首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Rat brain particulate fractions were shown to acylate [32P]1-alkyl- sn -glycero-3-phosphorylethanolamine (GPE). While the main product is 1-alkyl-2-acyl GPE, about 12 per cent of the radioactivity was also found in 1-alkenyl-2-acyl GPE. The acyl transferase activity was completely dependent on added ATP and CoA and it was localized mainly in the microsomal fraction. A comparative study of acyl transferase activities to 1-alkyl-, 1-alkenyl-, and 1-acyl GPE by crude mitochondrial fraction and microsomes of 10, 16 and 22-day-old rat brains showed a progressive increase in activity with development. In the 22-day-old rat brain the order of activity towards the three substrates is as follows: 1-acyl GPE ± 1-alkenyl GPE ± 1-alkyl GPE with a crude mitochondrial fraction and 1-acyl GPE ± 1-alkyl GPE ± 1-alkenyl GPE with microsomes.  相似文献   

2.
3.
A truncated form of IGF-1 which lacks the aminoterminal tripeptide Gly-Pro-Glu (GPE) is found in human brain. It was proposed that GPE may result from neural specific processing and also have a function within the CNS. GPE was synthesized and shown to inhibit glutamate binding to the N-methyl-D-aspartate (NMDA) receptor. Whilst the carboxyterminal glutamate was necessary for NMDA receptor binding, the aminoterminal glycine potentiated receptor crossreaction. Furthermore, GPE had a potent stimulatory effect on the potassium induced release of acetylcholine from rat cortical slices. A less potent stimulation of dopamine release from striatum was also observed. The specific competitive NMDA receptor antagonist, (+/-)2-amino-7-phosphonoheptanoate (AP7), inhibited the action of GPE on dopamine but not on acetylcholine release. These studies have identified GPE as a novel neuroactive peptide with a potent action on acetylcholine release and support the general concept that the proteolytic products of the IGF-1 precursor play a role in the regulation of brain function.  相似文献   

4.
Balb/С mice were immunized with recombinant Ebola virus glycoprotein. Following the selection, screening, and cloning of murine hybridomas, we obtained five genetically stable clones of monoclonal antibodies GPE118 (IgG), GPE274 (IgM), GPE325 (IgM), GPE463 (IgM), and GPE534 (IgG). These antibodies were isolated and purified from the ascitic fluid of Balb/С mice using Protein G affinity chromatography (for IgG) and euglobulin precipitation (for IgM). To select at least three candidate antibodies for testing in biological assays as components of an antibody cocktail for the prophylaxis and treatment of hemorrhagic fever, we carried out an immunochemical analysis of the epitope specificity of the isolated antibodies. Based on the data of immunoblotting and sandwich ELISA, it became evident that the epitope recognized by GPE 534 differs from the epitopes recognized by the monoclonal antibodies GPE 118 and GPE 325. The last two antibodies also have different epitope specificity: it follows from the immunoblotting data and from the data on the binding of these antibodies with the intact and oxidized (partly deglycosylated) recombinant glycoprotein. For the biological activity studies and the development of recombinant counterparts, we selected three candidate high-affinity monoclonal antibodies GPE 534, GPE 118, and GPE 325.  相似文献   

5.
The gene expression of granulocyte colony-stimulating factor (G-CSF) is induced by lipopolysaccharide (LPS). GPE1, a cis-controlling element of the G-CSF gene, functions as an LPS-responsive element. GPE1-binding protein (GPE1-BP), a leucine-zipper protein, did not independently activate G-CSF gene expression. Protein blot analysis with biotinylated GPE1-BP revealed that there were nuclear proteins that interact specifically with GPE1-BP. Three leucine-zipper proteins were isolated from mouse cDNA expression libraries by this method: NF-IL6, ATF4, and a novel ATF4-related ATFx. The interactions of these proteins with GPE1-BP may play key roles in G-CSF gene expression.  相似文献   

6.
The protective effects of insulin‐like growth factor I on the somatostatin (SRIF) system in the temporal cortex after β‐amyloid (Aβ) injury may be mediated through its N‐terminal tripeptide glycine‐proline‐glutamate (GPE). GPE is cleaved to cyclo[Pro‐Gly] (cPG), a metabolite suggested to mediate in neuroprotective actions. We evaluated the effects of GPE and cPG in the temporal cortex of Aβ25–35‐treated rats on SRIF and SRIF receptor protein and mRNA levels, adenylyl cyclase activity, cell death, Aβ25–35 accumulation, cytosolic calcium levels ([Ca2+]c) and the intracellular signaling mechanisms involved. GPE and cPG did not change Aβ25–35 levels, but GPE partially restored SRIF and SRIF receptor 2 protein content and mRNA levels and protected against cell death after Aβ25–35 insult, which was coincident with Akt activation and glycogen synthase kinase 3β inhibition. In addition, GPE displaced glutamate from NMDA receptors and blocked the glutamate induced rise in cytosolic calcium in isolated rat neurons and moderately increased Ca2+ influx per se. Our findings suggest that GPE, but not its metabolite, mimics insulin‐like growth factor I effects on the SRIF system through a mechanism independent of Aβ clearance that involves modulation of calcium and glycogen synthase kinase 3β signaling.  相似文献   

7.
Oxidative stress has been regarded as an important underlying cause for the delayed neuronal death (DND) after cerebral ischemia. In this study, the effects of short-term oral administration of grape polyphenol extract (GPE) on ischemia/reperfusion (I/R) injury in a gerbil global ischemia model were determined. Ischemia was induced by occlusion of the common carotid arteries for 5 min. GPE (30 mg/ml)-containing formula or formula without GPE was administered daily via gavage for 4 days prior to and/or for 4 days after I/R. I/R resulted in hyperlocomotion, extensive DND, oxidative and fragmented DNA damage, and an increase in reactive astrocytes and microglial cells in the hippocampal CA1 region. GPE administration for 4 days prior to I/R and for 4 days after I/R attenuated DND, DNA damage and glial cell activation. However, neuroprotection was more pronounced when GPE was administered for 4 days after I/R than when administered for 4 days prior to I/R. GPE administration after I/R attenuated I/R-induced hyperlocomotion. These findings indicate that oral GPE intake may confer protection against I/R injury and emphasize that early intervention may be an effective therapeutic measure for ameliorating brain injury in stroke.  相似文献   

8.
M Asano  M Nishizawa  S Nagata 《Gene》1991,107(2):241-246
At least three regulatory elements GPE1, GPE2 and GPE3 (G-CSF promoter elements) controlling the gene (G-CSF) encoding granulocyte colony-stimulating factor (G-CSF) are indispensable for the constitutive expression of the G-CSF gene in human CHU-2 cells and for its lipopolysaccharide(LPS)-inducible expression in macrophages. The enhancer activities of each regulatory element were examined with or without the SV40 enhancer element placed downstream from the reporter gene. A GPE1 tetramer mediated the constitutive expression in CHU-2 cells, and the LPS-inducible expression in macrophage cell lines, while the GPE2 element was active in CHU-2 and LPS-treated macrophage cell lines only in combination with the SV40 enhancer. A GPE3 tetramer had efficient enhancer activity in CHU-2 cells but not in macrophage cell lines without the SV40 enhancer. In combination with the SV40 enhancer, GPE3 worked as an LPS-inducible enhancer element in macrophage BAM3 cells. Gel retardation assay indicated that the CHU-2 and the macrophage cells contained nuclear factors which specifically bound to each GPE sequence.  相似文献   

9.
This study investigated the effects of a grape pomace extract (GPE) rich in phenolic compounds on brown-like adipocyte induction and adiposity in spontaneously hypertensive (SHR) and control normotensive Wistar–Kyoto (WKY) rats fed a high-fat diet (HFD). HFD consumption for 10 weeks significantly increased epididymal white adipose tissue (eWAT) in WKY but not in SHR rats. Supplementation with GPE (300 mg/kg body weight/day) reduced adipocyte diameter and increased levels of proteins that participate in adipogenesis and angiogenesis, i.e., peroxisome-proliferator activated receptor gamma (PPARγ), vascular endothelial grow factor-A (VEGF-A) and its receptor 2 (VEGF-R2), and partially increased the uncoupling protein 1 (UCP-1) in WKY. In both strains, GPE attenuated adipose inflammation. In eWAT from SHR, GPE increased the expression of proteins involved in adipose tissue “browning,” i.e., PPARγ-coactivator-1α (PGC-1α), PPARγ, PR domain containing 16 (PRDM16) and UCP-1. In primary cultures of SHR adipocytes, GPE-induced UCP-1 up-regulation was dependent on p38 and ERK activation. Accordingly, in 3T3-L1 adipocytes treated with palmitate, the addition of GPE (30 μM) activated the β-adrenergic signaling cascade (PKA, AMPK, p38, ERK). This led to the associated up-regulation of proteins involved in mitochondrial biogenesis (PGC-1α, PPARγ, PRDM16 and UCP-1) and fatty acid oxidation (ATGL). These effects were similar to those exerted by (−)-epicatechin and quercetin, major phenolic compounds in GPE. Overall, in HFD-fed rats, supplementation with GPE promoted brown-like cell formation in eWAT and diminished adipose dysfunction. Thus, winemaking residues, rich in bioactive compounds, could be useful to mitigate the adverse effects of HFD-induced adipose dysfunction.  相似文献   

10.
Grapes are rich in phenolic phytochemicals that possess anti-oxidant and anti-inflammatory properties. However, the ability of grape powder extract (GPE) to prevent inflammation and insulin resistance in human adipocytes caused by tumor necrosis factor α (TNFα), a cytokine elevated in plasma and white adipose tissue (WAT) of obese, diabetic individuals, is unknown. Therefore, we examined the effects of GPE on markers of inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes treated with TNFα. We found that GPE attenuated TNFα-induced expression of inflammatory genes including interleukin (IL)-6, IL-1β, IL-8, monocyte chemoattractant protein (MCP)-1, cyclooxygenase (COX)-2 and Toll-like receptor (TLR)-2. GPE attenuated TNFα-mediated activation of extracellular signal-related kinase (ERK) and c-Jun NH2-terminal kinase (JNK) and activator protein-1 (AP-1, i.e., c-Jun). GPE also attenuated TNFα-mediated IκBα degradation and nuclear factor-kappa B (NF-κB) activity. Finally, GPE prevented TNFα-induced expression of protein tyrosine phosphatase (PTP)-1B and phosphorylation of serine residue 307 of insulin receptor substrate-1 (IRS-1), which are negative regulators of insulin sensitivity, and suppression of insulin-stimulated glucose uptake. Taken together, these data demonstrate that GPE attenuates TNFα-mediated inflammation and insulin resistance in human adipocytes, possibly by suppressing the activation of ERK, JNK, c-Jun and NF-κB.  相似文献   

11.
M Asano  S Nagata 《Gene》1992,121(2):371-375
The expression of the mouse gene (G-CSF) encoding granulocyte colony-stimulating factor is controlled by at least three regulatory elements, GPE1, GPE2 and GPE3 (G-CSF promoter elements). A set of 30-mer oligodeoxyribonucleotides (oligos) scanning the GPE3 region (-104 to -51) of the G-CSF promoter was synthesized, and the tetramer of each oligo was inserted upstream from the cat gene with the simian virus 40 enhancer element. By introducing these hybrid genes into human squamous carcinoma CHU-2 and mouse macrophage BAM3 cells, the enhancer core element of the GPE3 was localized to the region from -98 to -79 in the promoter. A nuclear factor which specifically binds to the core element of the GPE3 was constitutively detected in human CHU-2 cells, whereas the expression of a similar, but distinctly different, factor was significantly induced in BAM3 cells by lipopolysaccharide. The results suggest that these nuclear factors play important roles in the constitutive expression of G-CSF in CHU-2 cells and its inducible expression in macrophages.  相似文献   

12.
Lithium (Li) dendrites in Li anodes, and dissolution and migration of manganese (Mn) ions in LiMn2O4 (LMO) cathodes, have hampered these extraordinary electrode materials from being efficiently applied in high performance Li batteries. Here, a novel, bifunctional, biobased composite gel polymer electrolyte (c‐GPE) is created to simultaneously deal with the two critical issues. The skeleton of c‐GPE is constructed from a sandwich structure composed of porous polydopamine spheres and two layers of the environmentally friendly soy protein isolate‐based nanofiber membranes, and the carbonized polydopamine spheres are coated without any binder on the surface of the membranes. After a facile and innocuous preparation process, the skeleton material displays excellent thermal stability and good affinity to liquid electrolyte, which endows c‐GPE with significant functions of effective mitigation of the dissolution of Mn ions, and chelation of the fleeing Mn ions, as well as the dramatic suppression of Li dendrite growth. Consequently, the LMO/Li batteries involving c‐GPE show a great improvement in the cycling stability and rate performance compared with those of the cells based on commercial Celgard 2400. This work will be quite promising to meet the distinct requirements from Li batteries and provide a high‐efficiency and safe biobased GPE for next generation energy storage systems.  相似文献   

13.
Oxidative stress is a critical contributing factor to neurodegenerative disorders. Therefore, the inhibition of ROS formation, responsible for chronic detrimental neuroinflammation, is an important strategy for preventing the neurodegenerative disease and for neuroprotective therapy. Gly-Pro-Glu (GPE) is the N-terminal tripeptide of insulin-like growth factor-I, which is naturally cleaved in the plasma and brain tissues. GPE has neuroprotective effects since it crosses the blood-CSF and the functional CSF-brain barriers and binds to glial cells. It has been shown that GPE improves motor behaviour in rats after 6-OHDA lesion, although it does not rescue dopaminergic neurons. Thus, we hypothesized that the GPE therapeutic efficacy in a Parkinson model might be improved by combining GPE to L: -dopa. Here, we used an animal model that represents a progressive chronic Parkinson's disease (PD) model, characterized by high levels of oxidative stress and inflammation. We showed that the co-drug, in which L: -dopa is covalently linked to the GPE tripeptide, by down-regulating the expression of inflammatory genes, decreases the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced inflammatory response and, by up-regulating tyrosine hydroxylase, reduces MPTP-induced neurotoxicity. Furthermore, by determining the nuclear translocation/activation of Nrf2 and NF-κB, we showed that systemic administration of the co-drug activates Nrf2-induced antioxidant response while suppressing NF-κB inflammatory pathway. Data suggest that the binding of L: -dopa to GPE tripeptide might represent a promising strategy to supply L: -dopa to parkinsonian patients.  相似文献   

14.
The rat placental glutathione S-transferase (GST-P), an isozyme of glutathione S-transferase, is not expressed in normal liver but is highly induced at an early stage of chemical hepatocarcinogenesis and in hepatomas. Recently, we reported that the NF-E2 p45-related factor 2 (Nrf2)/MafK heterodimer binds to GST-P enhancer 1 (GPE1), a strong enhancer of the GST-P gene, and activates this gene in preneoplastic lesions and hepatomas. In addition to the positive regulation during hepatocarcinogenesis, negative regulatory mechanisms might work to repress GST-P in normal liver, but this remains to be clarified. In this work, we identify the CCAAT enhancer-binding protein alpha (C/EBPalpha) as a negative regulator that binds to GPE1 and suppresses GST-P expression in normal liver. C/EBPalpha binds to part of the GPE1 sequence, and the binding of Nrf2/MafK and C/EBPalpha to GPE1 is mutually exclusive. In a transient-transfection analysis, C/EBPalpha activated GPE1 in F9 embryonal carcinoma cells but strongly inhibited GPE1 activity in hepatoma cells. The expression of C/EBPalpha was specifically suppressed in GST-P-positive preneoplastic foci in the livers of carcinogentreated rats. A chromatin immunoprecipitation analysis showed that C/EBPalpha bound to GPE1 in the normal liver in vivo but did not bind in preneoplastic hepatocytes. Introduction of the C/EBPalpha gene fused with the estrogen receptor ligand-binding domain into hepatoma cells, and subsequent activation by beta-estradiol led to the suppression of endogenous GST-P expression. These results indicate that C/EBPalpha is a negative regulator of GST-P gene expression in normal liver.  相似文献   

15.
Brain (31)P-neurometabolites play an important role in energy and membrane metabolism. Unambiguous identification and quantification of these neurochemicals in different brain regions would be a great aid in advancing the understanding of metabolic processes in the nervous system. Phosphomonoester (PME), consisting of phosphoethanolamine (PE) and phosphocholine (PC), is the "building block" for membranes, while phosphodiesters (PDE), consisting of glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE) metabolites are involved in the membrane breakdown process. In the clinical setting, generating well-resolved spectra for PC, PE, GPC, and GPE could be crucial phospholipids in providing information regarding membrane metabolism. We present here a new experimental approach for generating well-resolved (31)P spectra for PC and PE as well as for GPC, GPE, and other (31)P metabolites. Our results (based on uni-dimensional (1D) and multi-voxel (31)P studies) indicate that an intermediate excitation pulse angle (35°) is best suited to obtain well-resolved PC/PE and GPC/GPE resonance peaks. Our novel signal processing scheme allows generating metabolite maps of different phospholipids include PC/PE and GPC/GPE using the 'time-domain-frequency-domain' method as referred to in the MATLAB programming language.  相似文献   

16.
The influence of several modifications on the GPE tripeptide structure upon the binding to GluRs and on their neuroprotective effects has been studied. The results indicated that the prevention of neuronal death showed by GPE and some analogues is not directly related to their affinity at glutamate receptors.  相似文献   

17.
This study investigated the anti-inflammatory effects of novel pseudotripeptides (GPE 13) as potential candidates to counteract neuroinflammation processes in Alzheimer’s disease.GPE 13 pseudotripeptides are synthetic derivatives of Gly-l-Pro-l-Glu (GPE), the N-terminal tripeptide of IGF-1, obtained through the introduction of isosteres of the amidic bond (aminomethylene unit) to increase the metabolic stability of the native tripeptide. The results showed that all synthetic derivatives possessed higher half-lives (t1/2?>?4?h) than GPE (t1/2?=?30?min) in human plasma and had good water solubility. The biological results demonstrated that GPE 13 had protective properties in several experimental models of treated THP-1 cells. Notably, the novel pseudotripeptides influenced inflammatory cytokine expression (IL-1β, IL-18, and TNF-α) in Aβ25–35-, PMA-, and LPS-treated THP-1 cells. In PMA-differentiated THP-1 macrophages, both GPE 1 and GPE 3 reduced the expression levels of all selected cyto-chemokines, even though GPE 3 showed the best neuroprotective properties.  相似文献   

18.
A new gene closely related to the glycophorin A (GPA) and glycophorin B (GPB) genes has been identified in the normal human genome as well as in that of persons with known alterations of GPA and/or GPB expression. This gene, called glycophorin E (GPE), is transcribed into a 0.6-kb message which encodes a 78-amino-acid protein with a putative leader peptide of 19 residues. The first 26 amino acids of the mature protein are identical to those of M-type glycophorin A (GPA), but the C-terminal domain (residues 27-59) differs significantly from those of glycophorins A and B (GPA and GPB). The GPE gene consists of four exons distributed over 30 kb of DNA, and its nucleotide sequence is homologous to those of the GPA and GPB genes in the 5' region, up to exon 3. Because of branch and splice site mutations, the GPE gene contains a large intron sequence partially used as exons in GPA and GPB genes. Compared to its counterpart in the GPB gene, exon 3 of the GPE gene contains several point mutations, an insertion of 24 bp, and a stop codon which shortens the reading frame. Downstream from exon 3, the GPE and the GPB sequences are virtually identical and include the same Alu repeats. Thus, it is likely that the GPE and GPB genes have evolved by a similar mechanism. From the analysis of the GPA, GPB and GPE genes in glycophorin variants [En(a-), S-s-U- and Mk], it is proposed that the three genes are organized in tandem on chromosome 4. Deletion events within this region may remove one or two structural gene(s) and may generate new hybrid structures in which the promoter region of one gene is positioned upstream from the body of another gene of the same family. This model of gene organization provides a basis with which to explain the diversity of the glycophorin gene family.  相似文献   

19.
Brain 31P-neurometabolites play an important role in energy and membrane metabolism. Unambiguous identification and quantification of these neurochemicals in different brain regions would be a great aid in advancing the understanding of metabolic processes in the nervous system. Phosphomonoester (PME), consisting of phosphoethanolamine (PE) and phosphocholine (PC), is the “building block” for membranes, while phosphodiesters (PDE), consisting of glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE) metabolites are involved in the membrane breakdown process. In the clinical setting, generating well-resolved spectra for PC, PE, GPC, and GPE could be crucial phospholipids in providing information regarding membrane metabolism. We present here a new experimental approach for generating well-resolved 31P spectra for PC and PE as well as for GPC, GPE, and other 31P metabolites. Our results (based on uni-dimensional (1D) and multi-voxel 31P studies) indicate that an intermediate excitation pulse angle (35°) is best suited to obtain well-resolved PC/PE and GPC/GPE resonance peaks. Our novel signal processing scheme allows generating metabolite maps of different phospholipids include PC/PE and GPC/GPE using the ‘time-domain–frequency-domain’ method as referred to in the MATLAB programming language.  相似文献   

20.
The synthesis of nine GPE* analogues, wherein the alpha-carboxylic acid group of glutamic acid has been modified, is described by coupling readily accessible N-benzyloxycarbonyl-glycyl-L-proline 2 with various analogues of glutamic acid. Pharmacological evaluation of the novel compounds was undertaken to further understand the role of the glutamate residue on the observed neuroprotective properties of the endogenous tripeptide GPE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号