首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
HMG-CoA reductase (Hmgcr) is the rate-limiting enzyme in the mevalonate pathway and is inhibited by statins. In addition to cholesterol, Hmgcr activity is also required for synthesizing nonsterol isoprenoids, such as dolichol, ubiquinone, and farnesylated and geranylgeranylated proteins. Here, we investigated the effects of Hmgcr inhibition on nonsterol isoprenoids in the liver. We have generated new genetic models to acutely delete genes in the mevalonate pathway in the liver using AAV-mediated delivery of Cre-recombinase (AAV-Cre) or CRISPR/Cas9 (AAV-CRISPR). The genetic deletion of Hmgcr by AAV-Cre resulted in extensive hepatocyte apoptosis and compensatory liver regeneration. At the biochemical level, we observed decreased levels of sterols and depletion of the nonsterol isoprenoids, dolichol and ubiquinone. At the cellular level, Hmgcr-null hepatocytes showed ER stress and impaired N-glycosylation. We further hypothesized that the depletion of dolichol, essential for N-glycosylation, could be responsible for ER stress. Using AAV-CRISPR, we somatically disrupted dehydrodolichyl diphosphate synthase subunit (Dhdds), encoding a branch point enzyme required for dolichol biosynthesis. Dhdds-null livers showed ER stress and impaired N-glycosylation, along with apoptosis and regeneration. Finally, the combined deletion of Hmgcr and Dhdds synergistically exacerbated hepatocyte ER stress. Our data show a critical role for mevalonate-derived dolichol in the liver and suggest that dolichol depletion is at least partially responsible for ER stress and apoptosis upon potent Hmgcr inhibition.  相似文献   

2.
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is a key regulatory enzyme of cholesterol biosynthesis and is located in the endoplasmic reticulum (ER). A fusion protein, HMGal, consisting of the membrane domain of HMG-CoA reductase fused to Escherichia coli beta-galactosidase and expressed in Chinese hamster ovary (CHO) cells from the SV40 promoter, was previously constructed and was found to respond to regulatory signals for degradation in a similar fashion to the intact HMG-CoA reductase. Degradation of both HMG-CoA reductase and HMGal in CHO cells was enhanced by addition of mevalonate or low density lipoprotein (LDL). In this report we show that 2 cysteine protease inhibitors, N-acetyl-leucyl-leucyl-norleucinal (ALLN) and N-acetyl-leucyl-leucyl-methioninal (ALLM), completely inhibit the mevalonate- or LDL-accelerated degradation of HMG-CoA reductase and HMGal and also block the basal degradation of these enzymes. It has been shown that in vitro these protease inhibitors inhibit the activities of Ca(2+)-dependent neutral proteases as well as lysosomal proteases, including cathepsin L, cathepsin b, and cathepsin D. However, the mevalonate-accelerated degradation of HMG-CoA reductase and HMGal is not affected by lysosomotropic agents, suggesting that the site of action of these inhibitor peptides in preventing the degradation is not the cathepsins. In brefeldin A-treated cells, where protein export from the ER is blocked, ALLN is still effective in inhibiting the degradation of HMG-CoA reductase and HMGal. These results indicate the involvement of non-lysosomal Ca(2+)-dependent proteases in the basal and the accelerated degradation of HMG-CoA reductase and HMGal. Enzymatic assays in vitro and immunoblot analyses have revealed calpain- and calpastatin-like proteins in CHO cells. The activities and the amount of these proteins do not change under conditions of enhanced degradation, indicating that the levels of these proteins are not subject to mevalonate regulation.  相似文献   

3.
Our group and others have recently demonstrated that peroxisomes contain a number of enzymes involved in cholesterol biosynthesis that previously were considered to be cytosolic or located in the endoplasmic reticulum (ER). Peroxisomes have been shown to contain HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase, phosphomevalonate decarboxylase, isopentenyl diphosphate isomerase, and FPP synthase. Four of the five enzymes required for the conversion of mevalonate to FPP contain a conserved putative PTS1 or PTS2, supporting the concept of targeted transport into peroxisomes. To date, no information is available regarding the function of the peroxisomal HMG-CoA reductase in cholesterol/isoprenoid metabolism, and the structure of the peroxisomal HMG-CoA reductase has yet to be determined. We have identified a mammalian cell line that expresses only one HMG-CoA reductase protein, and which is localized exclusively to peroxisomes, to facilitate our studies on the function, regulation, and structure of the peroxisomal HMG-CoA reductase. This cell line was obtained by growing UT2 cells (which lack the ER HMG-CoA reductase) in the absence of mevalonate. The surviving cells exhibited a marked increase in a 90-kD HMG-CoA reductase that was localized exclusively to peroxisomes. The wild-type CHO cells contain two HMG-CoA reductase proteins, the well-characterized 97-kD protein localized in the ER, and a 90-kD protein localized in peroxisomes. We have also identified the mutations in the UT2 cells responsible for the lack of the 97-kD protein. In addition, peroxisomal-deficient Pex2 CHO cell mutants display reduced HMG-CoA reductase levels and have reduced rates of sterol and nonsterol biosynthesis. These data further support the proposal that peroxisomes play an essential role in isoprenoid biosynthesis.  相似文献   

4.
Many bacteria employ the nonmevalonate pathway for synthesis of isopentenyl diphosphate, the monomer unit for isoprenoid biosynthesis. However, gram-positive cocci exclusively use the mevalonate pathway, which is essential for their growth (E. I. Wilding et al., J. Bacteriol. 182:4319-4327, 2000). Enzymes of the mevalonate pathway are thus potential targets for drug intervention. Uniquely, the enterococci possess a single open reading frame, mvaE, that appears to encode two enzymes of the mevalonate pathway, acetoacetyl-coenzyme A thiolase and 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Western blotting revealed that the mvaE gene product is a single polypeptide in Enterococcus faecalis, Enterococcus faecium, and Enterococcus hirae. The mvaE gene was cloned from E. faecalis and was expressed with an N-terminal His tag in Escherichia coli. The gene product was then purified by nickel affinity chromatography. As predicted, the 86.5-kDa mvaE gene product catalyzed both the acetoacetyl-CoA thiolase and HMG-CoA reductase reactions. Temperature optima, DeltaH(a) and K(m) values, and pH optima were determined for both activities. Kinetic studies of acetoacetyl-CoA thiolase implicated a ping-pong mechanism. CoA acted as an inhibitor competitive with acetyl-CoA. A millimolar K(i) for a statin drug confirmed that E. faecalis HMG-CoA reductase is a class II enzyme. The oxidoreductant was NADP(H). A role for an active-site histidine during the first redox step of the HMG-CoA, reductase reaction was suggested by the ability of diethylpyrocarbonate to block formation of mevalonate from HMG-CoA, but not from mevaldehyde. Sequence comparisons with other HMG-CoA reductases suggest that the essential active-site histidine is His756. The mvaE gene product represents the first example of an HMG-CoA reductase fused to another enzyme.  相似文献   

5.
We have previously identified a CHO cell line (UT2 cells) that expresses only one 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase protein which is localized exclusively in peroxisomes [Engfelt, H.W., Shackelford, J.E., Aboushadi, N., Jessani, N., Masuda, K., Paton, V.G., Keller, G.A., and Krisans, S.K. (1997) J. Biol. Chem. 272, 24579-24587]. In this study, we utilized the UT2 cells to determine the properties of the peroxisomal reductase independent of the endoplasmic reticulum (ER) HMG-CoA reductase. We demonstrated major differences between the two proteins. The peroxisomal reductase is not the rate-limiting enzyme for cholesterol biosynthesis in UT2 cells. The peroxisomal reductase protein is not phosphorylated, and its activity is not altered in the presence of inhibitors of cellular phosphatases. Its rate of degradation is not accelerated in response to mevalonate. Finally, the degradation process is not blocked by N-acetyl-Leu-Leu-norleucinal (ALLN). Furthermore, the peroxisomal HMG-CoA reductase is significantly more resistant to inhibition by statins. Taken together, the data support the conclusion that the peroxisomal reductase is functionally and structurally different from the ER HMG-CoA reductase.  相似文献   

6.
Squalene synthase (SS) is the first committed enzyme for cholesterol biosynthesis, located at a branch point in the mevalonate pathway. To examine the role of SS in the overall cholesterol metabolism, we transiently overexpressed mouse SS in the livers of mice using adenovirus-mediated gene transfer. Overexpression of SS increased de novo cholesterol biosynthesis with increased 3-hydroxy-3-methyglutaryl-CoA (HMG-CoA) reductase activity, in spite of the downregulation of its own mRNA expression. Furthermore, overexpression of SS increased plasma concentrations of LDL, irrespective of the presence of functional LDL receptor (LDLR). Thus, the hypercholesterolemia is primarily caused by increased hepatic production of cholesterol-rich VLDL, as demonstrated by the increases in plasma cholesterol levels after intravenous injection of Triton WR1339. mRNA expression of LDLR was decreased, suggesting that defective LDL clearance contributed to the development of hypercholesterolemia. Curiously, the liver was enlarged, with a larger number of Ki-67-positive cells. These results demonstrate that transient upregulation of SS stimulates cholesterol biosynthesis as well as lipoprotein production, providing the first in vivo evidence that SS plays a regulatory role in cholesterol metabolism through modulation of HMG-CoA reductase activity and cholesterol biosynthesis.  相似文献   

7.
In this paper, we assess the relative degree of regulation of the rate-limiting enzyme of isoprenoid biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, by sterol and nonsterol products of mevalonate by utilizing cultured Chinese hamster ovary cells blocked in sterol synthesis. We also examine the two other enzymes of mevalonate biosynthesis, acetoacetyl-CoA thiolase and HMG-CoA synthase, for regulation by mevalonate supplements. These studies indicate that in proliferating fibroblasts, treatment with mevalonic acid can produce a suppression of HMG-CoA reductase activity similar to magnitude to that caused by oxygenated sterols. In contrast, HMG-CoA synthase and acetoacetyl-CoA thiolase are only weakly regulated by mevalonate when compared with 25-hydroxycholesterol. Furthermore, neither HMG-CoA synthase nor acetoacetyl-CoA thiolase exhibits the multivalent control response by sterol and mevalonate supplements in the absence of endogenous mevalonate synthesis which is characteristic of nonsterol regulation of HMG-CoA reductase. These observations suggest that nonsterol regulation of HMG-CoA reductase is specific to that enzyme in contrast to the pleiotropic regulation of enzymes of sterol biosynthesis observed with oxygenated sterols. In Chinese hamster ovary cells supplemented with mevalonate at concentrations that are inhibitory to reductase activity, at least 80% of the inhibition appears to be mediated by nonsterol products of mevalonate. In addition, feed-back regulation of HMG-CoA reductase by endogenously synthesized nonsterol isoprenoids in the absence of exogenous sterol or mevalonate supplements also produces a 70% inhibition of the enzyme activity.  相似文献   

8.
A somatic cell mutant of the CHO-K1 cell selected to be resistant to the killing effects of 25-hydroxycholesterol in the absence of cholesterol is shown to be defective in the inhibition of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase activity by 25-hydroxycholesterol, cholesterol, and lipoproteins, thus maintaining the enzyme activity found in cells in the absence of exogenous sterol constitutively. The mutants phenotype is shown to be dominant with respect to the wild type. Actinomycin D and cycloheximide prevent the increase of HMG-CoA reductase activity that occurs in the CHO-K1 cell when cholesterol is removed from medium. Degradation of the enzyme, measured during inhibition of protein synthesis by cycloheximide, occurs at the same rate in the mutant as in the wild type. Kinetic studies indicate that the Km for two substrates, the activation energy, and a break in the Arrhenius plot are the same for HMG-CoA reductase determined in wild type and mutant cells. From these studies it is concluded that the mutant is defective in the regulation of synthesis of HMG-CoA reductase. Of the four processes which determine cellular cholesterol levels: biosynthesis, esterification, efflux, and uptake, only biosynthesis is altered, demonstrating that these processes are not co-ordinately controlled as has been suggested previously.  相似文献   

9.
The liver plays a central role in regulating cholesterol homeostasis. High fat diets have been shown to induce obesity and hyperlipidemia. Despite considerable advances in our understanding of cholesterol metabolism, the regulation of liver cholesterol biosynthesis in response to high fat diet feeding has not been fully addressed. The aim of the present study was to investigate mechanisms by which a high fat diet caused activation of liver 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) leading to increased cholesterol biosynthesis. Mice were fed a high fat diet (60% kcal fat) for 5 weeks. High fat diet feeding induced weight gain and elevated lipid levels (total cholesterol and triglyceride) in both the liver and serum. Despite cholesterol accumulation in the liver, there was a significant increase in hepatic HMG-CoA reductase mRNA and protein expression as well as enzyme activity. The DNA binding activity of sterol regulatory element binding protein (SREBP)-2 and specific protein 1 (Sp1) were also increased in the liver of mice fed a high fat diet. To validate the in vivo findings, HepG2 cells were treated with palmitic acid. Such a treatment activated SREBP-2 as well as increased the mRNA and enzyme activity of HMG-CoA reductase leading to intracellular cholesterol accumulation. Inhibition of Sp1 by siRNA transfection abolished palmitic acid-induced SREBP-2 and HMG-CoA reductase mRNA expression. These results suggest that Sp1-mediated SREBP-2 activation contributes to high fat diet induced HMG-CoA reductase activation and increased cholesterol biosynthesis. This may play a role in liver cholesterol accumulation and hypercholesterolemia.  相似文献   

10.
A second gene for peroxisomal HMG-CoA reductase? A genomic reassessment   总被引:1,自引:0,他引:1  
HMG-CoA reductase (HMGCR) catalyzes the conversion of HMG-CoA to mevalonate, the rate-limiting step of eukaryotic isoprenoid biosynthesis, and is the main target of cholesterol-lowering drugs. The classical form of the enzyme is a transmembrane-protein anchored to the endoplasmic reticulum. However, during the last years several lines of evidence pointed to the existence of a second isoform of HMGCR localized in peroxisomes, where mevalonate is converted further to farnesyl diphosphate. This finding is relevant for our understanding of the complex regulation and compartmentalization of the cholesterogenic pathway. Here we review experimental evidence suggesting that the peroxisomal activity might be due to a second HMGCR gene in mammals. We then present a comprehensive analysis of completely sequenced eukaryotic genomes, as well as the human and mouse genome drafts. Our results provide evidence for a large number of independent duplications of HMGCR in all eukaryotic kingdoms, but not for a second gene in mammals. We conclude that the peroxisomal HMGCR activity in mammals is due to alternative targeting of the ER enzyme to peroxisomes by an as yet uncharacterized mechanism.  相似文献   

11.
Biosynthesis of the isoprenoid precursor isopentenyl diphosphate (IPP) proceeds via two distinct pathways. Sequence comparisons and microbiological data suggest that multidrug-resistant strains of gram-positive cocci employ exclusively the mevalonate pathway for IPP biosynthesis. Bacterial mevalonate pathway enzymes therefore offer potential targets for development of active site-directed inhibitors for use as antibiotics. We used the PCR and Enterococcus faecalis genomic DNA to isolate the mvaS gene that encodes 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, the second enzyme of the mevalonate pathway. mvaS was expressed in Escherichia coli from a pET28 vector with an attached N-terminal histidine tag. The expressed enzyme was purified by affinity chromatography on Ni(2+)-agarose to apparent homogeneity and a specific activity of 10 micromol/min/mg. Analytical ultracentrifugation showed that the enzyme is a dimer (mass, 83.9 kDa; s(20,w), 5.3). Optimal activity occurred in 2.0 mM MgCl(2) at 37(o)C. The DeltaH(a) was 6,000 cal. The pH activity profile, optimum activity at pH 9.8, yielded a pK(a) of 8.8 for a dissociating group, presumably Glu78. The stoichiometry per monomer of acetyl-CoA binding was 1.2 +/- 0.2 and that of covalent acetylation was 0.60 +/- 0.02. The K(m) for the hydrolysis of acetyl-CoA was 10 microM. Coupled conversion of acetyl-CoA to mevalonate was demonstrated by using HMG-CoA synthase and acetoacetyl-CoA thiolase/HMG-CoA reductase from E. faecalis.  相似文献   

12.
Rabbits were given 50 i.u. hCG, i.v., to initiate ovulation and pseudopregnancy (Day 0) and were treated, s.c., with or without a 1-cm Silastic oestradiol implant. Serum progesterone concentrations were measured at 4-day intervals and 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity was estimated by the conversion of HMG to mevalonate in microsomes from corpora lutea removed on Days 4, 8, 12, 16 and 20 of pseudopregnancy (4 rabbits/day). Total HMG-CoA reductase activity was significantly (P less than 0.05) higher in control rabbits on Days 8 and 12 (5.29 +/- 0.63 and 5.5 +/- 0.28 nmol/min/mg protein, respectively) compared to oestradiol-treated rabbits (2.57 +/- 0.25 and 4.03 +/- 0.23 nmol/min/mg protein, respectively). On Days 16 and 20, total HMG-CoA reductase activity was not different in control and oestradiol-treated animals. There was no difference in the levels of the active fraction of HMG-CoA reductase, which represented less than 20% of the total enzyme activity, in control and oestradiol-treated rabbits (less than 780 pmol/min/mg protein, Day 12). These results indicate that oestradiol does not alter the active form, but can reduce the total activity of HMG-CoA reductase in the rabbit corpus luteum without a decline in serum progesterone. Therefore, neither total nor active forms of HMG-CoA reductase are directly related to progesterone secretion. This suggests that other sources of cholesterol may contribute to progesterone production in the rabbit.  相似文献   

13.
Instructions for authors   总被引:5,自引:0,他引:5  
The aim of the present study was to examine hypothesis that the enhanced cholesterologenesis, found in rats with experimental chronic renal failure (CRF) resulted from the increased gene expression of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase – the rate limiting enzyme in the cholesterologenesis pathway, responsible for mevalonate synthesis. Wistar rats were used and experimental CRF was achieved by 5/6 nephrectomy model. We examined: (a) the changes in the rat liver microsomal HMG-CoA reductase activity, (b) the rat liver HMG-CoA reductase mRNA abundance in various times of day. Obtained data indicates that the increased activity of HMG-CoA reductase in the liver of rats with experimental CRF parallel enhanced mRNA level and suggests that enhanced cholesterol biosynthesis, observed in experimental CRF is at least in part due to the increased HMG-CoA reductase gene expression. The results also indicate that the physiological diurnal rhythm of HMG-CoA reductase activity is preserved in the course of experimental CRF.  相似文献   

14.
Hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase activities and cholesterol content in the liver of athymic mice either bearing or not an implanted human lung mucoepidormoid carcinoma (HLMC) and in the neoplasic tissue, were analyzed. The properties of the HMG-CoA reductase of HLMC grown in nude mice and those ones found in the liver of these animals, sacrificed either at mid-light or mid-dark, were similar. The hepatic reductase activity was found to be four- to five-fold greater at mid-dark than at mid-light (462±141 vs. 123±22 pmol min−1 mg protein−1). Since the Km value was not modified, the mid-dark activity could be due to an increase in the amount of enzyme. In contrast, HLMC reductase activity and cholesterol content showed similar values at mid-light and mid-dark points. HLMC reductase does not appear to have any diurnal variation and the cholesterol synthesis and content seems to be independent of food intake. HLMC-bearing nude mice undergo several alterations in the biosynthesis and homeostasis of cholesterol. Hypocholesterolemia, lower hepatic cholesterol content and higher HMG-CoA reductase activity are characteristic of host mice.  相似文献   

15.
Sequence comparisons have implied the presence of genes encoding enzymes of the mevalonate pathway for isopentenyl diphosphate biosynthesis in the gram-positive pathogen Staphylococcus aureus. In this study we showed through genetic disruption experiments that mvaA, which encodes a putative class II 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, is essential for in vitro growth of S. aureus. Supplementation of media with mevalonate permitted isolation of an auxotrophic mvaA null mutant that was attenuated for virulence in a murine hematogenous pyelonephritis infection model. The mvaA gene was cloned from S. aureus DNA and expressed with an N-terminal His tag in Escherichia coli. The encoded protein was affinity purified to apparent homogeneity and was shown to be a class II HMG-CoA reductase, the first class II eubacterial biosynthetic enzyme isolated. Unlike most other HMG-CoA reductases, the S. aureus enzyme exhibits dual coenzyme specificity for NADP(H) and NAD(H), but NADP(H) was the preferred coenzyme. Kinetic parameters were determined for all substrates for all four catalyzed reactions using either NADP(H) or NAD(H). In all instances optimal activity using NAD(H) occurred at a pH one to two units more acidic than that using NADP(H). pH profiles suggested that His378 and Lys263, the apparent cognates of the active-site histidine and lysine of Pseudomonas mevalonii HMG-CoA reductase, function in catalysis and that the general catalytic mechanism is valid for the S. aureus enzyme. Fluvastatin inhibited competitively with HMG-CoA, with a K(i) of 320 microM, over 10(4) higher than that for a class I HMG-CoA reductase. Bacterial class II HMG-CoA reductases thus are potential targets for antibacterial agents directed against multidrug-resistant gram-positive cocci.  相似文献   

16.
Under most experimental conditions, the activities of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase) and cholesterol 7 alpha-hydroxylase, change together in parallel directions. It has been suggested that newly synthesized cholesterol may be the preferred substrate for cholesterol 7 alpha-hydroxylase, which may account for the observed synchronous behavior of the two enzymes. To test this hypothesis, mevinolinic acid, a potent competitive inhibitor of HMG-CoA reductase, was administered as a single intravenous bolus (10 mg/kg) to rats with a chronic bile fistula. Bile acid synthesis was determined following inhibition of HMG-CoA reductase by mevinolinic acid over a 27-h time course and specific activities of HMG-CoA reductase and cholesterol 7 alpha-hydroxylase were determined in liver microsomes. At 3, 6, and 27 h after a bolus dose of mevinolinic acid, bile acid synthesis was reduced by 54 +/- 5%, 42 +/- 8%, and 23 +/- 13%, respectively, from preinfusion baseline. Within 30 min after administration of mevinolinic acid, HMG-CoA reductase activity was inhibited by at least 87%. At 0.5, 1.5, 3, 6, and 27 h after mevinolinic acid injection, cholesterol 7 alpha-hydroxylase activity was decreased by 6%, 25%, 54%, 41%, and 17%, respectively. By 27 h, the activities of both enzymes had returned to baseline levels. The reduction of bile acid synthesis correlated closely with the observed changes in the activities of cholesterol 7 alpha-hydroxylase. In vitro addition of mevinolinic acid (up to 20 microM) to rat liver microsomes failed to inhibit cholesterol 7 alpha-hydroxylase activity, suggesting no direct effect of mevinolinic acid on enzyme activity. When a bolus dose of mevinolinic acid was coupled with a continuous infusion of mevalonate, the product of the reaction catalyzed by HMG-CoA reductase, the mevinolinic acid-induced decrease in cholesterol 7 alpha-hydroxylase activity and bile acid synthesis was prevented. The results of this study provide evidence that, under the experimental conditions described, there is a linkage between the rates of cholesterol synthesis and the activities of cholesterol 7 alpha-hydroxylase. The data also emphasize the importance of the newly synthesized cholesterol in the regulation of cholesterol 7 alpha-hydroxylase activity.  相似文献   

17.
The activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase, EC 1.1.1.34) has been demonstrated both in homogenates and microsomes of the S3G strain of HeLa cells. It was increased 8- to 10-fold by the removal of serum from the growth medium. The presence of steroids, specifically of the glucocorticoid series, in the serum-less growth medium elicited an additional 100 to 345% increase over the serum-less control, whereas the addition of N6,O2'-dibutyryl adenosine 3':5'-monophosphate to the medium or dexamethasone to the assay mixture was without any stimulatory effect. Both inductions were blocked by cycloheximide and actinomycin D, suggesting a protein synthesis-dependent elevation of enzyme activity. Glucocorticoids were effective in the induction at concentrations ranging from 10(-6) to 10(-8) M and there was a demonstrated parallel between the magnitude of enzyme induction and glucocorticoid potency. The HMG-CoA reductase activities from steroid-induced and control cultures had identical assay characteristics (pH optima and apparent Km values for both NADPH and HMG-CoA). This induction of the rate-controlling enzyme of cholesterogenesis occurred despite the observation that glucocorticoids specifically depress the rate of acetate or water, but not mevalonate, incorporation into cholesterol.  相似文献   

18.
A water-soluble derivative of cholesterol, methoxypolyoxyethylated (MPOE) cholesterol, has been synthesized and used to study the regulation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the key regulatory enzyme in cholesterol biosynthesis. MPOE cholesterol causes a specific, rapid and linear decline in HMG-CoA reductase in cultured rat liver cells. MPOE cholesterol is not a direct allosteric inhibitor of HMG-CoA reductase, does not appear to regulate HMG-CoA reductase through changes in membrane environment, and does not change the phosphorylation state and level of activation of rat liver cell HMG-CoA reductase. In order to confirm our data, which were consistent with a model in which MPOE cholesterol regulates the amount of HMG-CoA reductase and not its activity, we made direct measurements of reductase mRNA levels. The decline in HMG-CoA reductase in MPOE cholesterol-treated rat liver cells is preceded by the rapid disappearance of HMG-CoA reductase mRNA. As a water-soluble cholesterol derivative, MPOE cholesterol represents a useful model compound for studies on the regulation of the level of HMG-CoA reductase and its cognate mRNA.  相似文献   

19.
20.
In eukaryotic cells all isoprenoids are synthesized from a common precursor, mevalonate. The formation of mevalonate from 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) is catalyzed by HMG-CoA reductase and is the first committed step in isoprenoid biosynthesis. In mammalian cells, synthesis of HMG-CoA reductase is subject to feedback regulation at multiple molecular levels. We examined the state of feedback regulation of the synthesis of the HMG-CoA reductase isozyme encoded by the yeast gene HMG1 to examine the generality of this regulatory pattern. In yeast, synthesis of Hmg1p was subject to feedback regulation. This regulation of HMG-CoA reductase synthesis was independent of any change in the level of HMG1 mRNA. Furthermore, regulation of Hmg1p synthesis was keyed to the level of a nonsterol product of the mevalonate pathway. Manipulations of endogenous levels of several isoprenoid intermediates, either pharmacologically or genetically, suggested that mevalonate levels may control the synthesis of Hmg1p through effects on translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号