首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six azole-derivative antifungal compounds affected several aspects of Candida albicans hyphal development with only a relatively small degree of inhibition of growth rate, measured in terms of ATP concentration, whereas amphotericin B and 5-fluorocytosine affected morphology only when they also substantially inhibited fungal growth rate. At 10(-8) M, all the azoles tested inhibited branch formation by C. albicans hyphae. At 10(-7) M and higher concentrations, clotrimazole and miconazole strongly suppressed emergence of new hyphal outgrowths from parent yeast cells, whereas ICI 153066 and itraconazole had little effect on this phenomenon and ketoconazole and tioconazole had intermediate effects. At the highest concentrations tested (10(-5) M) hyphal development was ultimately arrested by the azole compounds and the fungus grew predominantly in the form of budding yeast cells; however, none of the azole antifungals prevented initial emergence of an apparently normal germ tube. The antifungals only exerted their morphological effects when they were present in the culture medium: removal of the compounds after exposure of C. albicans to them led to reversion to normal growth.  相似文献   

2.
Several antifungal agents, at concentrations of 10 micrograms/ml, were shown to suppress ATP concentrations very rapidly in intact cells and spheroplasts of Candida albicans. The highest ATP-suppressing activity was shown by the highly lipophilic imidazole derivatives difonazole, clotrimazole, econazole, isoconazole, miconazole, oxiconazole and tioconazole, which all caused a reduction of cellular ATP content of more than 50% in 10 min. Relatively hydrophilic imidazole derivatives such as ketoconazole were essentially inactive in the test, as were the triazole derivatives fluconazole, ICI 153066, itraconazole and terconazole, and 5-fluorocytosine. Amphotericin B and terbinafine possessed intermediate ATP-suppressing activity, and the dose-response and pH-response curves for these compounds suggested their mechanism of ATP suppression differed from that of the active imidazole derivatives. ATP suppression by azole antifungals did not involve leakage of ATP from the cells and the effect was entirely abrogated by the presence of serum. Intact cells and spheroplasts of yeast-form and hyphal-form C. albicans were generally equally sensitive to ATP suppression, but stationary-phase cells of both morphological forms were less sensitive than exponential-phase cells. The extent of ATP suppression was significantly reduced in stationary-phase yeast cells of a C. albicans strain with known resistance to azole antifungals, but exponential-phase cells of resistant and susceptible strains were equally sensitive. The effect is tentatively ascribed to membrane damage caused directly by the antifungals.  相似文献   

3.
Experiments were conducted to gain insight concerning the mechanism(s) whereby cerulenin and sodium butyrate affect chitin synthesis in Candida albicans. In vitro studies with isolated membrane-bound chitin synthase from C. albicans, strain 4918, showed that neither agent affected the level of either unactivated or trypsin-activated enzyme activity. Subsequent studies utilizing protoplasts revealed that early in the cell wall regeneration process, cells treated with cerulenin or butyrate synthesized chitin at a rate equal to untreated controls, as measured by the incorporation of [3H]-N-acetylglucosamine (GlcNAc) into acid-alkali insoluble material. However, after 40 min of incubation, the incorporation of [3H]GlcNAc into chitin is reduced in cells treated with either agent. On the other hand, samples taken during the same time intervals and analyzed by flow cytometry suggested that the amount of chitin synthesis in treated and untreated cells was identical. A marked decrease in fluorescence was observed in similar experiments using polyoxin D, a direct inhibitor of chitin synthase activity. Experiments that measured uptake of [3H]GlcNAc into both whole cells and protoplasts demonstrated that cerulenin and butyrate had no effect on the transport of the chitin precursor.  相似文献   

4.
Chitin synthase activity was studied in yeast and hyphal forms of Candida albicans. pH-activity profiles showed that yeast and hyphae contain a protease-dependent activity that has an optimum at pH 6.8. In addition, there is an activity that is not activated by proteolysis in vitro and which shows a peak at pH 8.0. This suggests there are two distinct chitin synthases in C. albicans. A gene for chitin synthase from C. albicans (CHS1) was cloned by heterologous expression in a Saccharomyces cerevisiae chs1 mutant. Proof that the cloned chitin synthase is a C. albicans membrane-bound zymogen capable of chitin biosynthesis in vitro was based on several criteria. (i) the CHS1 gene complemented the S. cerevisiae chs1 mutation and encoded enzymatic activity which was stimulated by partial proteolysis; (ii) the enzyme catalyses incorporation of [14C]-GlcNAc from the substrate, UDP[U-14C]-GlcNAc, into alkali-insoluble chitin; (iii) Southern analysis showed hybridization of a C. albicans CHS1 probe only with C. albicans DNA and not with S. cerevisiae DNA; (iv) pH profiles of the cloned enzyme showed an optimum at pH 6.8. This overlaps with the pH-activity profiles for chitin synthase measured in yeast and hyphal forms of C. albicans. Thus, CHS1 encodes only part of the chitin synthase activity in C. albicans. A gene for a second chitin synthase in C. albicans with a pH optimum at 8.0 is proposed. DNA sequencing revealed an open reading frame of 2328 nucleotides which predicts a polypeptide of Mr 88,281 with 776 amino acids. The alignment of derived amino acid sequences revealed that the CHS1 gene from C. albicans (canCHS1) is homologous (37% amino acid identity) to the CHS1 gene from S. cerevisiae (sacCHS1).  相似文献   

5.
Approximately 50% (15/28) of a selection of oral isolates of Candida albicans from separate individuals infected with the human immunodeficiency virus (HIV) exhibited low susceptibility to ketoconazole as determined by hyphal elongation assessment. Nine of these isolates exhibited colony morphology variation or switching at 37 degrees C, of which six expressed low ketoconazole susceptibility. To determine whether colony morphology variation could give rise to derivatives with reduced azole susceptibility, several high-frequency switching variants of three HIV-patient isolates were recovered and assessed. All but one of the variants expressed similar azole susceptibility profiles to their respective parental strains. However, the C. albicans derivative 132ACR expressed significantly reduced susceptibility to ketoconazole in comparison to its parental strain 132A. In whole cells, on the basis of total growth the switched derivative 132ACR was markedly less susceptible than its parental isolate 132A to ketoconazole at 10 microM. A much smaller difference was observed with fluconazole at 10 microM, with the switched derivative 132ACR exhibiting a threefold lower susceptibility compared with the parental isolate 132A. The incorporation of [14C]acetate in control and azole-treated cells of both organisms was higher for the parental strain. When cell lysates of strain 132A and its derivative 132ACR were incubated with [14C]mevalonic acid and ketoconazole, the IC50 for 14C-label incorporation into C-4 demethyl sterols was fivefold higher for lysates of the switched derivative 132ACR compared with those of the parental strain 132A. With fluconazole the IC50 value for the derivative 132ACR was 25-fold higher than for strain 132A. The 14-sterol demethylase of the switched derivative 132ACR was possibly less sensitive to azole inhibition than that of the enzyme of strain 132A. These studies indicated that colony morphology variation in vitro can generate derivatives with stable, reduced azole susceptibility without prior exposure to azoles.  相似文献   

6.
Nikkomycin was found to be a potent growth inhibitor of Candida albicans through competitive inhibition of chitin synthase [Ki = 0.16 microM (0.1 microgram ml-1)]. The activity of the peptide-nucleoside drug was antagonized by both peptone and defined peptides. Transported dipeptides were effective antagonists while transported oligopeptides were not. A mutant of C. albicans resistant to the effects of nikkomycin through a transport defect was unable to transport dipeptides, while oligopeptide uptake was apparently unaffected. At least two peptide permeases are operational in this organism.  相似文献   

7.
A mutant of Candida albicans ATCC 10261 was isolated that was defective in the production of beta-N-acetylglucosaminidase (chitobiase). The mutant grew normally in minimal medium supplemented with either glucose or N-acetyl-D-glucosamine (GlcNAc) as carbon and energy source, and the cells formed germ-tubes at 37 degrees C when induced to do so with GlcNAc. However, unlike the wild-type parent strain, the mutant strain did not utilize N,N'-diacetylchitobiose for growth. The mutant and parent strains had similar growth rates on glucose or GlcNAc, similar rates of uptake of these sugars and similar rates of 14C-labelled amino acid incorporation. The chitobiase mutant did, however, contain 53-85% more chitin than the wild-type strain. No reversion of the mutant phenotype was observed following induction of mitotic recombination with UV light, suggesting that the mutant allele (chi) was carried homozygously in the chitobiase-deficient mutant. Although the chitobiase-deficient mutant was pathogenic, it was not as virulent as the wild-type strain.  相似文献   

8.
Recent studies reported that an first generation azole (tioconazole) was active against Candida glabrata petite mutants, a fluconazole- and voriconazole- resistant strain of fungi characterized as most azole resistant yeast by an overexpression of the efflux pumps. Therefore, monosubstituted 1-[2-(2,4-dichlorophenyl)ethyl]-1H-imidazoles differing from tioconazole by the nature of the linker and of the aromatic ring in their side-chain were synthesized and evaluated against the mutant and the wild-type strain of C. glabrata. New 2-aryl-1-azolyl-3-thienylbutan-2-ols were then designed and synthesized, and their antifungal activity was evaluated against both strains of C. glabrata and two other major human pathogenic fungi, C. albicans and Aspergillus fumigatus. These new compounds exhibited a broad spectrum activity, as well as good efficiency against the petite mutant, suggesting that they may overcome the increased expression of the efflux pumps usually observed in clinical yeast isolates resistant to current azoles.  相似文献   

9.
Incorporation of polysaccharides into the walls of regenerating protoplasts of Candida albicans was followed in the presence of papulacandin B, tunicamycin and nikkomycin. With the first drug, chitin was incorporated normally whereas incorporation of glucans and mannoproteins was significantly decreased. Tunicamycin decreased incorporation of all wall polymers when added at the beginning of the regeneration process but blocked only mannan and alkali-insoluble glucan incorporation when added after 5 h. Nikkomycin inhibited chitin synthesis, and the walls formed by the protoplasts were enriched in alkali-soluble glucan. Pulse-chase experiments suggested that a precursor-product relationship between the alkali-soluble and alkali-insoluble glucans existed in the wall. The results obtained with the antibiotics were confirmed and extended by cytological studies using wheat-germ agglutinin labelled with colloidal gold and concanavalin A-ferritin as specific markers of chitin and mannoproteins respectively. The results support the idea that regeneration of walls by protoplasts occurs in two steps: firstly, a chitin microfibrillar skeleton is formed, and in a later step glucan-mannoprotein complexes are added to the growing structure. The chitin skeleton probably allows the orderly spatial arrangement of the other polymers giving rise to the regenerated cell wall.  相似文献   

10.
Using isolated rat hepatocytes, we studied the effect of epidermal growth factor (urogastrone) (EGF-URO) on the incorporation of [3-14C]pyruvate into glucose and glycogen, on the incorporation of [U-14C]glucose into glycogen, and on the oxidation of [U-14C]glucose to 14CO2. The effects of EGF-URO were compared with those of glucagon and insulin. EGF-URO, with an EC50 of 0.2 nM, enhanced by 34% (maximal stimulation) the conversion of [3-14C]pyruvate into glucose; no effect was observed on the oxidation of glucose to CO2 and on the incorporation of either pyruvate or glucose into glycogen. The effect of EGF-URO on pyruvate conversion to glucose was observed only when hepatocytes were preincubated with EGF-URO for 40 min prior to the addition of substrate. Glucagon (10 nM) increased the incorporation of [3-14C]pyruvate into glucose (44% above control); however, unlike EGF-URO, glucagon stimulated gluconeogenesis better without than with a preincubation period. Neither insulin nor EGF-URO (both 10 nM) affected the incorporation of [U-14C]glucose into glycogen during a 20-min incubation period. However, at longer time periods of incubation with the substrate (60 instead 20 min), insulin (but not EGF-URO) increased the incorporation of [14C]glucose into glycogen; EGF-URO counteracted this stimulatory effect of insulin. In contrast with previous data, our work indicates that EGF-URO can, under certain conditions, counteract the effects of insulin and, like glucagon, promote gluconeogenesis in isolated rat hepatocytes.  相似文献   

11.
In Ascaris suum chitin is formed in the zygote immediately after oocyte fertilization, and its synthesis is completed in the eggs from the distal half of the uterus. Incorporation of radiocarbon [14C] glucose into chitin of the eggshell was 40-fold higher than incorporation of [14C] glucosamine. The same rank order also holds for the incorporation of label from these isotopes into the glycogen of the ovaries. A large part of the radiolabel was incorporated first into oocyte glycogen and only after fertilization was it incorporated into eggshell chitin. Actinomycin D inhibited chitin synthesis in the eggs from the distal half of the uterus and it significantly reduced incorporation of radiocarbon from glucose into chitin.  相似文献   

12.
The uptake of tritiated nikkomycin Z, a potent inhibitor of chitin synthetase, is mediated by a peptide transport system in Candida albicans. Kinetic transport assays with radioactive di- and tripeptides and competition studies suggest that two distinct systems operate in this yeast. Nikkomycin Z was transported through one of these systems, common to di- and tripeptides. A peptide transport-deficient mutant was isolated on the basis of its resistance to nikkomycin Z. The mutant lost most of its capacity to take up dipeptides but simultaneously increased its ability to transport tripeptides. These results indicate that C. albicans handles peptides through multiple transport systems and adjusts their expression to environmental conditions.  相似文献   

13.
Metabolism of [14C]glucose by regenerating spheroplasts of Candida albicans   总被引:1,自引:0,他引:1  
Spheroplasts of Candida albicans were regenerated in [14C]glucose and buffered magnesium sulphate (0.1 M-Tris/HCl; 0.5 M-MgSO4, pH 7.2) at 35 degrees C. Uptake of glucose by spheroplasts was faster than that by intact yeast cells. After 6 h, 65% of the glucose taken up by the yeast appeared as CO2 and 30% was incorporated into the cellular material. With spheroplasts, 55% of the glucose taken up was expired as CO2, 25% was excreted into the medium as other metabolites and 20% was incorporated into the cells. The regenerating spheroplasts excreted 14C-labelled carbohydrates into the medium which were fractionated on a Sephadex G-15 column. Acid hydrolysis of the low molecular-weight fraction yielded the following sugars: mannose (75.7%), fucose (3.8%), arabinose (3%), galactose (2.1%) and an unidentified monosaccharide (14%). Spheroplasts did not incorporate mannoprotein into the regenerated wall. The wall carbohydrate from regenerated spheroplasts was fractionated on the basis of solubility in sodium hydroxide. The alkali-insoluble fraction was analysed by sequential enzyme hydrolysis; 40% of the incorporated counts were associated with beta (1----3)-linked glucan and 50% with a mixed glucan comprising beta (1----3)- and beta (1----6)-linkages and chitin.  相似文献   

14.
1. The formation of phosphatidylcholine from radioactive precursors was studied in adult rat lung alveolar type II epithelial cells in primary culture. 2. The incorporation of [Me-14C]choline into total lipids and phosphatidylcholine was stimulated by addition of palmitate, whereas the incorporation of [U-14C]glucose into phosphatidylcholine and disaturated phosphatidylcholine was stimulated by addition of choline. Addition of glucose decreased the absolute rate of incorporation of [1(3)-3H]glycerol into total lipids, phosphatidylcholine and disaturated phosphatidylcholine, decreased the percentage [1(3)-3H]glycerol recovered in phosphatidylcholine, but increased the percentage phosphatidylcholine label in the disaturated species. 3. At saturating substrate concentrations, the percentages of phosphatidylcholine radioactivity found in disaturated phosphatidylcholine after incubation with [1-(14)C]acetate (in the presence of glucose) [1-(14)C]palmitate (in the presence of glucose), [Me-14C]choline (in the presence of glucose and palmitate) and [U-14C]glucose (in the presence of choline and palmitate) were 78, 75, 74 and 90%, respectively. 4. Fatty acids stimulated the incorporation of [U-14C]glucose into the glycerol moiety of phosphatidylcholine. The degree of unsaturation of the added fatty acids was reflected in the distribution of [U-14C]glucose label among the different molecular species of phosphatidylcholine. It is suggested that the glucose concentration in the blood as related to the amount of available fatty acids and their degree of unsaturation may be factors governing the synthesis of surfactant lipids.  相似文献   

15.
The uptake of nutrients (glucose, glutamine, and N-acetylglucosamine), the intracellular concentrations of metabolites (glucose-6-phosphate, cyclic AMP, amino acids, trehalose, and glycogen) and cell wall composition were studied in Candida albicans. These analyses were carried out with exponential-phase, stationary-phase, and starved yeast cells, and during germ-tube formation. Germ tubes formed during a 3-h incubation of starved yeast cells (0.8 X 10(8) cells/mL) at 37 degrees C during which time the nutrients glucose plus glutamine or N-acetylglucosamine (2.5 mM of each) were completely utilized. Control incubations with these nutrients at 28 degrees C did not form germ tubes. Uptake of N-acetylglucosamine and glutamine was inhibited by cycloheximide which suggests that de novo protein synthesis was required for the induction of these uptake systems. The glucose-6-phosphate content varied from 0.4 nmol/mg dry weight for starved cells to 2-3 nmol/mg dry weight for growing yeast cells and germ tube forming cells. Trehalose content varied from 85 nmol/mg dry weight (growing yeast cells and germ tube forming cells) to 165 nmol/mg weight (stationary-phase cells). The glycogen content decreased during germ-tube formation (from 800 to 600 nmol glucose equivalent/mg dry weight) but increased (to 1000 nmol glucose equivalent/mg dry weight) in the control incubation of yeast cells. Cyclic AMP remained constant throughout germ-tube formation at 4-6 pmol/mg dry weight. The total amino acid pool was similar in exponential, starved, and germ tube forming cells but there were changes in the amounts of individual amino acids. The overall cell wall composition of yeast cells and germ tube forming cells were similar: lipid (2%, w/w); protein (3-6%), and carbohydrate (77-85%). The total carbohydrates were accounted for as the following fractions: alkali-soluble glucan (3-8%), mannan (20-23%), acid-soluble glucan (24-27%), and acid-insoluble glucan (18-26%). The relative amounts of the alkali-soluble and insoluble glucan changed during starvation of yeast cells, reinitiation of yeast-phase growth, and germ-tube formation. Analysis of the insoluble glucan fraction from cells labelled with [14C]glucose during germ-tube formation showed that the chitin content of the cell wall increased from 0.6% to 2.7% (w/w).  相似文献   

16.
In silico analysis of the genome sequence of the human pathogenic fungus Candida albicans identified an open reading frame encoding a putative fourth member of the chitin synthase gene family. This gene, named CaCHS8, encodes an 1105 amino acid open reading frame with the conserved motifs characteristic of class I zymogenic chitin synthases with closest sequence similarity to the non-essential C. albicans class I CHS2 gene. Although the CaCHS8 gene was expressed in both yeast and hyphal cells, homozygous chs8 Delta null mutants had normal growth rates, cellular morphologies and chitin contents. The null mutant strains had a 25% reduction in chitin synthase activity and were hypersensitive to Calcofluor White. A chs2 Delta chs8 Delta double mutant had less than 3% of normal chitin synthase activity and had increased wall glucan and decreased mannan but was unaffected in growth or cell morphology. The C. albicans class I double mutant did not exhibit a bud-lysis phenotype as found in the class I chs1 Delta mutant of Saccharomyces cerevisiae. Therefore, C. albicans has four chitin synthases with two non-essential class I Chs isoenzymes that contribute collectively to more than 97% of the in vitro chitin synthase activity.  相似文献   

17.
Chitin synthesis in crustaceans involves the deposition of a protein-polysaccharide complex at the apical surface of epithelial cells which secrete the cuticle or exoskeleton. The present study involves an examination of in vivo incorporation of radiolabeled amino acids and amino sugars into the cuticle of postmolt blue crabs, Callinectes sapidus. Rates of incorporation of both 3H leucine and 3H threonine were linear with respect to time of incubation. Incorporation of 3H threonine into the endocuticle was inhibited greater than 90% in the presence of the protein synthesis inhibitor, puromycin. Linear incorporation of 14C glucosamine into the cuticle was also demonstrated; a significant improvement of radiolabeling was achieved by using 14C-N-acetylglucosamine as the labeled precursor. Incorporation of 3H-N-acetylglucosamine into the cuticle of postmolt blue crabs was inhibited 89% by puromycin, indicating that concurrent protein synthesis is required for the deposition of chitin in the blue crab. Autoradiographic analysis of control vs. puromycin-treated crabs indicates that puromycin totally blocks labeling of the new endocuticle with 3H glucosamine. These results are consistent with the notion that crustacean chitin is synthesized as a protein-polysaccharide complex. Analysis of the postmolt and intermolt blue crab cuticle indicates that the exoskeleton contains about 60% protein and 40% chitin. The predominant amino acids are arginine, glutamic acid, alanine, aspartic acid, and threonine.  相似文献   

18.
Levorin is found to decrease more efficiently potassium concentration in C. albicans protoplasts under their incubation in the presence of sodium than in the medium containing the equivalent amount of potassium. Minimal inhibitory concentration of levorin for resistant C. albicans cells incubated on potassium-depeleted medium was in 4 times lower than for cells incubated in potassium-enriched medium. The decrease of membrane permeability for 14C-amino acids and their incorporation into membrane, ribosomal and soluble proteins under the effect of levorin was more pronounced when protoplasts were cultivated in sodium-containing medium than in potassium-containing one. In both media the inhibition of 14C-amino acid incorporation by levorin into ribosomal and cytosol proteins was more efficient than into membrane proteins, but these differences were less pronounced in case of potassium-containing medium.  相似文献   

19.
P Orlean  G Seebacher  W Tanner 《FEBS letters》1983,158(2):247-251
alpha-Factor inhibits incorporation of [14C]glucosamine into water-soluble and into SDS-extractable glycoproteins to about 90%. The incorporation into chitin is not affected and the same is true for [14C]phenylalanine incorporation into protein. The inhibition of glycoprotein synthesis is specific for a cells.  相似文献   

20.
In freshly isolated mouse hepatocytes obtained from fasted animals, we have studied the receptors for epidermal growth factor urogastrone (EGF-URO) in terms of the electrophoretic profile, ligand affinity, and numbers of EGF-URO receptors present on the cells, and also in terms of the ability of EGF-URO to stimulate gluconeogenesis, as reflected by the increased incorporation of [3-14C]pyruvate into glucose. The effects of EGF-URO were compared with those of glucagon. Ligand-binding studies revealed that the mouse hepatocytes possess an unusually high number of EGF-URO receptors (about 3 X 10(6) binding sites/cell), with a ligand dissociation constant of 4.4 nM. The binding of EGF-URO by mouse hepatocytes was more than 10-fold higher than the previously measured binding of EGF-URO by rat hepatocytes. Crosslink-labeling studies, coupled with gel electrophoretic analysis, demonstrated the presence of intact EGF-URO receptors, although some receptor processing had occurred during the isolation procedure. EGF-URO was able to stimulate the incorporation of 3-14C-labeled pyruvate into glucose; glucagon was unable to do so. In contrast, in rat hepatocytes isolated and assayed under identical conditions, glucagon (10 nM) caused a marked (250%) stimulation of the incorporation of pyruvate into glucose. Maximally, EGF-URO caused a 34% increase in the incorporation of [3-14C]pyruvate into glucose; a half-maximal effect was observed at a concentration of 2.5 nM EGF-URO. The stimulatory effect of EGF-URO was not dependent on the concentration of pyruvate, lactate, glucose, or calcium in the incubation medium. Although raising the concentration of pyruvate in the incubation medium increased the incorporation of [3-14C]pyruvate into glycogen, EGF-URO did not cause any change in the incorporation of radioactivity into glycogen. Overall, our data point to marked differences between rat and mouse liver preparations, in terms of the hormonal regulation of glucose metabolism, and our work documents a potential role for the remarkably high number of mouse hepatocyte EGF-URO receptors in terms of the modulation of gluconeogenesis in the mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号