases was strongly reduced.  相似文献   

15.
Exercising for 3.75 h on a treadmill at 50% VO2 max in the fed state induced an increased excretion of 71 mg nitrogen/kg over the 18 h after exercise. However, measurements of the time course of changes in 13CO2 excretion from ingested [1-13C]leucine indicated that all of this increased nitrogen production occurs during the exercise period. Because of the reduced renal clearance and slow turnover of the urea pool, urea excretion lags behind urea production. Measurements of nitrogen flux from the plateau labeling of urinary ammonia achieved by repeated oral doses of 15N-labeled glycine indicated that the nitrogen loss resulted from an increase in protein degradation and a decrease in protein synthesis. Further studies with [1-13C]leucine indicated that a 2-h treadmill exercise induced an increase in the nitrogen loss from 5.4 to 16 mg . kg-1 . h-1 measured with a primed constant infusion of [1-13C]leucine. This resulted from a fall in whole-body protein synthesis. Glucose given at the rate of 0.88 g . kg-1 . h-1 depressed the rate of whole-body protein degradation and appeared to suppress the exercise-induced increase in nitrogen excretion. When leucine oxidation rates were measured at increasing work rates, a linear relationship between percentage of VO2 max and leucine oxidation was observed up to 89% VO2 max when 54% of the flux of leucine was oxidized. These changes may involve nonmuscle as well as muscle tissue. Thus the source of the increased nitrogen losses is probably liver. In muscle, protein degradation is actually decreased judged by methylhistidine excretion, whereas in liver, protein degradation may be increased. Also the fall in whole-body protein synthesis may reflect changes in nonmuscle tissues because in running rats protein synthesis in muscle is maintained. As far as leucine metabolism is concerned, because the increase in leucine oxidation occurs when leucine and its keto acid concentration falls, exercise must specifically activate the 2-oxoacid dehydrogenase.  相似文献   

16.
We determined whether the synthesis and degradation of N-acetylglutamate would regulate urea synthesis when the ornithine status was manipulated. Experiments were done on two groups of rats, each being treated with ornithine or saline (control). The plasma concentration of urea and the liver concentration of N-acetylglutamate in rats given ornithine were each significantly higher than in the control rats. Compared with the control rats, the liver N-acetylglutamate degradation was significantly lower in those rats treated with ornithine. Treatment of the rats with ornithine did not affect N-acetylglutamate synthesis in the liver. An inverse correlation between the liver N-acetylglutamate degradation and liver concentration of N-acetylglutamate was found. These results suggest that the lower degradation of N-acetylglutamate in the ornithine treatment group would be likely to increase the hepatic concentration of this compound and stimulate urea synthesis.  相似文献   

17.
K. Yamamoto  A. Niwa 《Amino acids》1996,10(3):263-271
Summary A subline growing in medium without arginine and ornithine was established from a rat Reuber hepatoma cell line (R-Y121B·cho). The subline designated R-Y117B·cho was able to grow in glutamine, arginine and ornithine-free, glutamate-supplemented medium. Arginine synthesis from glutamate requires four urea cycle enzymes and another two enzymes, glutamate semialdehyde dehydrogenase and ornithine aminotransferase. Since R-Y121B·cho cells have all the urea cycle enzymes, two other enzyme activities were determined. The activities of ornithine aminotransferase and glutamate semialdehyde dehydrogenase were similar in R-Y117B·cho and its parental R-Y121B·cho cells, but R-Y117B·cho cells had higher conversion of glutamate to arginine than parental cells.  相似文献   

18.
The tRNA content and aminoacyl-tRNA synthetases of regenerating liver in the phase of rapid growth were compared with those of livers from both intact and sham-operated rats. At 48 h after hepatectomy, the amount of active tRNA (called 'total acceptor capacity') is significantly higher in regenerating liver than in control livers, owing to a general, possibly not uniform, increase in the various tRNA families, which suggests that it may contribute to the increased protein synthesis and to decreased protein degradation as well. The activities of most, but not of all, aminoacyl-tRNA synthetases in cell sap of regenerating liver tend to be greater than normal. Increased activity of histidyl-tRNA synthetase fits in with the possibility that the mechanisms that control the rate of protein degradation through aminoacylation of tRNAHis in cultured cells [Scornik (1983) J. Biol. Chem. 258, 882-886] also operate in the liver and play a role in regeneration. Sedimentation analysis of cell sap in sucrose density gradients shows a shift of prolyl-tRNA synthetase activity toward the high-Mr form in regenerating liver. This change might be related to the positive protein balance and to growth in vivo, since it is also observed in the anaplastic Yoshida ascites hepatoma AH 130.  相似文献   

19.
The content of polyamines and proline was much lower in a normal (N) callus of Beta vulgaris L. than in a fully habituated hyperhydric (H) callus. The H callus also contained more glutamate and had a higher glutamate dehydrogenase activity. The excess of glutamate, in this chlorophyll-deficient callus, was linked to accumulation of proline and polyamines. Experiments with α-difluoromethylornithine (DFMO) and α-difluoromethylarginine (DFMA) showed that both ornithine decarboxylase and arginine decarboxylase participated in the synthesis of polyamines (especially spermidine and putrescine) and removal of ammonia. It is hypothesized that the H callus was subjected to ammonia stress from the start of the culture. Experiments with gabaculine, an inhibitor of ornithine aminotransferase, showed that this enzyme linked proline degradation to polyamine synthesis through the production of ornithine. This disturbed nitrogen metabolism appeared to be characteristic of the fully habituated callus and might explain the low growth of this hyperhydric tissue.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号