首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Despite the potent antiinflammatory effects of pharmacologically induced adenosine 5'-monophosphate kinase (AMPK) activation on Toll-like receptor 4 (TLR4)-induced cellular activation, there is little evidence that AMPK is activated during inflammatory conditions. In the present studies, we examined mechanisms by which TLR4 engagement may affect the ability of AMPK to become activated in neutrophils and macrophages under in vitro conditions and in the lungs during lipopolysaccharide (LPS)-induced acute lung injury. We found that incubation of neutrophils or macrophages with LPS diminished the ability of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) or hydrogen peroxide (H(2)O(2)) to activate AMPK. Although ratios of AMP to adenosine 5'-triphosphate (ATP) were increased in LPS-treated neutrophils and in the lungs of LPS exposed mice, a condition that should result in AMPK activation, no activation of AMPK was found. Immunocytochemistry and Western blot analysis revealed that nuclear to cytosolic translocation of the proinflammatory mediator high mobility group box 1 protein (HMGB1) correlated with inhibition of AMPK activation in LPS-stimulated macrophages. Moreover, while induced overexpression of HMGB1 resulted in inhibition of AMPK activation, Small interfering RNA (siRNA)-induced knockdown of HMGB1 was associated with enhanced activation of AMPK in macrophages incubated with AICAR. Increased interaction between liver kinase B1 (LKB1), an upstream activator of AMPK, and HMGB1 was found in LPS-stimulated macrophages and in the lungs of mice exposed to LPS. These results suggest that nuclear to cytoplasmic translocation of HMGB1 in TLR4-activated cells potentiates inflammatory responses by binding to LKB1, thereby inhibiting the antiinflammatory effects of AMPK activation.  相似文献   

3.
本研究结果表明:一氧化氮(NO)在卡介苗(BCG)加脂多糖(LPS)诱导的免疫性肝损伤中呈现双向作用。来源于吞噬细胞的NO具有损伤作用,而其它来源的NO则具有保护作用。肿瘤坏死因子(TNF)也参与了BCG+LPS诱导的肝损伤。枯否氏细胞通过释放NO及TNF而介导肝损伤。抗肝炎新药SY-801及SY-640的保肝机理与它们升高血浆NO及降低TNF基因表达有关。  相似文献   

4.
脂多糖诱导小鼠脏器中胞间粘附分子-1的表达   总被引:5,自引:0,他引:5  
Yan WS  Kan WH  Hang QB  Jiang Y  Wang SW  Zhao KS 《生理学报》2002,54(1):71-74
为研究脂多糖(lipopolysaccharide,LPS)诱导的内毒素休克小鼠多种脏器中胞间粘附分子-1(intercellu-lar adhesion molecule-1,ICAM-1)表达的差异。用5mg/kgLPS腹腔注射小鼠后,分别采用Western blotting和RT-PCR法检测组织中ICAM-1蛋白和mRNA的表达情况,结果显示,在正常小鼠,ICAM-1蛋白和mRNA的表达在肺中最多,其次是脾脏,在肾脏和肠有少量表达,在肝脏和心脏中未能检出,LPS腹腔注射后6h可诱导小鼠发生内毒素休克,此时,ICAM-1蛋白表达仍以在肺中最多,在肝、脾、心、肾和肠依次减少;其中在肺,肾和脾分别比正常时增加4.5、3.0和1.5倍,而且在正常时不能检出的肝和心中呈现阳性,但在肠中则变化不大,脏器中ICAM-1mRNA亦相应显著增加,上述结果表明,在LPS诱导的内毒素休克小鼠的多种脏器中ICAM-1蛋白和mRNA表达显著增加,脏器间ICAM-1表达上调的差异可能带来内毒素休克时脏器的不同易伤性,抑制ICAM-1的表达可能对内毒素休克的防治有重要的意义。  相似文献   

5.
Inflammation, apoptosis, and oxidative stress are involved in septic liver dysfunction. Herein, the role of miR‐103a‐3p/FBXW7 axis in lipopolysaccharides (LPS)‐induced septic liver injury was investigated in mice. Hematoxylin‐eosin staining was used to evaluate LPS‐induced liver injury. Quantitative real‐time polymerase chain reaction was performed to determine the expression of microRNA (miR) and messenger RNA, and western blot analysis was conducted to examine the protein levels. Dual‐luciferase reporter assay was used to confirm the binding between miR‐103a‐3p and FBXW7. Both annexin V‐fluoresceine isothiocyanate/propidium iodide staining and caspase‐3 activity were employed to determine cell apoptosis. First, miR‐103a‐3p was upregulated in the septic serum of mice and patients with sepsis, and miR‐103a‐3p was elevated in the septic liver of LPS‐induced mice. Then, interfering miR‐103a‐3p significantly decreased apoptosis by suppressing Bax expression and upregulating Bcl‐2 levels in LPS‐induced AML12 and LO2 cells, and septic liver of mice. Furthermore, inhibition of miR‐103a‐3p repressed LPS‐induced inflammation by downregulating the expression of tumor necrosis factor, interleukin 1β, and interleukin 6 in vitro and in vivo. Meanwhile, interfering miR‐103a‐3p obviously attenuated LPS‐induced overactivation of oxidation via promoting expression of antioxidative enzymes, including catalase, superoxide dismutase, and glutathione in vitro and in vivo. Moreover, FBXW7 was a target of miR‐103a‐3p, and overexpression of FBXW7 significantly ameliorated LPS‐induced septic liver injury in mice. Finally, knockdown of FBXW7 markedly reversed anti‐miR‐103a‐3p‐mediated suppression of septic liver injury in mice. In conclusion, interfering miR‐103a‐3p or overexpression of FBXW7 improved LPS‐induced septic liver injury by suppressing apoptosis, inflammation, and oxidative reaction.  相似文献   

6.
An endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, was found to induce apoptosis in human dopaminergic SH-SY5Y cells by step-wise activation of apoptotic cascade; collapse in mitochondrial membrane potential, DeltaPsim, activation of caspases, and fragmentation of DNA. Recently, accumulation of gylceraldehyde-3-phosphate dehydrogenase (GAPDH) in nuclei was proposed to play an important role in apoptosis. In this paper, involvement of GAPDH in apoptosis induced by N-methyl(R)salsolinol was studied. The isoquinoline reduced DeltaPsim within 3 h, as detected by a fluorescence indicator, JC-1, then after 16 h incubation, GAPDH accumulated in nuclei by detection with immunostaining. To clarify the role of GAPDH in apoptotic process, a stable cell line of Bcl-2 overexpressed SH-SY5Y cells was established. Overexpression of Bcl-2 prevented the decline in DeltaPsim and also apoptotic DNA damage induced by N-methyl(R)salsolinol. In Bcl-2 transfected cells, nuclear translocation of GAPDH was also completely suppressed. In addition, a novel antiparkinsonian drug, rasagiline, prevented nuclear accumulation of GAPDH induced by N-methyl(R)salsolinol in control cells. These results suggest that GAPDH may accumulate in nuclei as a consequence of signal transduction, which is antagonized by anti-apoptotic Bcl-2 protein family and rasagiline. The results are discussed in concern to intracellular mechanism underlying anti-apoptotic function of rasagiline analogues.  相似文献   

7.
Interleukin (IL)-18 is a pro-inflammatory cytokine that plays a critical role in inflammation leading to liver damage, through promotion of Fas-mediated apoptosis. Inhibition of IL-18 activity protects against LPS-induced lethality in mice and against liver damage induced by LPS after sensitisation of mice with Proprionibacterium acnes. A specific, potent, endogenous inhibitor of IL-18 (IL-18BP) has been identified in mice and humans, and IL-18BP mRNA is expressed constitutively in liver. The objectives of this study were to compare changes in IL-1beta and IL-18 mRNA expression in the liver of rats in response to peripheral injection of LPS, using real-time PCR, and also to investigate whether IL-18BP mRNA expression is affected by this treatment. LPS rapidly up-regulated IL-1beta mRNA expression, but IL-18 mRNA expression was unaffected by LPS treatment. Unlike IL-18, IL-18BP mRNA was up-regulated dramatically by approximately 12-fold above nai;ve levels, peaking 3 h after LPS injection. This ability of LPS to up-regulate expression of the endogenous IL-18 inhibitor may indicate a mechanism by which the inflammatory response to LPS is regulated.  相似文献   

8.
Recent evidences indicate new roles for the glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in essential mammalian cell processes, such as apoptosis and proliferation. To clarify the involvement of this protein in growth and programmed cell death in the liver, cell models of hepatocytes in culture were used to study GAPDH expression, localization and enzymatic activity in hepatocyte proliferation and apoptosis. GAPDH expression in cell compartments was studied by Western blot. Nuclear expression of GAPDH increased in apoptosis, and cytoplasmic expression was elevated in apoptosis and proliferation. Subcellular localization was determined by GAPDH immunostaining and confocal microscopic analysis. Quiescent and proliferating hepatocytes showed cytoplasmic GAPDH, while apoptotic cells showed cytoplasmic but also some nuclear staining. The glycolytic activity of GAPDH was studied in nuclear and cytoplasmic cell compartments. GAPDH enzymatic activity increased in the nucleus of apoptotic cells and in cytoplasms of apoptotic and proliferating hepatocytes. Our observations indicate that during hepatocyte apoptosis GAPDH translocates to the nucleus, maintaining in part its dehydrogenase activity, and suggest that this translocation may play a role in programmed hepatocyte death. GAPDH over-expression and the increased enzymatic activity in proliferating cells, with preservation of its cytoplasmic localization, would occur in response to the elevated energy requirements of dividing hepatocytes. In conclusion, GAPDH plays different roles or biological activities in proliferating and apoptotic hepatocytes, according to its subcellular localization.  相似文献   

9.
Sirtuin 6 (SIRT6) has the function of regulating autophagy. The aim of this study was to investigate the mechanism through which SIRT6 relieved acute kidney injury (AKI) caused by sepsis. The AKI model was established with lipopolysaccharides (LPS) using mice. Hematoxylin-eosin (HE) staining and streptavidin-perosidase (SP) staining was used to observe kidney tissue and test SIRT6 and LC3B proteins in kidney. Enzyme-linked immunosorbent assay (ELISA) was performed to detected the tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) concentrations. Cell counting kit-8 (CCK-8) assay and flow cytometry were carried out to test the cell viability and apoptosis rate respectively. Protein and mRNA were determined by Western blot and quantitative real-time polymerase chain reaction (qRT-PCR). AKI induced by LPS had self-repairing ability. At 12 h after modeling, the expression levels of TNF-α, IL-6, SIRT6 and LC3B-II/LC3B-I were first significantly increased and were then significantly decreased at 48 h after modeling. LPS inhibited the growth of HK-2 cells and promoted the expressions of TNF-α, IL-6, SIRT6 and LC3B. Overexpression of SIRT6 down-regulated the secretion of TNF-α and IL-6 induced by LPS. SIRT6 overexpression inhibited apoptosis induced by LPS and promoted autophagy in HK-2 cells. Silencing of the SIRT6 gene not only promoted the secretion of TNF-α and IL-6 by HK-2 cells, but also promoted apoptosis and reduced autophagy. LPS up-regulated the expression of SIRT6 gene in HK-2 cells. Overexpression of the SIRT6 gene could inhibit apoptosis and induce autophagy, which might be involved in repairing kidney damage caused by LPS.  相似文献   

10.
该文旨在探讨α-酮戊二酸对脂多糖(lipopolysaccharide,LPS)及D-半乳糖胺(d-galac-tosamine,D-Ga1)诱导的急性肝损伤发生发展的影响及其可能机制.实验分组:正常对照组、AKG单独处理组、LPS/D-Ga1组、LPS/D-Ga1+AKG组.在雄性BALB/c小鼠中,经腹腔注射LPS...  相似文献   

11.
Guan YZ  Guo R  Nian H  Jin XD 《生理学报》2012,64(3):269-274
To study whether recombinant human erythropoietin (rhEPO) reduces neuronal apoptosis through inhibiting over-expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in nucleus induced by brain ischemia/reperfusion in rats, 48 adult Sprague-Dawley rats were randomly divided into 3 groups: sham, saline and EPO groups. Animal models of brain ischemia/reperfusion were established by middle cerebral artery occlusion in rats. The effects of EPO on the sizes of ischemia tissue were observed by TTC staining. The over-expression of GAPDH in nucleus was detected by Hoechst-33258 and anti-GAPDH antibody double staining. The neuronal apoptosis in penumbral was detected by Nissl's staining and Hoechst-33258 immunofluorescence, respectively. The results showed that rhEPO treatment (3 000 U/kg, three times daily, i.p.) apparently reduced the sizes of infarct brain tissue in ischemia/reperfusion rats. rhEPO inhibited over-expression of GAPDH in nucleus of apoptotic neurons. In the meantime rhEPO decreased the number of apoptotic neurons in ischemia/reperfusion rats. These results suggest that rhEPO may induced reduction of neuronal apoptosis in penumbra may be through inhibiting over-expression of GAPDH in nucleus of apoptotic neurons induced by ischemia/reperfusion. Reduction of GAPDH over-expression in nucleus may play a pivotal role in EPO inhibiting neuronal apoptosis in cerebral ischemia/reperfusion rats, providing experimental evidence for EPO neuro-protecting effects against ischemia/reperfusion.  相似文献   

12.
Lipopolysaccharide increases resistin gene expression in vivo and in vitro   总被引:21,自引:0,他引:21  
Lu SC  Shieh WY  Chen CY  Hsu SC  Chen HL 《FEBS letters》2002,530(1-3):158-162
Although resistin has been thought to be an important link between obesity and diabetes, recent results do not support this hypothesis. We speculated that resistin may be involved in inflammatory processes and be induced by inflammatory stimuli. In this study, we tested whether lipopolysaccharide (LPS) induced resistin expression in rats. The results show that resistin mRNA levels in white adipose tissue and white blood cells were increased by LPS treatment. LPS also increased resistin mRNA levels in 3T3-L1 adipocytes and human peripheral blood monocytes. The results suggest that resistin is involved in insulin resistance and probably in other inflammatory responses.  相似文献   

13.
Lipopolysaccharide (LPS) from gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complications in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis, and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity, and carbonyl formation. A Kaplan-Meier curve was constructed for survival after LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice after LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O(2)(-), and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury after LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by the antioxidant N-acetylcysteine and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy.  相似文献   

14.
Activation of poly-(ADP-ribose) polymerase (PARP) is often associated with cytotoxicity, but its precise role in shock-induced lethality and in different modes of tissue injury is still unknown. We took advantage of the existence of mice with a targeted deletion of the PARP gene (PARP-/-) to examine the differential sensitivity of wild-type (wt) and PARP-/- mice toward endotoxin (LPS)-induced lethality and different forms of liver damage. All PARP-/- animals survived high-dose (20 mg/kg) LPS-mediated shock, which killed 60% of wt animals. Moreover, LPS-induced necrotic liver damage was significantly reduced. In contrast, when apoptotic liver damage was induced via injection of low concentrations of LPS (30 microgram/kg) into D-galactosamine-sensitized mice, or via activation of hepatic cell death receptors, PARP-/- animals were not protected. We conclude that PARP is involved in systemic LPS toxicity, while it plays a minor role in apoptotic liver damage mediated by TNF or CD95.  相似文献   

15.
16.
Gene expression profile in immunologically injured liver cell of mice   总被引:3,自引:0,他引:3  
To study the gene expression profiles between immunologically injured liver cell and normal liver cell of mice and to screen on a large scale the differentially expressed genes associated with the formation of liver injury,the experimental mice were randomly divided into the normal group for controlling and the immunologically liver-injured group induced by BCG and LPS.The liver mRNA of the two groups were extracted respectively and reversely-transcribed to cDNA with the incorpora-tion of different fluorescence(Cy3,Cy5) labeled dUTP as the hybridization probes.The mixed probes were hybridized to the cDNA microarray chips.The fluorescent signal results were acquired by scanner ScanArray 4000 and analyzed with software GenePix Pro 3.0.Among the 14112 target genes,293 genes were found to be significantly differentially expressed,in which 188 genes were up-regulated and 105 genes were down-regulated.Based on the analysis of biological functions of those differentially expressed genes,it was indicated that the occurrence and development of mouse liver damage induced by BCG and LPS were highly correlated with the processes of immune reac-tions,cell synthesis,metabolism,apoptosis and transportation in liver cell,which might be quite im-portant for elucidating the regulatory network of gene expression associated with the liver damage,also important for finally discovering the pathogenic mechanisms of immunological liver damage.  相似文献   

17.
To study the gene expression profiles between immunologically injured liver cell and normal liver cell of mice and to screen on a large scale the differentially expressed genes associated with the formation of liver injury, the experimental mice were randomly divided into the normal group for controlling and the immunologically liver-injured group induced by BCG and LPS. The liver mRNA of the two groups were extracted respectively and reversely-transcribed to cDNA with the incorporation of different fluorescence (Cy3, Cy5) labeled dUTP as the hybridization probes. The mixed probes were hybridized to the cDNA microarray chips. The fluorescent signal results were acquired by scanner ScanArray 4000 and analyzed with software GenePix Pro 3.0. Among the 14112 target genes, 293 genes were found to be significantly differentially expressed, in which 188 genes were up-regulated and 105 genes were down-regulated. Based on the analysis of biological functions of those differentially expressed genes, it was indicated that the occurrence and development of mouse liver damage induced by BCG and LPS were highly correlated with the processes of immune reactions, cell synthesis, metabolism, apoptosis and transportation in liver cell, which might be quite important for elucidating the regulatory network of gene expression associated with the liver damage, also important for finally discovering the pathogenic mechanisms of immunological liver damage.  相似文献   

18.
In addition to stimulating IFN-gamma synthesis, IL-18 also possesses inflammatory effects by inducing synthesis of the proinflammatory cytokines TNF and IL-1beta and the chemokines IL-8 and macrophage inflammatory protein-1alpha. We hypothesized that neutralization of IL-18 would have a beneficial effect in lethal endotoxemia in mice. IL-1beta converting enzyme (ICE)-deficient mice, lacking the ability to process mature IL-18 and IL-1beta, were completely resistant to lethal endotoxemia induced by LPS derived from either Escherichia coli or Salmonella typhimurium. In contrast, both wild-type and IL-1beta-/- mice were equally susceptible to the lethal effects of LPS, implicating that absence of mature IL-18 or IFN-gamma but not IL-1beta in ICE-/- mice is responsible for this resistance. However, IFN-gamma-deficient mice were not resistant to S. typhimurium LPS, suggesting an IFN-gamma-independent role for IL-18. Anti-IL-18 Abs protected mice against a lethal injection of either LPS. Anti-IL-18 treatment also reduced neutrophil accumulation in liver and lungs. The increased survival was accompanied by decreased levels of IFN-gamma and macrophage inflammatory protein-2 in anti-IL-18-treated animals challenged with E. coli LPS, whereas IFN-gamma and TNF concentrations were decreased in treated mice challenged with S. typhimurium. In conclusion, neutralization of IL-18 during lethal endotoxemia protects mice against lethal effects of LPS. This protection is partly mediated through inhibition of IFN-gamma production, but mechanisms involving decreased neutrophil-mediated tissue damage due to the reduction of either chemokines (E. coli LPS) or TNF (S. typhimurium LPS) synthesis by anti-IL-18 treatment may also be involved.  相似文献   

19.
Chronic lymphocytic leukemia (CLL) results from the uncontrolled proliferation and accumulation of B-1 cells, many of which demonstrate self-reactivity. The response of B-1 cells to mitogen after undergoing malignant transformation is still unclear. Using our established malignant B-1 cell lines derived from the NZB murine model of human CLL, we investigated the response of malignant B-1 cells to the mitogen LPS. Interestingly, these malignant B-1 cells proliferated initially, but the proliferation rate decreased after a 48-h transition. Prolonged LPS treatment induced apoptosis and pathological differentiation. We studied possible underlying molecular mechanisms and found that the level of the DNA binding protein BSAP (B-cell-specific activator protein) was upregulated by LPS at the initial activation stage, followed by an increase in the apoptotic factor caspase-3 (CPP32) at 48 h and a subsequent decrease of BSAP at 72 h. The pathological differentiation induced by LPS was partially prevented by treatment with antisense BSAP. This study indicates that malignant B-1 cells could be driven to apoptosis and pathological differentiation when activated by the mitogen LPS, and BSAP may be an important factor in regulating these responses.  相似文献   

20.
β‐Hydroxybutyrate (BHB), one of ketone body, has been traditionally regarded as an alternative carrier of energy, but recent studies found that BHB plays versatile roles in inflammation. It has been previously reported that the level BHB declined in mice with lipopolysaccharide (LPS)/d ‐galactosamine (d ‐Gal)‐induced liver damage, but the pathological significance remains unclear. In the present study, the pathophysiological roles of BHB in LPS/d ‐Gal‐induced hepatic damage has been investigated. The results indicated pretreatment with BHB further enhanced LPS/d ‐Gal‐induced elevation of aspartate aminotransferase and alanine aminotransferase, exacerbated the histological abnormalities and increased the mortality. Pretreatment with BHB upregulated the level of tumor necrosis factor α and interleukin‐6 in plasma, promoted the activities of caspase‐3, caspase‐8, and caspase‐9 and increased the count of terminal deoxynucleotidyl transferase dUTP nick end labeling‐positive cells. In addition, post‐insult supplement with BHB also potentiated LPS/d ‐Gal‐induced apoptotic liver damage. Therefore, BHB might be a detrimental factor in LPS/d ‐Gal‐induced liver injury via enhancing the inflammation and the apoptosis in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号